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Abstract 

Carbon fibre reinforced plastic (CFRP) materials play a major role in the 

applications of aeronautic, aerospace, sporting and transportation industries. 

Machining is indispensible and hence drilling of CFRP materials is considered 

in this present study with respect to spindle speed in rpm, drill size in mm and 

feed in mm/min. Delamination is one of the major defects to be dealt with. 

Experiments are carried out using computer numerical control machine and the 

results are applied to an artificial neural network (ANN) for the prediction of 

delamination factor at the exit plane of the CFRP material. It is found that ANN 

model predicts the delamination for any given set of machining parameters with 

maximum error of 0.81% and minimum error of 0.03%. Thus an ANN model is 

highly suitable for the prediction of delamination in CFRP materials. 
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1.  Introduction 

Presently, carbon fibre reinforced plastic (CFRP) composite materials have found 

wide applications as functional and structural materials due to its static, dynamic, 

thermal and chemical properties. As a result of these properties it has widespread 

applications include aerospace industries, automobile, sporting goods, marine, 

naval, space, machine tools, transportation structures, post strengthening of 

concrete beams and strengthening masonry shear walls in seismically active 

regions [1]. CFRP can be used to effectively improve the performance of 

structural members such as its load carrying capacity, stiffness, ductility, 

performance under cyclic loading, as well as environmental durability. 
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Nomenclatures 
 

A Actual data 

D Actual diameter, mm 

Dmax Maximum diameter, mm 

E Overall error  

FD Delamination factor  

j Index representing hidden node 

k Index representing output node  

L Learning rate 

M Momentum coefficient 

m Number of input nodes 

O Calculated output 

T Test data 

u Input node value 

v Hidden node value 

w Weights 

x Weights between layers 

y Activation function 
 

Greek Symbols 

∆ gradient 

δ Error owing to a pattern  

η Learning rate 

θ Threshold values 
 

Abbreviations 

ANN Artificial neural network 

BPN Back propagation network 

CFRP Carbon fiber reinforced plastic 

CNC Computer numerical control 

GRNN Generalized regression neural network 

MSE Mean square error 

NNA Neural network architecture 

PNN Probabilistic neural network 

Due to its potential applications, there is a strong need to understand 

machining of CFRP materials. The non-homogeneity and anisotropic behavior of 

CFRP materials pose tremendous problems in their machining. Drilling is 

indispensable and the most frequently employed operation of secondary 

machining for CFRP material structures. Though many defects are associated in 

drilling of CFRP, micro cracking, fibre breakage, matrix cratering, thermal 

damage and delamination are considered as important defects. Among these 

defects, delamination is found to be one of the major defects that affect the 

application of CFRP in fastening structures. It is a resin or matrix dominated 

failure behavior that occurs in interply region. 

Davim and Reis [2] established a new comprehensive approach to select 

cutting parameters for damage free drilling in CFRP materials based on a 

combination of Taguchi technique and ANOVA. Experiments shows that thrust 
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forces plays significant role on delamination during drilling operations and 

delamination free drilling may be obtained by the proper selection of tool 

geometry and drilling parameters. Several other research works have also been 

carried out in drilling of CFRP composites [3-7]. 

Artificial neural networks (ANN) are employed commonly in the prediction of 

output parameters by training the network with the experimental results obtained. 

Palanikumar et al. [8] predicted the tool wear is using back propagation neural 

network. This work has considerable implications in the real time monitoring of 

tool wear in which the actual tool wear can be compared with the predicted ones 

to signal the onset of wear which in turn prevents damage to the tool wear and the 

work piece. The ANN predictive model of burr height and burr thickness were 

developed using a multilayer feed forward neural network, trained using back 

propagation algorithm [9]. The performance of this ANN model was compared 

with the second order RSM mathematical model and the accuracy of ANN 

prediction was clearly proved. Good agreement was observed between the 

predictive model using ANN and the turning experimental measurements of the 

turned part surfaces for measuring the surface roughness data [10]. In another 

work, RSM and radial basis function was compared for an experimental work on 

drilling of CFRP to predict thrust force for a core center drill [11]. Also, 

prediction of output parameters like thrust force, surface roughness, delamination 

analysis in drilling of composites has been carried out using ANN [12-19]. From 

these works the significance of neural networks in the machining operation is 

clearly understood. 

The objective of the present work is to study the influence of different size of 

drills and drilling process parameters on delamination of CFRP composites. ANN 

is used to predict the delamination factor and the results shows good agreement 

with the experimental results obtained. Hence neural network helps in 

determining the optimum values of the machining parameters such that the 

delamination is minimized. 

 

2. Experimental Description  

Experiments were conducted on a computer numerical control (CNC) machine 

with prefixed cutting conditions.  The specification of the machine is given in 

Table 1. CFRP material used in the experiments was manufactured through hand-

layup process using epoxy resin. The mechanical properties of the CFRP 

composite material used are listed in Table 2. 

 

Table 1. Machine Specifications. 

CAPACITY Longitudinal axis (X axis) 700 mm 

Cross axis (Y axis) 350 mm 

Vertical axis(Z axis) 150 mm 

TABLE Table size 1270×254 mm 

T-slots 16×3 mm 

SPINDLE Speed 60- 5000 rpm 

Centre to table 10/450 mm 

FEED RATE Feed rate upto 3000 mm/min 

Rapid traverse 3000 mm/min 
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Table 2. Properties of CFRP Material. 

Thickness of carbon fiber in the form of filaments is 0.05 mm 

Properties of the Carbon fiber 

Material Standard grade of Carbon Fiber 

Tensile strength (GPa) 3.5 

Tensile modulus (GPa) 230 

Density (g/ccm) 1.75 

Specific strength (GPa) 2.00 

Properties of the Epoxy 

Material EPON Resin 8132 

Viscosity (poise) 5-7 

Weight per epoxide 192-215 

Density (lb/gal) 9.2 
 

 

The cutting tool used for the investigation is BRAD and SPUR type drill bit 

made of carbide. The drill bits used in the investigation is presented in Fig. 1. 

CFRP materials are drilled using this Brad and spur drill bits. The experiments are 

conducted as per L27 orthogonal array which in turn reduce the number of 

experiments.  The cutting parameters considered for the analysis are spindle speed 

in rpm, feed rate in mm/min and drill diameter in mm. The three different levels 

of spindle speed are chosen as 500, 1000 and 1500 rpm. Similarly, feed variations 

are 50,100 and 150 mm/min and the drill size is varied as 4, 8 and 12 mm. 

 
 

Fig. 1. Brad and Spur Drills used for Experimentation. 
 

A three level, full factorial design of experiments were carried out and hence the 

delamination factor of the various drilled holes can be calculated using the relation 

d

D
Fd

max=                   (1) 

where    

Fd   - Delamination factor 

Dmax - Maximum diameter observed in delamination 

D - Diameter of the drill 
 

 

 

Φ 4 mm 

Φ 8 mm 

Φ 12 mm 
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3.  Artificial Neural Network 

Artificial neural networks are highly structured information processing units 

operating in parallel and attempting to minimize the huge computational ability of 

the human brain and nervous system [20]. In this attempt to emulate the human 

brain, neural networks learn from experience, generalize from previous example, 

abstract essential characteristics from input containing irrelevant data and deal 

with fuzzy situation. ANN is a data driven self adaptive method and needs few 

prior assumptions about the process under study. The ability of the ANN to learn 

and generalize the behavior of any complex and nonlinear process makes it a 

powerful modelling tool. ANN have been successfully employed in the modelling 

of several process, especially for manufacturing processes where no satisfactory 

analytic model exists, or a low order empirical polynomial is inappropriate, neural 

networks offer a good alternative approach [10]. 

Neural network architecture consists of neurons connected through links. A 

variety of neural network architecture have been developed including perceptrons, 

Hopfield networks, back propagation and Kalmogrov networks [21]. Among 

these models, back propagation is the best general purpose model and probably 

the best at generalization [22]. Typical neural network architecture consists of a 

layered arrangement of neurons, the processing unit. Layers can be divided into 

an input layer, one or more hidden layers and an output layer as shown in Fig. 2. 

The input layer is used to present the data to the network model and the output 

to create ANN’s response. The number of hidden layers is to be determined based 

on trial and error method, on the basis of the improvement in the error with the 

number of hidden layers. It is identified that [10] two hidden layers should perform 

better than a one hidden layer network. The number of neurons in this hidden layer 

also depends on the error improvement with increasing number of neurons [23]. 

The hidden layers are connected with each other through variable weights. The 

number of neurons in input layer depends on the number of input parameters 

selected and they are fully connected with hidden layers. The number of neurons in 

the output layer depends on the number of classes or values to be predicted. 

 

Fig. 2. Neural Network Architecture. 
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Learning rules used to train the network are basically of two types – 

supervised and unsupervised. In supervised learning, the network adjusts its 

weights using a known set of input output pairs and once training is completed, it 

is expected to produce a correct output in response to an unknown input. In 

unsupervised training, the network adjusts its weights in response to input 

patterns without the knowledge of any known associated outputs. 

During learning, a neural network gradually modifies its weights and settle 

down to a set of weights capable of realizing the input –output mapping with either 

no error or a minimum error set by the user. The most common type of supervised 

learning are back propagation learning (BPN), radial basis functions (RBF), 

probabilistic neural network (PNN), generalized regression neural network 

(GRNN), etc. Several types of activation functions are used to transform the input 

value of the hidden layer to the output. They include threshold functions, piecewise 

linear function, sigmoid/hyperbolic functions and logarithmic functions. 

During network training, the weights are given quasi-random, intelligently 

chosen initial values. They are then iteratively updated until convergence to 

certain known values so as to minimize the mean square error (MSE) between 

training data set and network prediction. The network training is continued with 

the entire set of training data and at the end of training, the test data are presented 

to the trained network and the output value is predicted. The above network 

training sequence is continued till the predicted output for the test data closely 

matches with the known experimental values. The error tolerance can be normally 

set to around two to three decimal places depending on the accuracy desired. 

In this work, the input machining parameters considered are speed, drill 

diameter and feed and the output parameters to be obtained are delamination 

factors at the exit of the laminates. Hence the number of input and output neurons 

is chosen to be three and one respectively. The activation function is chosen to be 

a tansigmoidal nonlinear function given by 

( )
x

e
xfy

−+
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1                     (2) 

The weights, w, and the threshold values, θ, are adjusted until the error is 

minimized. The weights between the input and output layer is given as  

∑
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and between the hidden layer and output layer,  
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where m is the number of input nodes, n is the number of hidden nodes and l 

is the number of output nodes, u and v are the input node and hidden node values. 

The output yi of a neuron in successive layer is given by  
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The overall error, E, of all the patterns is given by  
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where Tpi is the i
th

 component of the desired output vector and Opi is the 

calculated output of the i
th

 neuron in the output layer. The learning algorithm 

employed in this work is back propagation method using the steepest gradient 

method [24]. In order to obtain a gradient descent in E,  

pipiijp Ow ηδ=∆                                     (7) 

the weight vectors wji have to be updated using Eq. (7). Here δpi for the output 

layer is given by 

))(1( pipipipipi OTOO −−=δ                                  (8) 

and that for the hidden layer is given by 

∑−=
k

jkpkpipipi wOO δδ )1(                    (9) 

In these equations η is a constant real number called the learning rate, which 

determines the influences of error over weight changes, δpi is the error owing to 

the p
th

 pattern connected to the j
th

 neuron and Opi is the i
th

 neuron output when the 

p
th

 pattern is processed by the neural network. The weights of the neural network 

are updated by the following equation, 

pipiOnwnw ηδ+=+ )()1(                                (10) 

Error lines are computed for drill wear monitoring using ANN by training 

various neural network architectures [25]. Modelling of tool wear in drilling by 

statistical analysis and ANN was presented for a comparative study along with 

experimental data and neural network was found to be satisfactory while validated 

with experimental results [26]. Prediction of flank wear by using back propagation 

neural network modelling was carried out and identified that the ANN model based 

predictions of tool wear classification was accurate for the range it had been trained 

as compared to its experimental method [27-29]. A study of surface roughness in 

drilling using mathematical analysis and neural networks was carried out and found 

that the neural network model produced accurate and reliable results for all 

combination of input machining parameters [30]. 

 

4.  Results and Discussion 

In this work, a multi layer feed forward network architecture is used to model the 

experimental investigation on delamination factor at the exit of a CFRP composite 

material. This model is trained using back propagation algorithm by gradient 

descent method. Since, the number of machining parameters considered in the 

experimental work is three, two hidden layers with nonlinear activation functions, 

tansigmoidal, is chosen with one neuron in the output layer representing the 

delamination at the exit. However, (2n-1) and (n-1) neurons are considered in the 

proposed ANN model used for training, where n represents the number of 

machining parameters. The output layer activation function of this neural network 

is chosen as ‘pure linear’ in order to get an accurate result. 



198       A. Krishnamoorthy et al.                          

 

 
 
Journal of Engineering Science and Technology                 April 2011, Vol. 6(2) 

 

The ANN is modelled using MATLAB’s neural network toolbox. The L27 

orthogonal array of experimental data is normalized so that they fall within the 

range [-1 1] and the normalized values of training data is shown in Table 3. 

 

Table 3. Normalized Training Data. 

S. No. Speed Drill size Feed Exit Fd 

1 -1 -1 -1 -0.9423 

2 -1 -1 0 -0.4551 

3 -1 -1 1 0.9038 

4 -1 0 -1 -0.9295 

5 -1 0 0 -0.4359 

6 -1 0 1 0.9487 

7 -1 1 -1 -0.8846 

8 -1 1 0 -0.4038 

9 -1 1 1 1 

10 0 -1 -1 -0.9679 

11 0 -1 0 -0.4872 

12 0 -1 1 0.8782 

13 0 0 -1 -0.9359 

14 0 0 0 -0.4423 

15 0 0 1 0.9103 

16 0 1 -1 -0.8974 

17 0 1 0 -0.4231 

18 0 1 1 0.9679 

19 1 -1 -1 -1 

20 1 -1 0 -0.5321 

21 1 -1 1 0.8333 

22 1 0 -1 -0.9551 

23 1 0 0 -0.4744 

24 1 0 1 0.8718 

25 1 1 -1 -0.9231 

26 1 1 0 -0.4359 

27 1 1 1 0.9231 

 

This training set is used to train the network to predict the delamination factor 

for various normalized test data tabulated in Table 4. 

 

Table 4. Normalized Test Data. 

S.No. Speed Drill size Feed Exit Fd 

1 -1 -1 -1 -1 

2 1 1 1 1 

3 0 0 0 -0.424 

4 -0.2 0 0.6 0.7196 

5 -0.6 0.5 0.4 0.4559 

6 0.0385 0.0385 0.0385 -0.3602 

7 -1 -1 -1 -1 

8 1 1 1 1 

9 -0.4 0 -0.4 -0.8321 
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However, twelve different neural network architectures (NNA) with varying 

training parameters were trained using this set of training data and their 

corresponding results are tabulated in Table 5. The error goal for training was 

chosen as 1×10
-4

 and the learning rate increment as 1.05. 

 

Table 5. Training Error for different Neural Network Architecture 

Trial No 
N

et
 

M L 
MSE 

X e-005 

No. of 

Epochs 

Predicted error in% 

Max Min 

1 

3
-4

-2
-1

 0.2 0.25 9.9878 2095 4.33 0.18 

2 0.25 0.3 9.99682 22336 0.83 0.07 

3 0.25 0.2 9.99942 5484 1.23 0.14 

4 0.4 0.5 9.99915 11890 4.18 0.23 

5 

3
-5

-2
-1

 0.2 0.25 9.99987 6215 1.00 0.18 

6 0.25 0.3 9.99984 5766 2.43 0.25 

7 0.25 0.2 9.99974 13972 0.81 0.03 

8 0.4 0.5 9.99877 11942 1.14 0.03 

9 

3
-6

-2
-1

 0.2 0.25 9.99706 1554 2.73 0.28 

10 0.25 0.3 9.99897 3121 4.36 0.19 

11 0.25 0.2 9.99305 11091 3.88 0.21 

12 0.4 0.5 9.99638 18655 4.25 0.22 

 

The mean square error (MSE), maximum error in % and minimum error in % 

are calculated [25] and listed in the Table 3. It is found that the network 

architecture, 3-5-2-1, with 0.25 as momentum coefficient (M) and 0.2 as learning 

rate (L) provides an accurate result. The number of epochs required to converge 

towards the error goal set is found to be 13,972 and the same is depicted in Fig. 3 

along with MSE. 

 

Fig. 3. Variation of MSE during ANN Training. 

 

The trained network is simulated with training data and the comparison of 

correlation of actual and predicted training patterns for delamination is shown in Fig. 4.  
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Fig. 4. Comparison of Correlation                                                                                 

of Training Pattern for Delamination. 

It is seen that the regression coefficient of post regression analysis shows 

unity and the best linear fit is obtained. The test data is verified using the same 

network and a comparison of the correlation of actual and predicted test patterns 

for delamination is shown in Fig. 5. The regression coefficient is 0.998 which is 

approximately equal to unity. A best linear fit is shown along with the deviation 

of predicted data points.  

 

Fig. 5. Comparison of Correlation of  

Testing Pattern for Delamination. 

 

A maximum error of 0.81% and a minimum error of 0.03% are obtained. The 

actual test data in unnormalized form is compared with the unnormalized 

predicted test data and is shown in Fig. 6. As the regression coefficient is 0.998, a 

slight deviation of actual and predicted values is seen. It can be understood that 

for any given set of machining parameters that are difficult to machine, but falls 
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within the range of experimental data, it is possible to predict the delamination 

factor using this ANN model. 

 

 

Fig. 6. Comparison of Actual and Predicted Values  

for Testing Patterns in ANN. 
 

5.  Conclusions 

This study compares the ANN prediction and experimental calculation of the 

delamination factor at the exit of a drilled CFRP material. A three level, full 

factorial design of experiments was conducted to present data required for ANN 

modelling. Based on the obtained results, the following conclusions are drawn: 

� Among a set of twelve different neural network architectures trained, a 3-5-2-

1 neural network architecture is found to give an accurate result with a MSE 

of 9.99974e-5 and a maximum error of 0.81%.  

� Post regression analysis of ANN shows a linear regression between the actual 

and predicted values of delamination factors. 

� For any given set of machining parameters within this experimental range, ANN 

predicts the delamination factor with a maximum error tolerance of 0.81%. 

Thus the proposed ANN model can be used as a prediction tool for 

determining the delamination for any given set of input machining parameters, 

namely, speed, drill size and feed. Based on the application, an optimum 

combination of these machining parameters can also be found out for a desired 

delamination factor. 

 

References 

1. Motavalli, M.; and Flueler, P. (1998). Characterization of unidirectional carbon 

fibre reinforced plastic laminates. Materials and structures, 31(3), 178-180. 

2. Davim, J.P.; and Reis, P. (2003). Study of delamination in drilling carbon 

fiber reinforced plastics (CFRP) using design experiments. Composite 

structures, 59(4), 481-487. 



202       A. Krishnamoorthy et al.                          

 

 
 
Journal of Engineering Science and Technology                 April 2011, Vol. 6(2) 

 

3. Shyha, I.; Soo, S.L.; Aspinwall, D.; and Bradley, S. (2010). Effect of 

laminate configuration and feed rate on cutting performance when drilling 

holes in carbon fibre reinforced plastic composites. Journal of materials 

processing technology, 210(8), 1023-1034. 

4. Faraz, A.; Biermann, D.; and Weinert, K. (2009). Cutting edge rounding: An 

innovative tool wear criterion in drilling CFRP composite laminates. 

International Journal of Machine Tools and Manufacture, 49(15), 1185-196. 

5. Azmir, M.A.; Sivasankaran, P.N.; and Hamedon, Z. (2010). Experimental 

study on drilling process of CFRP composite laminate. Materials Science 

Forum, 638-42, 927-932. 

6. Tsao, C.C. (2008). Influence of drill geometry in drilling carbon fiber 

reinforced plastics. Key Engineering Materials, Advances in Machining & 

Manufacturing Technology IX, 236-240. 

7. Quan, Y.; and Zhong, W. (2009). Investigation on drilling-grinding of CFRP. 

Frontiers of Mechanical Engineering in China, 4(1), 60- 63. 

8. Palanikumar, K.; Karunamoorthy, L.; Ramesh, S.B.; and Jeaudeen, S. (2006). 

Application of ANN for prediction of tool wear in machining of GFRP 

composites. Proceedings of International Conference on Recent Advances in 

Material Processing Technology, 95-104. 

9. Karnik, S.R.; Gaitonde, V.N.; and Davim, J.P. (2007). A comparative study 

of the ANN and RSM modeling approaches predicting Burr size in drilling. 

The International Journal of Advanced Manufacturing Technology, 38(9-10), 

868-883.  

10. Bagci, E.; and Isik, B. (2006). Investigation of surface roughness in turning 

unidirectional GFRP composites by using RS methodology and ANN. The 

International Journal of Advanced Manufacturing Technology, 31(1-2), 10-17. 

11. Tsao, C.C. (2008). Comparison between response surface methodology and 

radial basis function network for core-center drill in drilling composite 

materials. The International Journal of Advanced Manufacturing 

Technology, 37(11-12), 1061-1068. 

12. Tsao, C.C. (2008). Prediction of thrust force of step drill in drilling composite 

material by Taguchi method and radial basis function network. The 

International Journal of Advanced Manufacturing Technology, 36(1-2), 11-18 

13. Tsao, C.C.; and Hocheng, H. (2008). Evaluation of thrust force and surface 

roughness in drilling composite material using Taguchi analysis and neural 

network. Journal of Material processing technology, 203(1-3), 342- 348. 

14. Karnik, S.R.; Gaitonde, V.N.; Rubio, C.J.; Correia, E.A.; Abrão, A.M.; and 

Davim, J.P. (2008). Delamination analysis in high speed drilling of carbon 

fiber reinforced plastics (CFRP) using artificial neural network model. 

Materials and Design, 29(9), 1768-1776.  

15. Palanikumar, K.; Mata, F.; and Davim, J.P. (2008). Analysis of surface 

roughness parameters in turning of FRP tubes by PCD tool. Journal of 

Materials Processing Technology, 204(1-3), 469-474. 

16. Odejobi, O.A.; and Umoru, L.E. (2009). Applications of soft computing 

techniques in materials engineering: A review. African Journal of 

Mathematics and Computer Science Research, 2(7), 104-131. 



Delamination Prediction in Drilling of CFRP Composites using ANN    203 

 

 
 
Journal of Engineering Science and Technology                 April 2011, Vol. 6(2) 

 

17. De Albuquerque, Victor Hugo C.; Tavares, João Manuel R.S.; and Durão, 

Luís M.P. (2010). Evaluation of delamination damage on composite plates 

using an artificial neural network for the radiographic image analysis. 

Journal of Composite Materials, 44(9), 1139-1159. 

18. Krishnaraj, V.; Zitoune, R.; and Collombet, F. (2010). Investigations on 

drilling of multimaterial and analysis by ANN. Key Engineering Materials, 

Advances in Materials Processing IX, 443, 347-352. 

19. Latha, B.; and Senthilkumar, V.S. (2010). Application of artificial 

intelligence for the prediction of delamination in drilling GFRP composites. 

International Journal of Precision Technology, 1(3/4), 314-330. 

20. Mc Cullah, W.S.; and Pitts, W. (1943). A logical calculus of ideas immanent 

in nervous activity. Bulletin of mathematical Biophysics, 5, 115-133. 

21. Hassoun, M.H. (1995). Fundamentals of artificial neural networks, MIT press. 

22. Feng, C.X.; Wang, X.; and Yu, Z. (2002). Neural networks modeling of 

honing surface roughness parameters defined by ISO13565. SME journal of 

manufacturing systems, 21(5), 395-498. 

23. Benerdos, P.G.; and Vosniakos, G.C. (2003). Predicting surface roughness in 

machining: A review. International Journal on Machine tools manufacturing, 

43(8), 833-844. 

24. Mathworks Inc. (2002) Matlab user manual V 6.5 R13, The Matworks Inc. 

Natick, M.A. 

25.  Panda, S.S.; Singh, A.K.; Chakraborty, D.; and Pal, S.K. (2006). Drill wear 

monitoring using back propagation neural network. Journal of Materials 

Processing Technology, 172(2), 283–290. 

26. Sanjay, C.; Neema, M.L.; and Chin, C.W. (2005). Modeling of tool wear in 

drilling by statistical analysis and artificial neural network. Journal of 

Materials Processing Technology, 170(3), 494–500. 

27. Ozel, T.O.; and Nadgir, A. (2002). Prediction of flank wear by using back 

propagation neural network modeling when cutting hardened H-13 steel with 

chamfered and honed CBN tools. International Journal of Machine Tools & 

Manufacture, 42(2), 287–297. 

28. Tsao, C.C. (2002). Prediction of flank wear of different coated drills for JIS 

SUS 304 stainless steel using neural network. Journal of Material Processing 

technology, 123(3), 354-360. 

29. Panda, S.S.; Chakraborty, D,; and Pal, S.K. (2007). Monitoring of drill flank 

wear using fuzzy back-propagation neural network. The International 

Journal of Advanced Manufacturing Technology, 34(3-4), 227-235. 

30. Sanjay, C.; and Jyothi, C. (2006). A study of surface roughness in drilling 

using mathematical analysis and neural networks. The International Journal 

of Advanced Manufacturing Technology, 29(9-10), 846-852. 


