KINEMATICS OF MATERIAL POINT ON THE COCHLEOID

Prof. PhD. Iulian **POPESCU**, University of Craiova **Prof. PhD**. Liliana **LUCA**, Constantin Brancusi University of Targu-Jiu

Abstract. They are shown the geometrical considerations and the properties of cochleoid, a flat curve in the spiral's family. Determine the positions, velocities and accelerations of material point in motion on the cochleoid. They are obtained diagrams, which are interpreted.

Keywords: material point, kinematics, cochleoid

1. Introduction

The cochleoid (in English *cochleoid*, in Italian *cocleoide*, *Kochlias* in Greek) draws its name from the snail "shell". It is a flat curve of spiral type, similar to the vertical projection of the spatial curve representing the line describing the snail shell (Fig. 1). The cochleoid was researched by J. Peck in 1700, by Bernoulli in 1726 and in 1884 by Benthan and Falkenburg.

The cochleoid is a part of the spiral's family.

2. The cochleoid geometry. Material point positions

The BD cochleoid from Fig. 2 is described by B point on the AP radius, when P point goes on DP circle of radius AP = a = constant, with $AB = \rho$, the condition being that the PQ segment is equal to the BC arc, meaning:

$$\rho \, \varphi = a \, \sin \varphi \tag{1}$$

Are written the following relationships:

$$x_p = a\cos\varphi; \ y_p = a\sin\varphi \tag{2}$$

$$\rho = \frac{y_P}{\varphi} \tag{3}$$

$$x_{\rm B} = \rho \cos \varphi; \ y_{\rm B} = \rho \sin \varphi \tag{4}$$

In Fig. 3 it is shown the resulting cochleoid at one complete rotation of the AP segment of Fig. 2, to a= 50 mm. Similarly, in Fig. 4 is shown the cochleoid for two full rotations, and in Fig. 5 for three full rotations. It appears that by increasing the number of rotations, it increases the number of loops near the origin of axes.

Fig. 6. The cochleoid for four rotations

The cochleoid branches, in a rotation case, are shown in Fig. 7 ($\varphi = 0...180$), in fig. 8 ($\varphi = 180...270$) and in fig. 9 ($\varphi = 270...360$).

In Fig. 10 are given the variation diagrams in relation to φ , of the curvature radius ρ and of the tracer point coordinates, B (Fig. 2). It appears that ρ is maximumin D point, then it decreases, reaching a minimum for $\varphi = 270$ degrees, then increases slightly, never reaching the original position. x_B decreases, rises and falls again, and y_B increases, decreases, increases and then decreases again, reaching the initial value. All curves have the same end point, at zero value.

Fig. 7. $\phi = 0...180$

Fig. 8. $\phi = 180...270$

Fig. 9. $\phi = 270...360$

Fiabilitate si Durabilitate - Fiability & Durability no 2(8)/ 2011 Editura "Academica Brâncuşi", Târgu Jiu, ISSN 1844 – 640X

Fig. 10. Material point positions

3. Speed

By derivation the cochleoid geometry relations with respect to time, we obtain the speed of P and B points and radial velocity $\dot{\rho}$.

For φ '=2 and φ ''=0,5 rad/sec/secwereobtainedresults intable1:

Radial velocity $\dot{\rho}$ decreases in the negative domain, then increases, becoming positive. The velocity components of tracer material point decrease, then rise, fall and rise again, being both negative and positive .

Fi	ro'	xB'	yB'
10	-5.800058	-22.98872	96.97439
20	-11.49436	-44.31281	88.14125
30	-16.97945	-62.4511	74.20964
40	-22.15641	-76.15586	56.28984
50	-26.93297	-84.55726	35.79354
60	-31.22555	-87.23251	14.30764
70	-34.96095	-84.23375	-6.546013
80	-38.07794	-76.07236	-25.25167
100	-42.27863	-48.22663	-51.43443
110	-43.30928	-31.18154	-57.43785
120	-43.61625	-14.0019	-58.44763
130	-43.21036	1.91144	-54.80315
140	-42.11688	15.3538	-47.22421
150	-40.37488	25.41627	-36.72743
160	-38.03618	31.55328	-24.51834
170	-35.16392	33.61338	-11.86993

т	hla	1
I	able	1

Fiabilitate si Durabilitate - Fiability & Durability no 2(8)/ 2011 Editura "Academica Brâncuși", Târgu Jiu, ISSN 1844 – 640X

180	-31.83104	31.83104	-1.462-04
190	-28.1185	26.78206	10.03951
200	-24.11331	19.308	17.45438
210	-19.90645	10.41865	21.76734
220	-15.59077	1.182759	22.84546
230	-11.25887	-7.381344	20.89117
240	-7.000944	-14.40439	16.40044
250	-2.902874	-19.2445	10.09367
260	.9557193	-21.5383	2.827393
280	7.676899	-18.51274	-11.05955
290	10.42534	-13.88044	-16.14641
300	12.70813	-7.969998	-19.27549
310	14.49713	-1.527531	-20.20634
320	15.77664	4.687604	-18.95755
330	16.54349	9.986381	-15.78997
340	16.80669	13.82177	-11.16439
350	16.58689	15.84123	-5.679902
(Omega=2 rad/s; o	epsilon = 0,5	rad/s/s

4. Accelerations

By derivation the speeds from relations with respect to time, we obtain the accelerations of P and B points and $\ddot{\rho}$.

Table2showsthe results for ρ '', x_B 'and y_B '' in relation to φ . Since at $\varphi = 0$, $\sin \varphi$ is infinite, we obtain very high accelerations near $\varphi = 0$. It appears that these values increase, decrease, increase and decrease again, with different sizes and domains, both in positive and negative area. Values are large at the beginning of the movement and small at the end of the movement.

	16	able 2		
 Fi	ro''	xB''	уВ''	
10	-26186.84	-25985.25	-4580.199	
20	-6395.718	-6186.807	-2274.672	
30	-2718.757	-2497.89	-1493.014	
40	-1429.797	-1194.18	-1087.679	
50	-834.0666	-583.2628	-828.5643	
60	-512.5046	-248.6886	-639.1949	
70	-321.199	-49.12882	-487.6339	
80	-199.8741	73.42921	-359.1448	
100	-65.17083	183.5662	-148.4004	
110	-27.75072	194.2633	-63.00017	
120	-2.055363	184.5161	8.663633	
130	15.31739	159.4968	65.68124	
140	26.64342	123.9555	107.3224	
150	33.50514	82.42626	133.3815	
160	37.04057	39.20113	144.3825	
170	38.09296	-1.815992	141.6601	
180	37.30334	-37.3029	127.3242	

Table 2

Fiabilitate si Durabilitate - Fiability & Durability no 2(8)/ 2011 Editura "Academica Brâncuși", Târgu Jiu, ISSN 1844 – 640X

190	35.16977	-64.70713	104.1289
200	32.08591	-82.39183	75.2621
210	28.36703	-89.71284	44.08644
220	24.26767	-87.01424	13.85911
230	19.99408	-75.53848	-12.53823
240	15.713	-57.25962	-32.83126
250	11.55818	-34.65546	-45.52295
260	7.635183	-10.44133	-49.98557
280	.7883297	32.41508	-36.01056
290	-2.034423	46.82875	-20.30532
300	-4.41833	54.77201	-1.473031
310	-6.353242	55.82835	18.17367
320	-7.841673	50.34072	36.38278
330	-8.897075	39.33333	51.19588
340	-9.542161	24.36587	61.13935
350	-9.807299	7.33881	65.35541
360	-9.72898	-9.728541	63.6621
0	0 1/	11 0 5	1//

Omega=2 rad/s; epsilon = 0,5 rad/s/s

5. Movement modeling

They sought successive positions of AB vector radius (Fig. 2), yielding the image in Fig. 11.In Fig. 12 were represented the components of tracer point speed.

Based on Fig. 12, are written the relations:

$$tg\gamma = \frac{\dot{y}_{B}}{\dot{x}_{P}}; \quad \cos\gamma = \frac{\dot{x}_{B}}{v_{P}}; \quad \sin\gamma = \frac{\dot{y}_{B}}{v_{P}}$$
(5)

$$x_{\rm E} = \rho \cos \varphi + v_{\rm B} \cos \left(\varphi + 180 - \varphi - \gamma \right) \tag{6}$$

$$x_{E} = \rho \cos \varphi - v_{B} \cos \gamma;$$
 $y_{E} = \rho \sin \varphi - v_{B} \sin \gamma$ (7)

Fig. 11. Vector radius

Fig. 12. Velocity components of tracer point

Resulting velocity directions were sought for the tracer point. In Fig. 13 are shown these directions. Directions are accurate, but velocity vector directions require discussions, in conjunction with the variations of velocity components in Fig. 9, requiring correlation with the trigonometric circle dials.

Fig. 13. Resultant velocity directions

It thus appears that velocity vectors v_B are not perpendicular to the vector rays, which is known for other curves also, except the circle [4].

6. Conclusions

The cochleoid is a curve of spirals family, similar to plan projection of space curve which is specific to snail shell.

The cochleoid branches are still being increasingly smaller with increasing the current angle.

Speed and acceleration of material point in moving on a cochleoid vary by nonlinear laws, with elevated values at first and becoming smaller towards the end of the range.

Velocity vectors are not perpendicular to the vector radius.

References

[1]. Cotescu, M.A. - Mecanică aplicată. Cinematica, Editura Matrix Rom, București, 2009.

[2]. Popescu, I., Sass, L. – Mecanisme generatoare de curbe, Editura Scrisul Românesc, Craiova, 2001.

[3]. Luca, L., Ghimisi, S., Popescu, I.- Studies regarding the movement on the cochleoid. ISI Proceedings Of 2010 International Conference On Mechanical Engineering, Robotics And Aerospace, Bucharest, Romania, 2010. Publisher Institute of Electrical and Electronics Engineers, Inc.

[4]. Silaş, Gh., Groșeanu, I. - Mecanica, Editura Didactică și Pedagogică, București, 1981.