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Abstract. A new version of the Global Model of Aerosol
Processes (GLOMAP) is described, which uses a two-
moment pseudo-modal aerosol dynamics approach rather
than the original two-moment bin scheme. GLOMAP-mode
simulates the multi-component global aerosol, resolving sul-
fate, sea-salt, dust, black carbon (BC) and particulate or-
ganic matter (POM), the latter including primary and bio-
genic secondary POM. Aerosol processes are simulated in
a size-resolved manner including primary emissions, sec-
ondary particle formation by binary homogeneous nucleation
of sulfuric acid and water, particle growth by coagulation,
condensation and cloud-processing and removal by dry de-
position, in-cloud and below-cloud scavenging. A series
of benchmark observational datasets are assembled against
which the skill of the model is assessed in terms of nor-
malised mean bias (b) and correlation coefficient (R). Over-
all, the model performs well against the datasets in sim-
ulating concentrations of aerosol precursor gases, chemi-
cally speciated particle mass, condensation nuclei (CN) and
cloud condensation nuclei (CCN). Surface sulfate, sea-salt
and dust mass concentrations are all captured well, while BC
and POM are biased low (but correlate well). Surface CN
concentrations compare reasonably well in free troposphere
and marine sites, but are underestimated at continental and
coastal sites related to underestimation of either primary par-
ticle emissions or new particle formation. The model com-
pares well against a compilation of CCN observations cover-
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ing a range of environments and against vertical profiles of
size-resolved particle concentrations over Europe. The sim-
ulated global burden, lifetime and wet removal of each of the
simulated aerosol components is also examined and each lies
close to multi-model medians from the AEROCOM model
intercomparison exercise.

1 Introduction

Aerosol particles play an important role in the Earth’s climate
system directly by scattering and absorbing short-wave and
long-wave radiation and indirectly by affecting the albedo
and lifetime of clouds (Forster et al., 2007). Successive IPCC
climate assessment reports (e.g. Forster et al., 2007) have
identified the indirect radiative forcing of aerosols as having
a high level of uncertainty that needs to be better constrained
for improved prediction of anthropogenic climate change.

Computational constraints mean that most climate models
participating in the IPCC assessments have simulated aerosol
in a simplified way, with schemes containing prognostic vari-
ables for mass, with particle number concentrations deter-
mined from an assumed fixed size distribution for prescribed
externally mixed aerosol types (e.g. Jones et al., 2001; Reddy
et al., 2005). Simulating processes that conserve particle
number (e.g. aqueous sulfate production) with these first gen-
eration mass-only schemes is problematic since the fixed size
distribution means that any increase in aerosol mass must be
accompanied by an increase in particle number.

Aerosols indirectly affect climate via changes in cloud
properties which are largely determined by changes in the
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number concentration of aerosol particles large enough to
activate to cloud droplets (cloud condensation nuclei, CCN).
Models using mass-only schemes cannot conserve particle
number and may therefore unrealistically perturb cloud prop-
erties and autoconversion rates in some regions (through
changes in CCN), with possible associated biases in the sim-
ulated climate forcing. In addition, several studies (e.g. Hay-
wood et al., 1997) have shown that accounting for the mix-
ing of light-absorbing particle components with other aerosol
material (e.g. sulfate) changes the simulated aerosol optical
properties and direct radiative forcing.

Particle production in the atmosphere can be classified as
either primary (e.g. carbonaceous particles from combustion
sea-salt from bubble-bursting in the ocean, uplift of min-
eral dust) or secondary (e.g. nucleation of sulfuric acid and
water). Several recent papers (e.g. Spracklen et al., 2008a;
Merikanto et al., 2009) have shown the large contribution to
global CCN from secondary particles.

A new generation of aerosol microphysics models have
now been developed, which transport both particle num-
ber concentrations and component masses (e.g. sulfate, BC,
etc.) in size classes, resolving differential particle growth
and aerosol composition across the particle size range in-
cluding internal mixtures. Implementing such schemes into
climate models enables aerosol indirect effects to be simu-
lated more realistically, including changes in both primary
and secondary CCN.

The most sophisticated of the aerosol microphysics mod-
els are sectional or bin-resolved, in which particle number
concentration and component mass concentrations in each
size class (bin) are transported, allowing the particle size dis-
tribution to evolve freely at the specified bin resolution. Al-
though such schemes have been included in regional (e.g. Ja-
cobson et al., 1997) and global aerosol models (e.g. Adams
and Seinfeld, 2002; Spracklen et al., 2005), transported trac-
ers often exceed 100, making the models too computation-
ally expensive for use in coupled aerosol-climate simulations
with current super-computing resource limits.

Realistic aerosol-climate models then require aerosol
schemes with aerosol microphysics with dynamically vary-
ing particle size, but at a lower computational cost than sec-
tional schemes. With the modal aerosol dynamics approach
(e.g. Whitby and McMurray, 1997), the shape of the par-
ticle size distribution is parameterized as a series of log-
normal modes, each covering defined regions of the particle
radius range. Some aerosol models include 3-moment modal
schemes in which mass, number and mode width (standard
deviation) are variables (e.g. Debry et al., 2007). How-
ever most modal aerosol schemes in regional (Binkowski and
Shankar, 1995; Ackermann et al., 1998) and global models
(Ghan et al., 2001; Wilson et al., 2001; Liu et al., 2005; Lauer
et al., 2005; Stier et al., 2005; Vignati et al., 2010) are double-
moment, with the mode width fixed and only mode number
and component mass concentrations varying between grid-
boxes. A further simplification used in some modal aerosol

schemes in global models (e.g. Wilson et al., 2001; Vignati
et al., 2004; Stier et al., 2005) is to use a ”pseudo-modal”
aerosol dynamics approach, where the process rates for each
mode are based on a particle size given by a single diameter
rather than by integrating over the mode size range.

In this paper, we describe a new version of the GLobal
Model of Aerosol Processes (GLOMAP) (e.g. Spracklen et
al., 2005) which has the same aerosol microphysical pro-
cesses as the multi-component bin-resolved version (e.g.
Spracklen et al., 2008a) but uses a two-moment pseudo-
modal aerosol dynamics approach to reduce computational
cost. This new version of GLOMAP (GLOMAP-mode) has
been developed for longer integrations in the offline chem-
ical transport model and for coupled composition-climate
simulations in the latest UK Hadley Centre climate model
HadGEM3. The UK Chemistry and Aerosol (UKCA)
aerosol-chemistry sub-model (Morgenstern et al., 2009) of
HadGEM3 has GLOMAP-mode as its aerosol scheme.

GLOMAP-mode has been used in several recent studies
(Manktelow et al., 2007; Woodhouse et al., 2008, 2010;
Schmidt et al., 2010), but the model description in these
papers was necessarily brief. Here, GLOMAP-mode is de-
scribed in detail, and evaluated against a series of observa-
tional datasets from the literature. Model skill is quantified
in terms of normalised mean bias (b) and correlation coef-
ficient (R). The benchmark datasets assembled here will
also be used in the upcoming AEROCOM global aerosol
microphysics model intercomparison and will help reduce
biases and facilitate the documentation of improvements in
future model versions. A companion paper (Mann et al.,
2010) compares GLOMAP-mode against the sophisticated
GLOMAP-bin scheme and explores the extent to which the
simplifications degrade model skill against the observations.

2 Model description

GLOMAP is an extension of the TOMCAT global 3-D off-
line chemical transport model (CTM) (Chipperfield, 2006),
resolving aerosol chemistry and microphysics. Size-resolved
primary emissions, new particle formation, condensation,
coagulation, cloud processing, dry deposition, sedimenta-
tion, nucleation scavenging and impaction scavenging are
solved in an operator-split manner, while the gas phase chem-
istry and transport are calculated within the host CTM. The
Gaussian grid associated with a T42 spectral transform (i.e.
2.8 degrees latitude/longitude) is used in the simulations here
with 31 vertical levels on a hybridσ -pressure co-ordinate.

Ambient conditions, atmospheric transport and large-scale
precipitation rates are based on winds, temperatures and
humidities from the European Centre for Medium-Range
Weather Forecasts (ECMWF) model interpolated between
successive 6-h global re-analysis fields. ECMWF re-analysis
fields used in this paper are from ERA-40 for the year 2000.
Tracer transport uses the Prather (1986) advection scheme,
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the Tiedtke (1989) convection scheme and a non-local clo-
sure scheme for boundary layer turbulence (Holtslag and
Boville, 1993). For aqueous chemistry and cloud-processing,
low cloud is specified from cloud top pressure and cloud
fractions from the International Satellite Cloud Climatology
Project (ISCCP) for the year 2000 (Rossow and Schiffer,
1999).

The original version of GLOMAP (Spracklen et al.,
2005) uses a two-moment sectional approach, with typi-
cally 20 bins covering a 3 nm to 25 µm particle dry diam-
eter range. Initially only sulfate and sea-salt aerosol were
included and assumed to behave as a single particle com-
ponent, but the model now simulates several aerosol com-
ponents in each internally mixed bin with several externally
mixed distributions. For example, Spracklen et al. (2008a,
b) and Merikanto et al. (2009) used two 20-bin distributions,
the first representing fresh carbonaceous particles resolving
black carbon (BC) and organic carbon (OC) components,
and the second representing mixed composition bins whose
mass consists of sulfate, BC, OC and sea-salt. Manktelow
et al. (2009b) also resolved two distributions, one represent-
ing fresh dust-only particles, and a second mixed distribution
with each bin containing sulfate, sea-salt, BC, OC and dust
components. Other studies with the model have used just one
mixed distribution, with Manktelow et al. (2009a) resolv-
ing bin-resolved sulfate, sea-salt, BC and OC, and Pringle et
al. (2009) and Korhonen et al. (2008a) each simulating just
sulfate and sea-salt in each bin.

This work describes a new aerosol module for GLOMAP
using the same process descriptions as the original sectional
scheme but characterizing the aerosol in several log-normal
modes rather than bins. The scheme can represent any num-
ber of modes (with fixed standard deviation) and possible
components, but here follows the M7/HAM model (Vignati
et al., 2004; Stier et al., 2005; Vignati et al., 2010) in carry-
ing aerosol component masses and number concentrations in
7 modes (Table 3) using the “pseudo-modal” aerosol dynam-
ics approach.

Although the aerosol dynamics framework used by
GLOMAP-mode is the same as in M7/HAM, the aerosol
process representations (primary emissions, dry deposition,
sedimentation, scavenging, ageing, hygroscopic growth, nu-
cleation, coagulation, condensation, cloud-processing) are
those used by GLOMAP-bin (Spracklen et al., 2005, 2008a).
The approaches in GLOMAP-mode for ageing (from Wil-
son et al., 2001) and hygroscopic growth (the ZSR method,
Zadanovksii, 1948; Stokes and Robinson, 1966) are common
to both GLOMAP-bin and M7/HAM. One area where there
is a difference between GLOMAP-mode and GLOMAP-bin
is in the treatment of aqueous chemistry. GLOMAP-mode
uses an equilibrium Henry’s law approach to calculate the
dissolution of SO2 to cloud droplets (see Sect.2.1.2) whereas
GLOMAP-bin (Spracklen et al., 2005) uses a diffusion-
limited approach. The impact of this and other simplifica-
tions in the model will be explored as part of the upcom-

Table 1. Gas phase chemistry used in GLOMAP-mode. An in-
volatile organic species SEC-ORG is generated from MONOTER
oxidation at 13% yield following reaction rates forα-pinene.

Reactions Reference

DMS + OH→ SO2 Atkinson et al. (1989)
DMS + OH→ 0.6 SO2 + 0.4DMSO Pham et al. (1995)
DMSO + OH→ 0.6 SO2 + 0.4MSA Pham et al. (1995)
DMS + NO3 → SO2 Atkinson et al. (1989)
CS2 + OH → SO2 + COS Pham et al. (1995)
COS + OH→ SO2 Pham et al. (1995)
SO2 + OH + M → H2SO4 Pham et al. (1995)
MONOTER + OH→ 0.13 SEC-ORG Atkinson et al. (1989)
MONOTER + NO3 → 0.13 SEC-ORG Atkinson et al. (1989)
MONOTER + O3 → 0.13 SEC-ORG Atkinson et al. (1989)
HO2 + HO2 → H2O2 Jones et al. (2001)

ing paper comparing GLOMAP-mode with GLOMAP-bin
(Mann et al., 2010). The model description here refers to
GLOMAP-mode version v1gm4c, used for the AEROCOM
A2-CTRL simulation submitted in October 2009.

2.1 Gas phase processes

2.1.1 Gas phase chemistry

The aerosol precursor chemistry scheme used is shown in Ta-
ble 1 with seven sulfur species (DMS, SO2, H2SO4, DMSO,
MSA, COS and CS2), semi-prognostic H2O2, and secondary
organic aerosol (SOA) produced via a condensing secondary
organic species (SEC-ORG) from gas-phase oxidation of a
terpene tracer (MONOTER). Dry and wet deposition of these
species is included following the approach described in Gi-
annakopoulos et al. (1999) with coefficients as in Spracklen
et al. (2005).

As in previous GLOMAP papers, the “offline-oxidant” ap-
proach is used, with global fields of OH, NO3, O3, HO2,
H2O2 concentrations at each timestep being interpolations
between monthly mean fields at 00:00, 06:00, 12:00, and
18:00 UT generated from a previous TOMCAT tropospheric
chemistry simulation (Arnold et al., 2005). H2O2 is treated
semi-prognostically, being depleted by aqueous reaction with
S(IV) (see Sect.2.1.2) and replenished by HO2 self-reaction
up to an upper limit given by the background H2O2 concen-
tration from the offline oxidant fields. Note that GLOMAP
has now been coupled online to the TOMCAT tropospheric
chemistry scheme (Breider et al., 2010) and this can be used
as an alternative to the offline oxidant approach.

2.1.2 Aqueous chemistry

In gridboxes containing low-level clouds, SO2 and
H2O2 dissolution into cloud droplets is calculated
along with the heterogeneous chemical conversion of
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Table 2. Properties of the aerosol components used in the model. Note that although POM is listed as insoluble, an amount of water is
associated with POM in soluble modes as described in Sect.2.2.4.

Component name Abbreviation Density Molar mass Soluble?
(kgm−3) (kgmol−1)

sulfate SU 1769.0 0.098 Yes
sea-salt SS 1600.0 0.05844 Yes
black carbon BC 1500.0 0.012 No
particulate organic matter POM 1500.0 0.0168 No
dust DU 2650.0 0.100 No
water WT 1000.0 0.018 –

S(IV) = SO2.H2O + HSO−

3 + SO2−

3 to S(VI) following an
effective Henry’s law approach, as described in Seinfeld and
Pandis (1998). Henry’s law coefficients for SO2 and H2O2
are calculated as:

Hi(T ) = Hi,298exp

{
−

1Hi

R

(
1

T
−

1

298

)}
, (1)

where HSO2,298= 1.23 Matm−1 and 1HSO2 =

−26.1 × 103 J mol−1, HH2O2,298 = 7.45 × 104 Matm−1

and 1HH2O2 = 60.7× 103 J mol−1 and R is the universal
gas constant = 8.314 J mol−1 K−1. The rate of conversion
of S(IV) to S(VI) via oxidation by H2O2 (in Ms−1) is then
calculated as

−
d [S(IV)]

dt
=

k1
[
H+
][

HSO−

3

]
[H2O2]

1+k2
[
H+
] (2)

where k1 = 7.5× 107 M−2s−1, and k2 = 13 M−1. H2O2
dissociation is neglected, hence [H2O2]=HH2O2(T )pH2O2,
wherepH2O2 is the partial pressure of H2O2. [HSO−

3 ] and
[SO2−

3 ] are calculated asKs,1HSO2(T )pSO2/[H+] and Ks,2

[HSO−

3 ]/[H+], respectively, withKs,1 and Ks,2 taken as
1.3×10−2 M and 6.6×10−8 M. Capping at the available SO2
and H2O2, the production of S(VI) (in molecules cm−3 s−1)
is given by

1Scloud= F

(
d [S(IV)]

dt

)
·L ·Na·

1

ρw
. (3)

whereF is the cloud fraction,L is the cloud liquid water
content (assumed constant at 0.0002 kg m−3, typical of stra-
tocumulus cloud),Na is Avogadro’s constant, andρw is the
density of water.

Production of S(VI) by aqueous oxidation of S(IV) by O3
is also calculated following Seinfeld and Pandis (1998) as:

−
d [S(IV)]

dt
= [O3]

(
k3SO2.H2O+k4

[
HSO−

3

]
+k5

[
SO2−

3

])
.(4)

wherek3 = 2.4×104 M−1 s−1, andk4 = 3.7×105 M−1 s−1

and k5 = 1.5 × 109 M−1 s−1. Henry’s law constants for
ozone are calculated withHO3,298 = 1.13× 10−2 Matm−1

and1HO3 = −21.1×103 J mol−1. Unlike H2O2, ozone is
not depleted in the model, since concentrations are not signif-
icantly reduced. Also, whereas in-cloud S(IV) oxidation by
H2O2 has only a weak pH-dependence, oxidation by ozone
is strongly dependent on cloud pH. The cloud pH is set to 4.0
or 5.0 depending on whether the local SO2 concentration is
greater or less than 0.5 ppbv as in Manktelow (2008).

Dissolved sulfate mass produced by these two aqueous re-
actions is partitioned between the soluble accumulation and
coarse modes according to the ratio of their respective num-
ber concentrations to their sum (see Sect.2.2.10).

2.1.3 Sulfuric acid vapour

The concentration of sulfuric acid vapour is a critical param-
eter in determining the binary nucleation rate in the model
and hence on the rate of production of secondary particles.
As described in Spracklen et al. (2005), GLOMAP includes
a number of “competition sub-steps” within one chemistry
time-step, where condensation and nucleation compete for
the available H2SO4 vapour. Here, the production rate of
condensable gases (H2SO4 and SEC-ORG) calculated from
the gas phase chemistry module is passed to the aerosol
routines and their concentrations are only updated here on
this shorter timestep, alongside condensation, coagulation
and nucleation. For the simulations here 5 competition sub-
steps are used within a chemistry time-step of 900 s, which
Spracklen (2005) found sufficient to adequately capture the
competition between these processes.

2.1.4 Trace gas emissions

The model includes emissions of DMS from marine phy-
toplankton, SO2 from volcanoes, vegetation fires, industry,
fossil-fuel and bio-fuel burning, and terpenes from vege-
tation. The DMS emission flux is updated every 6 h us-
ing monthly sea-water DMS concentration fields from Ket-
tle and Andreae (2000) driven by the ECMWF winds and
the sea-air exchange parameterization from Nightingale et
al. (2000). Anthropogenic SO2 emissions follow Cofala et
al. (2005) (including industrial, power-plant, road-transport,
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Table 3. Standard aerosol configuration for GLOMAP-mode.

Index Name Size range Composition Soluble?σg

1 Nucl-sol D <10 nm SU, POM Yes 1.59
2 Aitken-sol 10< D <100 nm SU, BC, POM Yes 1.59
3 accum-sol 100< D <1 µm SU, BC, POM, SS, DU Yes 1.59
4 coarse-sol D >1 µm SU, BC, POM, SS, DU Yes 2.0
5 Aitken-ins 10< D <100 nm BC, POM No 1.59
6 accum-ins 100< D <1 µm DU No 1.59
7 coarse-ins D >1 µm DU No 2.0

off-road-transport and shipping sectors) and are representa-
tive of the year 2000. Volcanic SO2 from continuously (An-
dres and Kasgnoc, 1998) and explosively eruptive (Halmer
et al., 2002) sources are included with injection heights fol-
lowing recommendations in Dentener et al. (2006) based on
individual volcano-top altitudes. Monthly-varying biomass
burning SO2 emissions are also included following GFED v1
(Van der Werf et al., 2003) for the year 2000, segregated
into six altitude ranges 0–100 m, 100–500 m, 500 m–1 km,
1–2 km, 2–3 km and 3–6 km as in AEROCOM (see Dentener
et al., 2006). We also follow AEROCOM recommendations
in assuming that 2.5% of the SO2 mass is emitted as pri-
mary sulfate particles (with size assumptions as modified by
Stier et al., 2005). Monthly terpene emissions follow Guen-
ther et al. (1995) and feed into the MONOTER tracer (see
Sect.2.1.1).

2.2 Aerosol processes

The prognostic variables in the aerosol model are the par-
ticle number concentration for each mode and the mass
concentration of each component (sulfate, sea-salt, BC,
OC, dust) present in each mode. The modes represent
a dry diameter size range and can be water-soluble or -
insoluble. The size distribution is described by lognormal
modes with geometric mean diameterD covering the nucle-
ation (D<10 nm), Aitken (10–100 nm), accumulation (100–
1000 nm) and coarse (D>1000 nm) mode ranges.

The geometric mean dry diameterDi for modei is calcu-
lated as:

Di =

(
6Vdry,i

π exp
(
4.5log2σg,i

)) 1
3

(5)

where Vdry,i is the total dry volume for modei over all
aerosol componentsj :

Vdry,i =

ncp∑
j=1

(
mijMj

Naρj

)
. (6)

mij is the number of molecules per particle of component
j in modei, ρj andMj are the density and molar mass of

componentj andNa is Avogadro’s constant. The mode ge-
ometric standard deviationsσg,i are assumed constant whilst
the geometric mean diameterDi can vary between the size
ranges shown for each mode (see Table 3). Particle number
and mass are transferred between modes whenD exceeds
the upper limit for the mode (see Sect.2.2.9), referred to as
mode-merging. In this subsection the aerosol processes are
described. The model microphysics quantifies size-resolved
and composition-resolved primary emissions, aerosol dry de-
position, nucleation scavenging, impaction scavenging, co-
agulation, condensation, nucleation, cloud processing and
hygroscopic growth. The process representations follow as
closely as possible the methods applied for GLOMAP-bin
with variations where necessary for the modal approach.

2.2.1 Primary aerosol emissions

Although the aerosol tracers are based on log-normal
modes, primary emissions in GLOMAP-mode retain the bin-
resolved fluxes from the sectional scheme (Spracklen et al.,
2006). The emitted mass in each bin updatesni and mij

for the mode whose size range spans the dry radius of the
emissions-bin.

Primary carbonaceous aerosol emissions are speciated to
BC and OC with annual-mean fluxes for fossil-fuel and bio-
fuel sources (Bond et al., 2004) and monthly-varying fluxes
for biomass burning (Van der Werf et al., 2003). The AE-
ROCOM recommended size settings are used, with modi-
fications as in Stier et al. (2005), with geometric mean di-
ameter for the emissions fluxes set at 150 and 60 nm for
biomass/biofuel and fossil fuel respectively, with geometric
standard deviation fixed at 1.59 for both emissions modes.
Fossil fuel and bio-fuel emissions are added to the lowest
model layer whereas biomass burning emissions are emit-
ted in 6 altitude ranges between the surface and 6 km as de-
scribed in Dentener et al. (2006).

Size-resolved emissions of mineral dust can be included in
the model via two alternative wind-speed-driven emissions
parameterizations (described in Pringle, 2006 and Mank-
telow et al., 2009b) or via prescribed daily-varying emis-
sions fluxes provided for AEROCOM (Dentener et al., 2006).
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The AEROCOM prescribed emissions fluxes are used here,
which are based on bin-resolved fluxes from the NASA God-
dard Earth Observing System Data Assimilation System (Gi-
noux et al., 2001). For AEROCOM, the bin-resolved fluxes
were mapped onto two emissions modes covering the accu-
mulation and coarse size ranges with assumed standard devi-
ations at 1.59 and 2.0, respectively.

Bin-resolved sea-salt emissions fluxes are calculated from
a sea-spray source function of Gong (2003) as in Spracklen et
al. (2005) with bins with dry diameters larger/smaller than 1
micron emitted into the soluble accumulation/coarse modes
respectively.

2.2.2 Aerosol dry deposition and sedimentation

GLOMAP-mode follows the same approach as in Spracklen
et al. (2005), calculating a dry deposition velocityVd follow-
ing Slinn (1982):

Vd = Vgrav+
1

Ra+Rs
. (7)

The aerodynamic resistanceRa is calculated as

Ra=
1

ku∗

log

(
z

z0

)
, (8)

wherek is the von Karman constant,z0 is the surface rough-
ness length andu∗ is the surface friction velocity. Surface
resistanceRs is given by

Rs=
1

3u∗(Eb+Eim +Ein)
(9)

whereEb, Eim andEin are collection efficiencies for Brown-
ian diffusion, impaction and interception, calculated follow-
ing Zhang et al. (2001). The collection efficiency for Brow-
nian diffusion is size-dependent and is calculated as

Eb = ScYr , (10)

whereYr is a surface-type dependent parameter andScis the
particle Schmidt number:

Sc =
ν

Dcoff
(11)

with ν being the kinematic viscosity of air. The particle dif-
fusion coefficientDcoff is calculated as:

Dcoff =
kBT

3πµDp
Cf (12)

wherekB is Boltzmann’s constant,Dp is the particle diameter
andµ is the dynamic viscosity of air. The slip correction
factorCf is calculated as:

Cf = 1+
2λa

Dp

{
A+Bexp

(
C

λa

Dp

)}
, (13)

whereλa is the mean free path of air molecules andA, B and
C take the values 1.246, 0.5 and−0.55.

The collection efficiency for impaction is also size-
dependent and is calculated as

Eim =
Sn

α+Sn
(14)

whereα is a surface-type dependent parameter andSnis the
Stokes number, calculated asSnsmoothandSnrough for smooth
and vegetated surfaces:

Snsmooth=
Vgravu

2
∗

µ
(15)

Snrough =
Vgravu∗

gCr
(16)

whereCr is a surface-type dependent coefficient. Lastly, the
collection efficiency by interception is calculated as

Ein = 0.5
D2

p

C2
r

. (17)

Gravitational settling velocityVgrav is calculated as

Vgrav=
ρpD

2
pg

18µ
Cf , (18)

whereρp is the particle density,Dp is the mode geometric
mean (wet) diameter,g is the gravitational acceleration and
µ is the dynamic viscosity of air.

The removal of each mode’s number and component
masses are calculated using the 0th and 3rd moment av-
erages for the two size-dependent parametersVgrav and
Dcoff calculated following the expressions in Binkowski and
Shankar (1995):

Vgrav,k = Vgrav

{
exp

(
(4k+4)

2
log2σg

)
+1.246

2λa

Dp
exp

(
(2k+1)

2
log2σg

)}
(19)

and

Dcoff,k = Dcoff

{
exp

(
(−2k+1)

2
log2σg

)
+1.246

2λa

Dp
exp

(
(−4k+4)

2
log2σg

)}
, (20)

with Dp the geometric mean (wet) diameter andk the index
of the moment.

Sedimentation from the lowest grid level is handled in the
dry deposition expression above, whereas for other levels,
sedimentation is applied usingVgrav,k following a 1st order
explicit scheme calculating fluxes of number and mass into
and out of each box. Sedimentation is limited to only half
a gridbox per timestep to ensure the Courant-Fredrichs-Levy
condition is satisfied.
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2.2.3 Aerosol scavenging

Removal by nucleation scavenging is calculated for both
large-scale and convective-scale precipitation based on rain-
rates diagnosed from successive ECMWF analysis fields. As
in Spracklen et al. (2005), large-scale rain removes particles
at a constant rate equivalent to 99.9% conversion of cloud
water to rain over 6 h. For convective-scale rain, the cloud-to-
rainwater conversion rate is given by the Tiedtke et al. (1989)
convection parameterization and removal is applied assum-
ing a raining fraction of 0.3. Note that nucleation scavenging
only occurs where the precipitation is formed in that model
level, determined by comparing the calculated rain-rate with
that in the level above. Whereas in GLOMAP-bin, the rain-
out is applied to all particles larger than 103 nm dry radius
in the mixed (soluble) distribution, in GLOMAP-mode this
approach is approximated by only allowing the soluble accu-
mulation and coarse to be subject to the process.

Impaction scavenging of aerosol via collection by falling
raindrops is also simulated in the model in an analogous way
to GLOMAP-bin. A look-up table for raindrop-aerosol col-
lection efficiencies is used based on the geometric mean dry
radius of the mode and a Marshall-Palmer raindrop size dis-
tribution as modified by Sekhon and Srivastava (1971) to take
into account rainfall intensity. As in GLOMAP-bin, an em-
pirical relationship from Easter and Hales (1984) is used to
calculate the raindrop terminal velocity.

2.2.4 Hygroscopic growth

For each aerosol mode, water uptake by each component
is calculated according to ZSR (Zadanovksii, 1948; Stokes
and Robinson, 1966) using data from Jacobson et al. (1996)
to calculate the binary electrolyte molalities. Any mass of
POM present in the insoluble modes must be primary emitted
material and is assumed to be non-hygroscopic. In soluble
modes, POM is either secondary or primary organic material
that has been aged. Hence we assign moderate hygroscop-
icity to POM in the soluble modes consistent with a water
uptake per mole at 65% of sulfate assuming a molar mass of
0.15 kg/mol for the aged organic molecule.

The densityρ for each mode is calculated as a molar
weighted mean of the aerosol components and water:

ρ =

∑
mijMjρj∑
mijMj

(21)

wheremij , Mj andρj are respectively the molecules per par-
ticle, molar mass, and density of each aerosol componentj

(including water) as given in Table 2.
The geometric mean wet diameterDwet,i of each modei

is calculated as

Dwet,i =

(
6

πXi

∑
Vij

) 1
3

(22)

whereXi = exp
(

9
2

{
logσg,i

}2
)

and Vij are the partial vol-

umes for each component and water calculated as:

Vij =
mijMj

NaρX,i

(23)

whereNa is Avogadro’s constant andρX,i is the density of
the solution for soluble components (and water) or the com-
ponent densities listed in Table 2 for insoluble components.

2.2.5 Nucleation of new sulfate aerosol

The nucleation rateJ used to produce new particles in the
nucleation mode follows Kulmala et al. (1998) as:

J = exp

{
Alog

(
S

Scrit

)
+BXal+C

}
, (24)

where S is the molecular concentration of sulfuric acid
vapour,Xal is the sulfuric acid mole fraction at the critical
radius (=D+0.012 logS), andScrit is the value ofS above
which nucleation occurs, calculated as

Scrit = exp

(
−14.5125+0.1335T −10.5462rh+1958.4

rh

T

)
, (25)

whereT is the air temperature and rh is the relative humid-
ity (between 0 and 1). The coefficientsA, B, C andD are
calculated as in Kulmala et al. (1998). The rate of change of
sulfuric acid vapour concentration due to nucleation is then
in the form of a power law relationship

dS

dt nucl
= −nmolaSb (26)

wherea andb are given by

a = exp(BD+C)

(
1

Scrit

)A

(27)

b = A+0.0102B. (28)

Equation (26) is then integrated to give

S =

{
S1−b

0 +a(b−1)nmol1t
} 1

1−b
(29)

and hence the change in sulfuric acid due to nucleation over
time step1t is given by

1Snucl= S0−

{
S1−b

0 +a(b−1)nmol1t
} 1

1−b
. (30)

In the model, we follow Vignati et al. (2004) in calculat-
ing the change in the nucleation mode number concentration
simultaneously with the change by coagulation, see Eq. (31)
below.
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2.2.6 Coagulation

GLOMAP-mode includes both intra-modal (collisions of
particles in the same mode) and inter-modal (collisions of
particles in different modes) coagulation. For the soluble
modes, the model simulates intra-modal coagulation and
inter-modal coagulation with larger soluble modes and with
larger insoluble modes. For the nucleation mode, the source
of particles due to nucleation is also included. So the rate of
change in particle number concentrationni in the four solu-
ble modes (i = 1, 2, 3, 4) can be expressed as:

dni

dt
= −

1

2
Kiin

2
i −ni

{
4∑

j=i+1

Kijnj +

7∑
j=i+4

Kijnj

}
+δi1

1Snucl

1tnmol
(31)

whereδij is the delta function,Kij is the coagulation kernel,
1Snucl is the change in sulfuric acid concentration due to
nucleation over the time step1t (see Sect.2.2.5) andnmol is
the number of sulfuric acid molecules in a newly nucleated
sulfuric acid particle (assumed to be 100 as in Spracklen et
al., 2005).

For the insoluble modes (i = 5, 6, 7), only inter-modal co-
agulation with larger soluble modes is included (j = i −2 to
4) and the aerosol dynamic equation is

dni

dt
= −

1

2
Kiin

2
i −ni

{
4∑

j=i−2

Kijnj

}
. (32)

The coagulation kernel is calculated as in Spracklen et
al. (2005) following Seinfeld and Pandis (1998):

Kij =
4π
(
r i +rj

)(
Di +Dj

)
r i+rj

r i+rj +

(
12

i +12
j

)0.5 +
4(Di+Dj )(

ν2
i +ν2

j

)0.5
(r i+rj )

, (33)

where the diffusion coefficientsDi , Dj are calculated explic-
itly for each mode as in Eq. (12) and the parameters1i , 1j

are calculated as:

1i =
(2r i +λi)

3
−
(
4r2

i +λ2
i

) 3
2

6r iλi

−2r i . (34)

The particle mean free pathsλi , λj for modesi, j are calcu-
lated as

λi =
8

π

Di

vi

, (35)

wherevi is the mean thermal velocity for particles in mode
i:

vi =

(
8kBT

πρiVi

) 1
2

(36)

andVi is the mean wet volume for each mode given by the
sum of the component partial volumes including water. Note
thatr i = 0.5Dwet, as calculated in Sect.2.2.4.

Equations (31) and (32) are both of the form

dni

dt
= an2

i +bni +c (37)

with a (negative or zero) referring to intra-modal coagula-
tion in the mode,b (negative or zero) referring to the sum
over all inter-modal coagulation from the mode to another
mode andc (positive or zero) referring to nucleation of new
sulfate aerosol. Coefficientsa, b andc are independent ofni ,
and althoughb depends onnj , it is calculated based on the
number concentration at the start of the timestep. With this
approach, both equations can then be solved analytically by
evaluating the indefinite integral∫ n

n0

dx

X
=

∫ 1t

0
dt = 1t (38)

whereX = ax2
+bx +c. Two differing solutions are applied

following Bronshtein and Semendyayev (1998) for cases
whereδ = 4ac−b2 is greater or less than zero. Forδ>0,∫

dx

X
=

1

(−δ)0.5
log

(
2ax +b−(−δ)0.5

2ax +b+(−δ)0.5

)
, (39)

which reduces to

n =
1

2a


2(−δ)0.5

1−
exp

(
(−δ)0.51t

)(
2an0+b+(−δ)0.5

2an0+b−(−δ)0.5

) −b+(−δ)0.5

 . (40)

For δ > 0, the solution is∫
dx

X
=

2

(δ)0.5
arctan

(
2ax +b

(δ)0.5

)
(41)

which reduces to

n =
1

2a

{
(δ)0.5tan

(
arctan

(
2an0+b

(δ)0.5

)
+

(δ)0.51t

2

)
−b

}
. (42)

Wherea is zero (only inter-modal coagulation) in theδ < 0
case,

dn

dt
= bn+c (43)

with solution

n =
(bn0+c)exp(b1t)−c

b
, (44)

which, in the absence of nucleation (c = 0), reduces to

n = n0exp(b1t) . (45)

In the case where coagulation is switched off completely
(a = 0, b = 0), δ = 0 and the simple equation

n = n0+c1t (46)
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is used. Ifδ = 0 anda < 0, b = 0 (i.e. only intra-modal coag-
ulation), Eq. (38) becomes

dn

dt
= an2 (47)

which has solution

n =
1

1
n0

−3a1t
. (48)

For each of the modes, coefficientsa andb are calculated
based on the sum over all coagulation included and the up-
dated particle number concentrations for each mode are cal-
culated. The inter-modal coagulations of each modei with
larger modesj (which combine to give the coefficientb) are
stored to an arraybij = −Kijnj and the masses of each com-
ponentk to be exported calculated as

µij,k = n0,im0,ik exp
(
−bij1t

)
(49)

where n0,i is the number concentration andm0,ik the
molecules per particle of componentk for modei at the start
of the solving routine.

For each modei, a total inter-modal coagulation export
flux of each component massk is then calculated (µik,− =

6jµij,k). Each of the individuali − j export fluxes (µijk)
are transferred to a receiver-mode whose indexl is set ac-
cording to a “rules” arrayl = l(i,j) which specifies which
mode eachi − j inter-modal coagulation should be trans-
ferred to. The arrayl is needed since mass coagulating onto
insoluble modes is actually transferred directly to the corre-
sponding soluble mode to account for ageing. Although inso-
luble modes do not receive any mass of soluble components,
soluble-to-insoluble coagulation fluxes are stored and passed
to the ageing routine where the coating of insoluble particles
is determined by the total accommodation of soluble material
in each timestep (see Sect.2.2.8). The component mass con-
centrations in each mode are then updated due to the net mass
transfer from the export and import fluxes described above.
For the nucleation mode, there is no import by coagulation
but the nucleated sulfate mass from Eq. (30) is added here.

2.2.7 Condensation

Condensation of H2SO4 and SEC-ORG onto all aerosol
modes is simulated with the rate of change in molecular con-
centrationS given by

dS

dt cond
= −

(∑
i=1,7

Cini

)
S (50)

whereni is the particle number concentration andCi is the
condensation coefficient for modei, the latter calculated fol-
lowing Fuchs and Sutugin (1971) with correction factors
F(Kn) for molecular effects andA(Kn) for limitations in
interfacial mass transport:

Ci = 4πDsr iF(Kni)A(Kni) (51)

F(Kni) =
1+Kni

1+1.71Kni +1.33(Kni)2
, (52)

A(Kni) =
1

1+1.33KniF(Kni)
(

1
s
−1

) . (53)

s is the accommodation coefficient (sticking efficiency) and
Kni is the Knudsen number for modei given by

Kni =
λs,a,p

r i

(54)

wherer i is the geometric mean (wet) radius for the mode as
in Sect.2.2.6andλs,a,p is the mean free path of sulfuric acid
vapour in a binary mixture with air,

λs,a,p =
1

π
(
1+

Ms
Mair

)0.5
NairD2

s

. (55)

Note that s is set to 1 for the soluble modes (hence
A(Kn) = 1) and to 0.3 for the insoluble modes. The diffu-
sion coefficient of H2SO4 and SEC-ORG in binary mixture
with air are calculated as

Ds=

(
3

8NaD2
pρa

){(
R T M2

air

2π

)(
1+

Mair

Ms

)}0.5

. (56)

The SO4 and POM component masses (and mode geomet-
ric mean radii) are then updated on the competition timestep
according to the mass of H2SO4 and SEC-ORG condens-
ing onto each mode. The two-moment scheme holds par-
ticle number concentration constant and hence condensa-
tion grows particles via the newD calculated by Eq. (5).
The mass of SO4 and POM resulting from condensation of
H2SO4 and SEC-ORG onto each insoluble mode on each
timestep is stored and passed to the ageing routine (see be-
low).

2.2.8 Ageing

Ageing is the process by which water-insoluble particles can
become partly soluble by condensation of H2SO4 and SEC-
ORG and by accommodation of soluble material through
inter-modal coagulation of particles from smaller soluble
modes.

For each insoluble mode, the total flux of soluble material
per timestep is calculated based on the stored mass fluxes
from the coagulation and condensation routines. A particle
ageing rate is then calculated which transfers a fraction of
the particles in the mode to the corresponding soluble mode.
The fraction is calculated consistent with a defined number of
monolayers coating (here, assumed to be 10) being required
to make a particle soluble. Note that in the model, the flux
of soluble material to the insoluble modes is actually passed
to the corresponding soluble mode, ensuring that the ageing
process only changes the number concentration of the inso-
luble modes, leaving their size and composition unchanged.
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Table 4. Annual mean global mass burden, production fluxes and lifetime for each simulated aerosol precursor gas. For the sulfur species
the mass is of sulfur (multiply by 1.94, 2, 3.06 for mass of DMS, SO2 and H2SO4, respectively), whereas for the organic species the mass is
of carbon (multiply by 11.3 and 12.5 for mass of terpenes and condensable organic). The range shown in parentheses for DMS and SO2 are
based on the literature values listed in Spracklen et al. (2005) except for the DMS conversion to SO2 which is based on the DMS oxidation
fluxes to SO2 from Boucher et al. (2003) using a range of DMS climatologies, oxidant fields and sea-air transfer functions. For terpenes, the
emissions total from Guenther et al. (1995) is shown in parentheses for reference. The (10–60 TgPOM/yr) range of SOA production quoted
in Dentener et al. (2006) is also shown for reference.

Species Burden Prod (prim) Prod (sec) Lifetime
(Tg) (Tg a−1) (Tg a−1) (days)

DMS 0.027 (0.02–0.15) 18.1 (10.7–23.7) 0.0 0.6 (0.5–3.0)
SO2 0.300 (0.2–0.68) 67.9 (64.4–104.1) 17.6 (15.9–24.7) 1.3 (0.6–5.3)
H2SO4 0.0001 0.0 10.8 (6.1–15.3) 0.003
MONOTER 0.0078 146.2 (127) 0.0 0.02
SEC-ORG 0.0002 0.0 18.5 (7.1–42.9) 0.003

Since the insoluble modes (see Table 3) are assumed to
be non-hygroscopic and are not wet deposited via nucleation
scavenging, the assumed monolayer thickness partially de-
termines the timescale for wet removal of the BC/OC and
dust aerosol in the model.

2.2.9 Mode-merging

As described in Sects.2.2.6and2.2.7, coagulation and con-
densation can increase the size of the modes. If this were
allowed to continue indefinitely, the modes would eventu-
ally grow outside the specified ranges in Table 3. A mode-
merging approach is therefore used to prevent this problem.

After each call of the combined coagulation-nucleation
subroutine, the mode-merging routine checks whetherD is
outside the range as in Table 3, and if so, fractionsFn and
Fm of the mode number and mass concentrations are trans-
ferred to the next largest mode as

Fn = 1−0.5

1+erf

 log
(

rx
r i

)
20.5log

(
σg,i

)
 (57)

Fm = 1−0.5

1+erf


log

(
rx

exp
{
logr i+3(logσg,i)

2
}
)

20.5log
(
σg,i

)

 (58)

whererx is the upper limit for the mode and erf is the error
function,

erf(x) =
2

π0.5

∫ x

0
exp

(
−t2

)
dt . (59)

2.2.10 Cloud processing

Cloud processing is defined here to be the growth of aerosol
particles by uptake and chemical reaction of gases while the

particles exist as water droplets in non-precipitating clouds.
The process results in differential growth between activated
and non-activated particles, creating a minimum in the parti-
cle size distribution (known as the Hoppel gap) defining the
Aitken and accumulation modes which are frequently seen in
observations of the size distribution in the marine boundary
layer (e.g. Hoppel et al., 1994).

As described in Sect.2.1.2, the model includes aqueous
sulfate production in low level stratocumulus clouds. To sim-
ulate cloud-processing of aerosol, we follow Spracklen et
al. (2005) in determining an activation dry radiusract which
defines the smallest particles which are activated to cloud
droplets. For the simulations shown here,ract is assumed
to be globally constant at 37.5 nm dry radius, corresponding
to a cloud supersaturation of 0.2% typical of marine stratocu-
mulus clouds.

In the model, cloud processing is treated in two stages.
First, the fractions of particle mass and number in the solu-
ble Aitken mode from particles larger thanract is calculated
(Eq. 57, with rx = ract) and transferred to the soluble accu-
mulation mode. In the second stage, the sulfate mass pro-
duced by aqueous oxidation of SO2 is partitioned between
the soluble accumulation and coarse modes according to their
fractional contribution to the total particle number concen-
tration over the two modes. Treating the cloud processing in
this way ensures particles at the larger end of the Aitken size
range can be activated and cloud-processed, and that the min-
imum between the soluble Aitken and accumulation modes
is created atract.

3 Model results and evaluation

3.1 Aerosol precursor gases

Figure 1a, b and c shows global maps of simulated an-
nual mean surface-level volume mixing ratios of the aerosol
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Fig. 1. Global maps of annual mean model surface vmr of(a) DMS; (b) SO2; (c) terpenes in the model lowest level. Annual mean model
column integrated aerosol sulfate burden is shown in panel(d).

precursor gases DMS, SO2 and terpenes (respectively). High
values of atmospheric DMS occur over oceans due to its ma-
rine source, and seawater DMS concentrations have a strong
seasonal cycle. The local maxima in the annual mean atmo-
spheric DMS concentration shown in Fig.1a in the South-
ern Ocean and in the North Pacific and North Atlantic result
from high seawater DMS concentrations in summer months.
Moderate DMS concentrations occur throughout the year in
tropical ocean regions. The atmospheric DMS distribution is
driven by a combination of emissions flux and the OH and
NO3 oxidant concentrations specified in the 6-h monthly-
mean oxidant fields (see Sect.2.1) and is similar to that de-
scribed in Spracklen et al. (2005). The highest SO2 con-
centrations (Fig.1b) occur in industrialised regions due to
very high anthropogenic emissions, but a local biogenic SO2
maxima also occurs over the Southern Ocean resulting from
significant SO2 production from DMS oxidation during the
summer. Atmospheric terpene concentrations are highest
over tropical forests (Fig.1c) but are also large in boreal for-
est regions.

Table 4 shows for reference the simulated global bur-
den, production and average lifetime for the precursor gases
shown in Fig.1 and for H2SO4 and the condensing organic.
The simulated global DMS and SO2 burden, emission and
lifetime are well within the range of previous global model
studies (as summarized in Spracklen et al., 2005) although
the DMS lifetime is towards the low-end of other models,
which could be indicative of too strong a chemical sink.

Global SO2 emissions are at the low end of the literature
range but this is because the anthropogenic emissions used
are those of IIASA (Cofala et al., 2005) which are repre-
sentative of the year 2000. Some of the models quoted in
Spracklen et al. (2005) used emissions inventories represen-
tative of the mid-1980s or 1990s which have higher global
emissions fluxes. For instance the global anthropogenic SO2
emissions flux from the GEIA 1b inventory (Benkowitz et al.,
1996) is 21% higher than that given by IIASA (Manktelow
et al., 2007).

For terpenes, the total annual emissions in the model is
slightly larger than the 127 Tg of carbon in Guenther et
al. (1995). However, such emissions are subject to a fac-
tor 5 uncertainty, mainly due to uncertainties in tree-specific
emissions factors/functions and in databases of land-cover,
vegetation and tree abundance (Kanakidou et al., 2005). Sim-
ulated SOA production in the model is in the middle of the
range given by Dentener et al. (2006). The fixed percentage
yield from a first stage oxidation product based on alpha-
pinene oxidation is a simple approach but gives a reasonable
total production of SOA. We also note that our SOA is driven
by simulated oxidants rather than being generated as a fixed
fraction of the terpene emissions, as suggested in Dentener
et al. (2006).

To assess the fate of the emitted gaseous aerosol precur-
sors, it is important to examine the proportion which is re-
moved by dry and wet deposition before being chemically
converted to aerosol. Table 5 illustrates the fate of the aerosol
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Fig. 2. Simulated (solid lines) and observed (plus symbols) annual cycle of(a) DMS and(b) SO2 at Amsterdam Island (Nguyen et al., 1992);
(c) DMS and(d) SO2 at Cape Grim (Ayers et al., 1991);(e) DMS at Dumont D’Urville (Jourdain and Legrand, 2001). Normalised mean
bias (b) and Pearson regression coefficient (R) are shown in each panel. Model values are monthly-mean volume mixing ratio in the lowest
model level. Panel (d) also shows model surface SO2 at 1 (dotted), 2 (dashed) and 3 (dot-dashed) gridboxes to the South of Cape Grim).

Table 5. Annual mean global removal fluxes as a percentage of total removal for each of the simulated gas phase aerosol precursors. For
SO2, the range as simulated in 14 previous global model studies (see Spracklen et al., 2005) is included in parentheses.

Species Loss (→gas) Loss (→aero) Loss (ddep) Loss (wdep)
(%) (%) (%) (%)

DMS 100
SO2 12.6 (5.3–18.5) 43.5 (27.1–57.1) 30.7 (26.7–46.3) 13.2 (0.2–20.8)
H2SO4 99.99 0.01
MONOTER 97.6 2.4
SEC-ORG 99.10 0.13 0.8

precursor gases, showing the percentage fluxes through each
of the loss processes. For instance, it shows that 12.6% of
SO2 loss is via in-air oxidation to sulfuric acid which can
then either form new particles via nucleation or grow exist-
ing aerosol by condensation. Aqueous production of sul-
fate mass accounts for 43.5% of SO2 loss, forming more
sulfate mass and growing existing accumulation and coarse
soluble mode particles in the model. In total, removal pro-
cesses account for 43.9% of the SO2 loss with dry depo-
sition being the dominant removal process. For the SO2
loss processes, also included are the equivalent figures from
Spracklen et al. (2005) who compared previous global model
studies which simulated the sulfur-cycle.

Figure 2 shows the simulated annual cycle of DMS and
SO2 at three Southern Hemisphere remote sites compared

against observations from Nguyen et al. (1992), Ayers et
al. (1991) and Jourdain and Legrand (2001). All three sites
have a clear seasonal cycle in DMS, with elevated concentra-
tions during summer, and this is captured quite well by the
model with regressions coefficientR of 0.72, 0.65 and 0.62
for Amsterdam Island, Cape Grim and Dumont D’Urville,
respectively. The model compares well with observed DMS
at Cape Grim (Fig.2c) with normalised mean biasb = 0.28
but is biased low (b = −0.45) at Amsterdam Island (Fig.2a)
and also (b = −0.56) at Dumont D’Urville (Fig.2e). Simu-
lated remote Southern Hemisphere SO2 compares well (R =

0.60, b = −0.39) with observations at Amsterdam Island
(Fig. 2b) but is strongly biased high (b = 4.22) at Cape Grim
(Fig. 2d) throughout the year. However, the Cape Grim ob-
servations are filtered to only include the “baseline marine
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Table 6. Annual mean global mass burden (Tg), production fluxes (Tg/yr) and lifetime (days) for each simulated aerosol component. Also
shown in the % removal by wet deposition for each component. In parentheses are shown the median burdens and lifetimes simulated by
AEROCOM models as documented in Textor et al. (2006). Note that the figures quoted for sulfate as in Tg of sulfur.

Species Burden Prod (prim) Prod (sec) Lifetime loss by wdep
(Tg) (Tg a−1) (Tg a−1) (days) (%)

Sulphate 0.52 (0.66) 1.7 (59.6) 48.4 3.7 (4.1) 89.6 (88.5)
Sea-salt 4.93 (6.39) 8380 (6280) 0.0 0.2 (0.4) 21.2 (30.3)
BC 0.14 (0.21) 7.7 (11.3) 0.0 6.6 (6.5) 80.0 (79.5)
POM 1.15 (1.21) 46.9 (69.9) 22.4 6.1 (6.1) 84.6 (78.9)
Mineral dust 16.6 (20.5) 1810 (1640) 0.0 3.4 (4.0) 17.1 (31.7)

sector” (Ayers et al., 1991), whereas the model includes all
air masses. Additionally, model values are grid-box averages
which will have had any emissions in the same 2.8 degree
box mixed in. To try to reduce this second bias, the Cape
Grim comparison also shows model SO2 at more southerly
gridboxes (the dotted, dashed and dot-dashed lines are 1, 2
and 3 boxes to the South, respectively). In winter, the model
high bias is removed when comparing against gridboxes to
the south, but summer SO2 in the model remains biased high
compared to the marine sector measurements at Cape Grim.

Figure3 compares simulated continental SO2 over Europe
and North America against observations from the EMEP
(European Monitoring and Evaluation Programme, Loevblad
et al., 2004) and CASTNET (Clean Air Status and Trends
Network, Malm et al., 2002) monitoring sites. The sim-
ulated conversion of SO2 to sulfate in the US and Eu-
rope in GLOMAP-mode was investigated by Manktelow et
al. (2007) and shown to reproduce the observed seasonal cy-
cle in 2000. Here, we restrict our evaluation to the annual
mean at the monitoring sites. The modelled and observed
annual mean SO2 correlate quite well spatially in both re-
gions (R = 0.86 for the US and 0.61 for Europe) although
the model is biased high (b = 1.94) over Europe on average.

In summary, the sulfate aerosol precursor gases are well
simulated in the model, giving further confidence to the va-
lidity of the evaluation of the aerosol mass and number con-
centrations in the next two sections.

3.2 Speciated aerosol mass

Figures1d and 4a, b, c and d show the simulated global
distributions of the annual mean column-integrated mass of
sulfate, BC, POM, sea-salt and dust, respectively. Annual
mean column sulfate mass exceeds 5 mgS m−2 over east-
ern USA, Europe, North Africa, East Asia and South Asia
and is controlled by a combination of oxidant limitation and
SO2 emissions strength (see e.g. Manktelow et al., 2007).
Simulated annual mean column burdens of BC and POM
are highest over biomass regions where emissions fluxes are
strongest, while industrialised regions also have high bur-
dens. Secondary biogenic production of POM via terpene

oxidation also contributes considerably to the organic matter
burden. Sea-salt and dust aerosol have the highest simulated
mass burdens in the model with concentrations reflecting the
sources in high-wind-speed oceanic regions and arid regions,
respectively.

Table 6 shows the annual mean global burden, production,
lifetime, and fraction removed by wet deposition for each
aerosol component. Also given in parentheses are the multi-
model medians as simulated by AEROCOM models (Textor
et al., 2006). The simulated global burdens are well within
the range simulated by the AEROCOM models (not shown)
and are slightly lower than the median for each species.
The lifetime of each species is very close to the AERO-
COM multi-model median, although dust and sea-salt have
a slightly shorter lifetime. In terms of the removal processes,
the sulfate, BC and POM simulated in the model are very
close to the AEROCOM median values although sea-salt and
dust have a slightly lower fraction by wet removal. A recent
study by Vignati et al. (2010) with the same BC ageing ap-
proach (Wilson et al., 2001), but a single-monolayer ageing
threshold, finds a similar global BC burden (0.14 Tg) and
lifetime (6.6 days) to this study, which uses a 10 monolayer
thickness. This study includes as soluble material both sulfu-
ric acid and secondary organic material, whereas Vignati et
al. (2010) consider only sulfuric acid. The fact that the life-
times are similar for the different monolayer thickness as-
sumption suggests that secondary organic material plays a
key role in determining the ageing timescale and needs to be
considered in models which use this approach.

Figure5 compares model annual mean surface sulfate con-
centrations over N. America, Europe and remote marine sites
against those observed at sites in the IMPROVE (Intera-
gency Monitoring of Protected Visual Environments, Malm
et al., 2004) EMEP and University of Miami (as in Stier et
al., 2005) networks. Overall, the spatial variability in the
model compares very well (R = 0.92) with the observations
(Fig. 5d) with only a slight high bias on average (b = 0.25).
Considering each of the networks in turn (not shown), the
statistics for the annual-mean comparisons are also good with
b = 0.30, 0.05 and 0.12 andR = 0.73, 0.98 and 0.96 for
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Fig. 3. Maps of simulated annual-mean SO2 concentration in the lowest model level over(a) Europe and(b) North America with year-
2000 surface observations from sites in the EMEP and IMPROVE networks respectively over-plotted. Scatter plots for the model (y-axis)
compared to the observations (x-axis) are shown in panels(c) and(d) with b andR values for each region. Observations are for the year 2000
with only sites where the height above sea-level is within 250 m of that calculated for the lowest model level included.

Fig. 4. Global maps of annual mean model column-integrated aerosol burden of(a) black carbon,(b) particulate organic matter,(c) sea-salt
and(d) dust.
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Fig. 5. Maps of simulated annual-mean sulfate concentration in the lowest model level(a) globally, (b) over Europe and(c) over North
America with year-2000 surface observations from sites in the University of Miami, EMEP and IMPROVE networks respectively over-
plotted. Scatter plots for the model (y-axis) compared to the observations (x-axis) are shown in panel(d) with cyan, blue and red plus
symbols corresponding to the University of Miami, EMEP and IMPROVE regions respectively.b andR values shown in panel d are for
the the model-observation comparison over all three networks. Observations are for the year 2000 with only sites where the height above
sea-level is within 250 m of that calculated for the lowest model level included.

Fig. 6. Maps of simulated annual-mean black carbon concentration in the lowest model level(a) over Europe and(b) over the North Atlantic
with surface observations from IMPROVE sites and cruise observations from Van Dingenen et al. (1995) respectively over-plotted. Scatter
plots for the model (y-axis) compared to the observations (x-axis) are shown in panels(c) and(d) with b andR values also shown. IMPROVE
observations are for the year 2000 with only sites where the height above sea-level is within 250 m of that calculated for the lowest model
level included.
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Fig. 7. Maps of simulated annual-mean organic carbon concentration in the lowest model level over North America for(a) December and
(b) June with observations from IMPROVE sites over-plotted. Scatter plots for the model (y-axis) compared to the observations (x-axis)
are shown in panels(c) and(d) with b andR values also shown. Observations are for the year 2000 with only sites where the height above
sea-level is within 250 m of that calculated for the lowest model level included.

Fig. 8. Global maps of simulated annual-mean mass concentration in the lowest model level of(a) sea-salt and(b) dust with surface
observations from University of Miami sites over-plotted. Scatter plots for the model (y-axis) compared to the observations (x-axis) are
shown in panels(c) and(d) with b andR values also shown.
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EMEP, IMPROVE and University of Miami, respectively. It
should be noted however that over Europe and North Amer-
ica, winter and summer simulated sulfate has a low and high
bias respectively (not shown), see Manktelow et al. (2007)
for details.

Figure 6 shows model surface-level BC concentrations
over North America (annual mean) and over the North At-
lantic (September and October mean). Over-plotted are an-
nual mean BC observations from IMPROVE sites (from op-
tical analysis of PM2.5 filter measurement) and derived from
aethalometer measurements made on the N. Atlantic transect
cruise in the JGOFS campaign in 1992 (Van Dingenen et al.,
1995). Shown in Fig.8c and d are scatter plots indicating the
model-observation correlation and bias. The model repro-
duces the spatial variability seen in the annual-mean observa-
tions over North America quite well (R = 0.70) although the
model is biased low by almost a factor of two (b = −0.46).
For the N. Atlantic comparison, measurements are between 5
and 48 h duration, whereas the model is a two-month mean.
However, the model captures the general pattern seen in the
observations (b = −0.11, R = 0.65) suggesting the BC ex-
port from North America is being captured quite well with
the 10 monolayer ageing assumption (see Sect.2.2.8).

Figure 7 compares model surface-level organic carbon
(OC) concentrations in December and June over North
America with observations at IMPROVE sites. The model
captures fairly well the observed spatial variability (R = 0.40
and 0.83 for December and June) but strongly underestimates
the OC burden with an 72% low bias in winter and a 42%
low bias in summer. A possible cause of this discrepancy
is underestimation of SOA production, although this cannot
be confirmed without further analysis. Increasing the yield
might result in a better comparison with observations in the
summer, but not the winter since terpene-derived SOA is only
a small fraction of the winter OC in the model.

Figure 8 compares annual mean surface-level sea-salt
mass concentrations with observations from the University
of Miami sites (from Stier et al., 2005). The model is within
a factor of 2 of the observations at 17 of the 21 sites, al-
though on average it is slightly biased high (b = 0.22) and
is only weakly correlated with the observations (R = 0.13).
The simulated annual mean surface-level global dust distri-
bution (Fig.8c) is within a factor two of the observations for
12 of the 20 University of Miami dust sites (from Woodward
et al., 2001). The spatial variability seen in the observations
is captured well by the model (R = 0.95) although overall the
model is biased slightly high biased on average (b = 0.34),
particularly at sites with a high dust loading.

Further investigations into the annual cycle of these
aerosol components is warranted, but the evaluation in this
paper is focused on documenting the general performance in
terms of the annual mean. In this respect, the model has been
found to simulate surface mass concentrations very well for
each of the main components of the global aerosol.

3.3 Global distributions of size-resolved number
concentration and size

Many global models (see e.g. Textor et al., 2006) report and
evaluate the global distribution of speciated aerosol mass, but
only the aerosol microphysics models (e.g. Adams and Sein-
feld, 2002; Easter et al., 2004; Lauer et al., 2005; Liu et al.,
2005; Spracklen et al., 2005, 2007; Stier et al., 2005) have
attempted to evaluate the distribution of size-resolved parti-
cle number concentrations. In general, the models reproduce
the observed variability in mass concentrations much more
accurately than they do the particle number concentrations,
possibly because number concentrations are determined by
more processes and because of uncertainties in the size dis-
tribution of primary particles.

Figure 9 shows surface maps of annual mean particle
number concentrations for each of the four soluble modes.
As found in other studies (e.g. Spracklen et al., 2005),
surface-level nucleation mode number concentrations are
much lower than in the free and upper troposphere where
the production rate by binary homogeneous nucleation is
strongest.

The soluble Aitken mode has highest number concentra-
tions of around 1000 cm−3 over China and generally are be-
tween 200 and 500 cm−3 in other industrialised regions due
to emissions of primary BC/OC from fossil fuel and bio-
fuel burning (aged from the insoluble mode) and of primary
sulfate particles. Moderate Aitken mode number concentra-
tions (30–70 cm−3) are maintained in marine regions (e.g.
30–70 cm−3 in the Southern Ocean and around 100 cm−3 in
the tropical Pacific) due to entrainment of particles that have
nucleated and grown in the free troposphere.

The soluble accumulation mode also contains both pri-
mary and secondary particles. Primary carbonaceous parti-
cles from biomass burning sources are emitted at larger sizes
than those from biofuel and fossil fuel combustion sources
and Fig. 9c shows how the originally insoluble biomass
aerosol has been aged, residing in the soluble accumulation
mode (the local maxima off the West coast of Central Africa
and in Amazonia) whereas the biofuel and fossil-fuel car-
bonaceous particles reside mainly in the soluble Aitken mode
(Fig. 9b). Higher oxidant concentrations (stronger photo-
chemistry) in tropical regions and subsequent production of
sulfuric acid vapour and condensing organics will also have
contributed to enhanced growth and more efficient process-
ing to the soluble accumulation mode. Minima in Aitken sol-
uble mode number concentrations indicate where the mode-
merging of the biomass aerosol has occurred. In marine re-
gions, the larger particles in the Aitken soluble mode are also
transferred to the soluble accumulation mode via cloud pro-
cessing in the persistent stratocumulus cloud deck.

Accumulation mode number concentrations in polluted
regions are similar to those in the Aitken mode (200–
1000 cm−3). Concentrations over ocean regions are around
100 cm−3 between 30◦ N and 30◦ S, around 50–75 cm−3
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Fig. 9. Global maps of simulated annual-mean particle number concentration in the lowest model level for(a) nucleation mode,(b) Aitken-
soluble mode,(c) accumulation-soluble mode and(d) coarse-soluble mode.

Fig. 10.Global maps of simulated annual-mean geometric mean radius in the lowest model level for(a) nucleation mode,(b) Aitken-soluble
mode,(c) accumulation-soluble mode and(d) coarse-soluble mode.
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Fig. 11. Global maps of simulated annual-mean particle number concentration in the lowest model level for(a) Aitken-insoluble mode,(b)
accumulation-insoluble mode and(c) coarse-insoluble mode.

Fig. 12. Global maps of simulated annual-mean geometric mean radius in the lowest model level for(a) Aitken-insoluble mode,(b)
accumulation-insoluble mode and(c) coarse-insoluble mode.
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Fig. 13. Latitude-altitude plots of simulated zonal-means of annual-mean particle number concentrations for(a) nucleation mode,(b)
Aitken-soluble mode,(c) accumulation-soluble mode and(d) coarse-soluble mode.

Fig. 14. Latitude-altitude plots of simulated zonal-means of annual-mean particle geometric mean radius for(a) nucleation mode,(b)
Aitken-soluble mode,(c) accumulation-soluble mode and(d) coarse-soluble mode.

between 30 and 45 degrees in both hemispheres, and around
10–30 cm−3 at higher latitudes.

The global distribution of number concentrations in the
soluble coarse mode reflects the dominant source regions for
dust and sea-salt aerosol. Minima are seen in the sub-tropics

indicating strong wet removal in the Inter-tropical Conver-
gence Zone (ITCZ).

Examining the simulated particle sizes (Fig.10) also helps
to understand the role of various processes in the model. The
smallest nucleation mode particles at the surface occur over
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Antarctica where temperatures are low enough for new par-
ticle formation to occur. In the tropics, the mean nucleation
mode size is at the upper end of the allowed range, because of
growth due to uptake of photochemically produced vapours.
Soluble Aitken mode particles are largest (geometric mean
radius,rp ≈40 nm) over the continents where primary aerosol
emissions are strong, whereas in marine regions, the Aitken
mode aerosol is mainly secondary and much smaller (10–
20 nm), having been transferred from the nucleation mode.

The soluble accumulation mode particles are smallest
(rp ≈70 nm) in tropical marine regions where strong pho-
tochemistry and effective growth of secondary particles to
the Aitken mode is combined with high cloud amounts and
subsequent cloud processing into the soluble accumulation
mode. Tropical marine regions affected by biomass aerosol,
and mid-latitude oceans with strong sea-spray emissions
have a slightly larger accumulation mode (rp ≈100–120 nm).

For the soluble coarse mode, continental regions have
smaller particles (rp ≈500 nm) than marine regions since
aged dust aerosol tends to be smaller than freshly emit-
ted sea-salt. The highest mean radii for the coarse soluble
mode (≈800 nm) occur in the strongest sea-spray emissions
regions whereas weaker wind-speed regions have slightly
smaller mean sizes (≈700 nm), probably due to sedimenta-
tion preferentially removing larger particles. The simulated
mean size in the Aitken and accumulation mode range is
compared against observations in Sect.3.5.

Figure11 shows annual mean surface-level number con-
centration of the three insoluble modes. Aitken insoluble
mode number concentrations peak at around 1000 cm−3 in
biomass burning regions and where there are strong sources
of carbonaceous aerosol from fossil fuel and biofuel com-
bustion. Apart from the biomass outflow plume from West
Africa, Aitken insoluble number concentrations over the
ocean are less than 50 cm−3, and over the Southern Ocean
less than 10 cm−3. Accumulation and coarse insoluble mode
number concentrations are highest in arid dust emission
source regions. Figure 9a shows that accumulation mode in-
soluble dust has a longer lifetime than coarse insoluble dust
and both show minima in the ITCZ as a result of effective im-
paction scavenging in those regions. Over ocean, dust num-
ber concentrations in the insoluble accumulation and coarse
modes are less than 1 cm−3, aside from the strong dust out-
flow from the Sahara and Sahel regions where number con-
centrations in both modes are around 5–10 cm−3.

The mean size of the Aitken insoluble mode (Fig.12a)
follows the assumed sizes of the freshly emitted primary car-
bonaceous aerosol. For instance over N. America, Europe
and East Asia, the mean radius is around 40 nm where fossil
fuel combustion dominates. Regions with the largest bio-
fuel combustion sources (e.g. South Asia) have larger pri-
mary BC/OC particles (≈50 nm) than US and Europe since
the ratio of biofuel sources (larger particles) to fossil fuel
sources (smaller particles) is larger. The particle size in
biomass burning regions are larger (≈75 nm), again reflect-

ing the larger assumed size of the freshly emitted biomass
BC/OC aerosol.

The insoluble accumulation mode (Fig.12b) has a fairly
uniform particle size (≈240 nm mean radius) since sedimen-
tation is weak in this size range, removal being dominated by
impaction scavenging and ageing. By contrast, the insoluble
coarse mode (Fig.12c) has larger mean radius (≈800 nm)
near dust source regions than in the far-field (≈300–500 nm)
because of preferential removal of the largest particles by the
model’s two-moment sedimentation scheme (see Sect.2.2.2).

Figure13 shows zonal mean soluble mode number con-
centrations and geometric mean dry radii against latitude and
altitude. As mentioned earlier, binary homogeneous nucle-
ation of new sulfate aerosol is strongest in the free and up-
per troposphere and explains why the highest number con-
centrations (1000–5000 per cm−3) and smallest mean radius
(2–3 nm) for the nucleation mode occur there. Outside of
the particle formation belt aerosol can grow large enough
to be mode-merged to the Aitken soluble mode. However,
intra-modal coagulation reduces number concentrations in
the mode considerably before merging to the Aitken mode
occurs.

Aitken soluble mode number concentrations peak at 200–
500 cm−3 in two lobes at about 35◦ N and 25◦ S where
high precursor emissions and strong photochemistry pro-
duce plenty of sulfuric acid vapour for growth. Impaction
scavenging is also weaker at these latitudes than in the sub-
tropics. In contrast to the nucleation mode, the regions where
the Aitken soluble mode particles are largest (rp ≈30–35 nm)
coincides with regions where the number concentrations are
highest. Convective uplift and subsequent poleward trans-
port of these particles is evident in the Aitken mode size in
Fig. 14b. During this transport, coagulation among particles
in the mode (intra-modal) reduces the mode number concen-
tration and increasesrp. Inter-modal coagulation may also
contribute to the growth seen in the figure due to collection
of nucleation mode particles which are present in high num-
ber concentrations in the free troposphere.

A maximum in Aitken-soluble mode number concentra-
tion occurs at≈5 km since particle concentrations are de-
pleted at lower altitudes by cloud-processing in marine stra-
tocumulus to the accumulation soluble mode. Figure14b
also shows how the Aitken moderp decreases in the cloud-
processed regions since particles larger thanract are mode-
merged to the accumulation mode.

Although the vast majority of primary aerosol emissions
are from the surface, a small contribution to the soluble
Aitken mode number concentrations above the boundary
layer is from primary sulfate aerosol from volcanic and
biomass emissions (see Sect.2.1.4). Wildfire particles in
boreal and temperate regions are mostly emitted above the
boundary layer, up to 6 km in altitude (Dentener et al., 2006).
However, their contribution is likely to be small overall,
and Merikanto et al. (2009) found that above 4 km, binary
nucleation contributes over 95% of the CN concentration.
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Fig. 15. Latitude-altitude plots of simulated zonal-means of annual-mean particle number concentrations for(a) Aitken-insoluble mode,(b)
accumulation-insoluble mode and(c) coarse-insoluble mode.

Fig. 16. Latitude-altitude plots of simulated zonal-means of annual-mean particle geometric mean radius for(a) Aitken-insoluble mode,(b)
accumulation-insoluble mode and(c) coarse-insoluble mode.
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Table 7. Global Atmospheric Watch (GAW) sites used in the comparison against CN concentrations. Sites are categorized as either free
troposphere (FT), marine boundary layer (MBL) or continental boundary layer (CBL). The condensation nuclei counters at Cape Grim and
Hohenpeissenberg had cut-off diameters of 3 nm whilst observed CN at all other sites refer to particles larger than 10 nm. All data were
downloaded from the World Data Centre for Aerosols webpage (http://wdca.jrc.ec.europa.eu/data/parameters/datacnc.html).

Station Code Type Latitude Longitude H.a.s.l. Years

Jungfraujoch JFJ FT 46.5◦ N 7.99◦ E 3580.0 1995–2006
Mauna Loa MLO FT 19.5◦ N 155.6◦ W 3397.0 1975–1999
South Pole SPO FT 89.997◦ S 24.8◦ W 2841.0 1974–1999

Mace Head MHT MBL 53.3◦ N 9.9◦ W 5.0 1991–1994,
2000,
2002–2004

Neumayer NEU MBL 70.7◦ S 8.3◦ W 42.0 1993–2006
Barrow BRW MBL 71.3◦ N 156.6◦ W 11.0 1976–2007
Samoa SMO MBL 14.2◦ S 170.6◦ W 77.0 1977–1992,

1994–1997,
2004–2006

Trinidad Head THD MBL 41.1◦ N 124.2◦ W 107.0 2002–2007
Cape Grim CGR MBL 40.7◦ S 144.7◦ E 94.0 1999–2006

S. Great Plains SGP CBL 36.6◦ N 97.5◦ W 318.0 1996–2007
Bondville BND CBL 40.1◦ N 88.4◦ W 213.0 1994–2007
Pallas PAS CBL 68.0◦ N 24.1◦ E 560.0 1996–2002
Hohenpeissenberg HOP CBL 47.8◦ N 11.0◦ E 985.0 1995–2005

The relative number concentrations in the nucleation and
Aitken soluble modes at these altitudes (Fig.13) is consis-
tent with this finding.

Zonal annual mean accumulation mode number concen-
trations are largest (100–200 cm−3) in the boundary layer of
the Northern Hemisphere mid-latitudes and contain contri-
butions from primary particles and secondary particles that
have been cloud processed from the Aitken soluble mode
Accumulation moderp is fairly constant meridionally in the
Northern Hemisphere (≈80–90 nm) and has little variation
with altitude. Mid-latitude Southern Hemisphere accumula-
tion mode particles are slightly smaller (rp ≈70–80 nm) and
Fig. 10c shows that there is considerable zonal variation in
particle size at the surface. The enhancement in accumu-
lation mode size seen at 50–65 South was also seen at the
surface in Fig.10c and could be due to larger mean size of
sea-spray aerosol which dominates this region.

Coarse soluble mode number concentrations have a strong
vertical gradient, decreasing rapidly due to particle sedimen-
tation, with the 2-moment representation also giving a small
decrease in particle size with increasing height (rp ≈600 to
≈500 nm) as larger particles are preferentially removed.

Figures15 and16 shows the same plots as Figs.13 and
14, but for the 3 insoluble modes. Aitken insoluble mode
particles are carbonaceous and zonal mean number con-
centrations in the free troposphere show little variation be-
tween hemispheres (around 10–50 cm−3). However, the par-
ticle size suggests that these BC/OC particles in the North-
ern Hemisphere originate mainly from fossil fuels (rp ≈30–

40 nm) whereas in the Southern Hemisphere and tropics the
particles are mainly produced from biomass and biofuel com-
bustion (rp ≈75 nm). Particle concentrations in the insoluble
accumulation mode (fine, fresh dust) only exceed 1 cm−3 in
latitudes containing dust source regions. The number peak at
10–30◦ N due to strong dust sources in North Africa and the
middle East while that at 40◦ N comes mainly from deserts
in East Asia. Insoluble coarse particles have a similar hori-
zontal distribution but fall off more rapidly at higher altitudes
due to sedimentation.

3.4 Evaluation of simulated CN and
CCN concentrations

In-situ measurements of total particle number concentra-
tions (larger than 3 or 10 nm diameter) have been made by
Condensation Nuclei Counters on field campaigns and at
Global Atmospheric Watch (GAW) and Atmospheric Radi-
ation Measurements (ARM) sites over many years. Mea-
surements of CCN concentrations have been made in numer-
ous field campaigns from aircraft and ground based instru-
mentation although routine measurements over many years
are only available at a small number of monitoring sites.
Differential and Scanning Mobility particle sizers (DMPS,
SMPS) have also been used to measure particle size distri-
bution in field campaigns for many years and have now been
installed at several aerosol monitoring super-sites (e.g. the
European Supersites for Atmospheric Aerosol Research, see
http://www.eusaar.net).
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Fig. 17. Simulated marine zonal mean surface CN concentra-
tions (solid lines) compared to an observed climatology over sev-
eral field campaigns (Heintzenberg et al., 2000). Model values
are from the lowest model level over ocean averaged into 15-
degree latitude ranges to match the observations. The black line
shows the model annual mean and the red/blue lines show mini-
mum/maximum monthly-mean values. Values ofR andb are also
shown.

Figure17 compares modelled CN concentrations against
a climatology of observed CN concentrations in the marine
boundary layer compiled by Heintzenberg et al. (2000) from
measurements made over 30 years. Overall, the model is bi-
ased slightly low against the observations (b = −0.33) with
only a weak correlation coefficient (R = 0.21). However, the
model compares well with the observations between 15S and
60N with a local maximum in CN concentration at around
40N as in the measurements. Similarly to other models (e.g.
Easter et al., 2004; Spracklen et al., 2005) simulated CN are
substantially biased low against these observations over the
Southern Ocean. This could be an indication that the model
is underestimating sub-micron sea-spray or new particle for-
mation in the marine boundary layer. However, as noted in
Spracklen et al. (2005), the Southern Ocean average is mostly
based on observations during Southern Hemisphere summer.
It should be noted that the red line (representing the highest
simulated monthly-mean) are from summer months in this
region and these compare more favourably with the observa-
tions, although the model is still biased low.

Figures18, 19, and 20 compare the simulated CN an-
nual cycle against observations at Global Atmospheric Watch
(GAW) monitoring stations separated into free troposphere,
marine boundary layer and continental boundary layer sites
respectively (see Table 7). These sites are essentially a sub-
set of the 25 sites used in a recent study by Spracklen et
al. (2010a). That study showed that particle formation is im-
portant for global aerosol concentrations, but found that even
when binary nucleation was included in the model (with-
out a boundary layer nucleation mechanism), CN concen-

trations were underpredicted (b = −0.66) and the seasonal
cycle was not well captured (R = 0.3) compared to observa-
tions at 25 surface sites.

The set-up of the model here is equivalent to the BHN
experiment in Spracklen et al. (2009) but using GLOMAP-
mode rather than GLOMAP-bin. The performance of the
model here is generally consistent with the BHN experiment
in Spracklen et al. (2010a) with underprediction being low-
est at FT sites (Fig.18) with a fairly good comparison at
Jungfraujoch (b = −0.14) and Mauna Loa (b = 0.44) and rea-
sonable correlation at South Pole (R = 0.74) with strongly
elevated summer concentrations as observed (although the
model is strongly biased high then). We do not directly
compare GLOMAP-mode and GLOMAP-bin here as this is
the subject of a separate study (Mann et al., 2010). How-
ever, when comparing to the BHN results from Spracklen et
al. (2010a), one should note that the version of GLOMAP-
mode described here is equivalent to GLOMAP-bin v1.0
(e.g. used in Spracklen et al., 2007) whereas Spracklen et
al. (2010a) used v1.1 which had an updated treatment of
vapour diffusion compared to v1.0. Comparison with CN
concentrations simulated by GLOMAP-bin v1.0 (not shown)
suggest the differences at Jungfraujoch are associated with
the change to the diffusion rather than differences between
the modal and bin-resolved aerosol dynamics.

For three of the six GAW sites in the marine boundary
layer (Fig. 19), the model is strongly biased low (b from
−0.78 to −0.72), but compares well at Samoa (b = 0.05),
Neumayer (b = −0.11) and Trinidad Head (b = −0.29). At
Neumayer, the observed strong CN seasonal cycle is repro-
duced very well by the model (R = 0.88) with the sum-
mer high bias at South Pole not present at this Antarctic
coastal site. The low bias at Barrow is expected since Ko-
rhonen et al. (2008b) showed that, in common with many
other global models, GLOMAP underestimates considerably
the ultra-fine aerosol observed in the Arctic. At Mace Head,
O’Dowd et al. (1998) showed that strong new particle forma-
tion events at low tide lead to greatly elevated CN concentra-
tions. The new particle formation there has been linked to
the release of iodine-containing compounds (e.g. McFiggans
et al., 2004) and such events will clearly not be simulated in
these experiments.

As with GLOMAP-bin BHN (Spracklen et al., 2010a), the
CN low bias is greatest for sites in the continental bound-
ary layer (Fig.20), with b ranging from−0.74 to−0.68 for
Hohenpeissenberg (Germany) and the two US sites South-
ern Great Plains and Bondville. At Pallas, the low bias is
less (b = −0.38) but the seasonal cycle is not at all captured
(R = −0.59) with low biases in spring and summer of≈5
and 10, respectively. Spracklen et al. (2009) demonstrate
how the low bias is improved if the number emissions of
anthropogenic primary particles is increased or an empiri-
cal BL particle formation mechanism is used, with the latter
giving best comparison with the observed seasonal cycle. In
a future study (Mann et al., 2010) we will investigate the

Geosci. Model Dev., 3, 519–551, 2010 www.geosci-model-dev.net/3/519/2010/



G. W. Mann et al.: GLOMAP-mode description and evaluation 543

Fig. 18.Simulated monthly-mean CN concentrations (solid lines) compared to observations (asterisks) at GAW monitoring sites classified as
free troposphere. Sites are(a) Jungfraujoch,(b) Mauna Loa and(c) South Pole. Values ofb andR are shown for each site. Error bars show
the standard deviation for each month over the range of years shown in Table 7. Model values are taken from the level that best matches the
height above sea-level for the station.

Fig. 19. As Fig. 18 for GAW monitoring stations classified as marine boundary layer sites. Sites are(a) Mace Head,(b) Neumayer,(c)
Barrow,(d) Samoa,(e)Trinidad Head, and(f) Cape Grim.

improved performance of GLOMAP-mode when the BL nu-
cleation mechanism is included.

Figure 21 evaluates the simulated vertical profile of CN
concentrations by comparing against the observational cli-
matology from Clarke and Kapustin (2002) who synthesised
aircraft measurements over the Pacific and Southern Hemi-
sphere oceans to produce average profiles at 1 km vertical
resolution in the latitude ranges 70◦ S–20◦ S, 20◦ S–20◦ N
and 20◦ N–70◦ N. In all three regions, the observed maxi-
mum in CN in the upper troposphere is also produced by the
model, caused by binary nucleation. In the 20◦ S–20◦ N re-

gion (sub-tropical Pacific) the CN maximum is at≈11 km
whereas the model has it at around 16–17 km, and there is
a persistent low CN bias up to 11 km (b = −0.57). Sim-
ulated CN are in much better agreement with the observa-
tions at 20–70S (b = −0.15,R = 0.84) and the modelled CN
peak of about 4000 cm−3 at 10 km agrees very well with the
observations. At 20–70◦ N, the model peak in annual mean
CN is lower than observed in magnitude and in altitude, but
overall simulates the vertical profile quite well (b = −0.28,
R = 0.92). Not captured by model is the observed CN max-
imum in the marine boundary layer in the 20◦ S–20◦ N and
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Fig. 20. As Fig. 18 for GAW monitoring stations classified as continental boundary layer sites. Sites are(a) Southern Great Plains,(b)
Bondville, (c) Pallas, and(d) Hohenpeissenberg.

Fig. 21. Simulated CN profiles (solid lines) over the Pacific and Southern Oceans compared to aircraft observations (asterisks are median,
dashed/dot-dashed lines represent±1 standard deviation) in the latitude ranges(a) 135–180◦ E, (b) 175–270◦ E and(c) 200–240◦ E (Clarke
and Kapustin, 2002). Simulated CN (particles larger than 3 nm dry diameter) were averaged on each model level for the three regions, as in
Spracklen et al. (2005). Values ofb andR are shown for each region from model values interpolated to a 1 km grid to match the observations.
The black line shows simulated annual mean profile and the blue/red lines show minimum/maximum monthly-mean values.
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Fig. 22. The simulated annual cycle of CCN concentrations (solid lines) against observations (asterisks) at Mace Head and Cape Grim.
The measurements at Mace Head(a) are with 0.5% superstaturation whilst the comparison at Cape Grim is shown for measured CCN
concentrations at supersaturations of(b) 1.2% and(c) 0.23%. Vertical bars around the Cape Grim observations show the observed range
from 1981–1989 (Ayers and Gras, 1991).

20◦ N–70◦ N regions, indicating missing marine sources of
particle number, possibly due to ultra-fine sea-spray or an al-
ternative nucleation mechanism.

The low CN bias in the sub-tropics was not found in
Spracklen et al. (2005), which used the single-component
version of GLOMAP-bin, different emissions and ECMWF
analyses from 1997. However, simulated CN profiles with
GLOMAP-bin v1.0 with equivalent aerosol types, emissions
and meteorology do show a similar low bias (although it is
slightly less than here). Revisions to the representation of
diffusion at v1.1 of the model (e.g. Merikanto et al., 2009)
have resulted in improved comparison with these 20◦ S–
20◦ N observations.

To evaluate simulated CCN concentrations, we compare
against a compilation of CCN observations from Spracklen
et al. (2010b). The observations span both hemispheres and
cover both oceanic and continental regions. Model values
are interpolated to the location for the relevant monthly mean
and are based on the supersaturation quoted for the measure-
ment. We use Kohler theory to determine a critical dry ra-
dius corresponding to the instrument supersaturation, with
model CCN being all soluble mode aerosol larger than this
size. A figure showing the comparison is not included here
but the dataset of observed CCN is the same as described in
Spracklen et al. (2010b). Overall, the model compares quite

well (R = 0.68) with the observations (although slightly bi-
ased high on average,b = 0.49), with 63%, 92%, 99% of
model CCN concentrations within a factor of 2, 5 and 10, re-
spectively of the measured values. The model performs bet-
ter for measured CCN concentrations below 1000 cm−3, with
most of the simulated values within a factor of two. For con-
centrations above 1000 cm−3, the model is biased low, with 5
of the observed CCN concentrations exceeding 10 000 cm−3,
whereas simulated CCN at these sites peak at 7000 cm−3.
However, this may be due to the model not resolving urban
scale pollution. As expected from the findings in Korhonen
et al. (2008b), the one Arctic CCN observation is greatly un-
derpredicted by the model.

Of the sites in Spracklen et al. (2010b), only Cape Grim
and Mace Head have observations over the full annual
cycle, and the model comparison against observations is
shown in Fig.22. While CN concentrations at Mace Head
were underestimated by a factor 5–10 throughout the year
(Fig. 19b), CCN concentrations at the site are captured quite
well (b = 0.06), within a factor of two throughout the year
(Fig. 22a). Although the variability in the model CCN is
considerably higher than in the observations, observed local
maxima in January and May are matched by elevated con-
centrations in the model.

www.geosci-model-dev.net/3/519/2010/ Geosci. Model Dev., 3, 519–551, 2010



546 G. W. Mann et al.: GLOMAP-mode description and evaluation

Fig. 23. Simulated vertical profiles of size-resolved number concentration compared to aircraft observations (Petzold et al., 2002) over NE
Germany (13.5–14.5◦ E, 51.5–52.7◦ N) for particles larger than(a) 5 nm,(b) 15 nm, and(c) 120 nm dry diameter (Dp). Values ofb andR

are shown for each size-range from model values interpolated to a 1-km grid to match the observations. The black line shows simulated
annual mean profile and the blue/red lines show minimum/maximum monthly-mean values. For the observations, the asterisks are median
values whereas the dashed/dot-dashed lines are the 25th/75th percentiles as in Lauer et al (2005).

At Cape Grim, a clear seasonal CCN cycle is observed
(Fig. 22b and c), with concentrations from May to October
much lower than in late spring and summer. This feature is
captured quite well by the model (R = 0.68) at 1.2% super-
saturation but only moderately well correlated (R = 0.41) at
0.23% supersaturation. Simulated CCN at 1.2% (Fig.22b)
also capture the general magnitude well (b = 0.2) and are
within the observed inter-annual variability for most of the
year, although a high bias (b = 0.78) is seen at 0.23% super-
saturation. Nevertheless, overall the model skill is good, with
observed and modelled CCN concentrations at both concen-
trations mostly within a factor of two.

Korhonen et al. (2008a) showed that the elevated summer
CCN concentrations at Cape Grim can be explained by en-
hanced DMS seawater concentrations in the Southern Ocean
leading to stronger new particle formation in the free tro-
posphere and subsequent growth and entrainment into the
boundary layer. It should be noted that the modelled CCN
peak in March and April is caused by carbonaceous aerosol
from wildfire activity in South Australia in the GFED emis-
sions for the year 2000.

3.5 Evaluation of simulated size-resolved number
concentrations

The final section of the model evaluation focuses on size-
resolved number concentrations in continental and marine
regions.

During the Lindenberg Aerosol Characterization Exper-
iment (LACE) field campaign in 1998, airborne measure-
ments of size-resolved number concentrations were made
over continental Europe (Petzold et al., 2002). Lauer et
al. (2005) synthesised these measurements into vertical pro-
files of concentrations of particles larger than 5, 15, and
120 nm dry diameter (Dp) and Fig.23 compares GLOMAP-
mode against the median values from this dataset.

At altitudes above 700 hPa, the model annual mean com-
pares very well against the observations for each of the size
ranges. This gives confidence that new particle formation
and growth in the free troposphere is performing well in the
model. Below 700 hPa however, the model underestimates
observed particle concentrations for each size range by a fac-
tor 2 for sizes larger than 120 nm dry diameter, and a fac-
tor 2–10 for particles larger than 5 and 15 nm. On average
however, the low bias is quite small (b = −0.07, −0.37 and
−0.22) with good correlation coefficient (R = 0.86, 0.93, and
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Fig. 24. Simulated marine surface zonal-mean size-resolved number concentration in(a) Aitken mode and(b) accumulation mode, and
(c) geometric mean particle diameters in each mode compared to those in an observed climatology (Heintzenberg et al., 2000). Values of
b andR are shown for the simulated zonal-mean values averaged into 15-degree latitude-ranges to match the observations. The black line
shows simulated annual mean profile (averaged to the 15-degree grid) and the blue/red lines show minimum/maximum monthly-mean values.
Dotted lines show the values on the model latitude grid.

0.996) forDp > 5, 15, and 120 nm, respectively. Spracklen et
al. (2010a) found a similar low bias in the continental bound-
ary layer in the equivalent BHN simulation, and found that
it could be reduced substantially by assuming a finer particle
size for primary emissions or including an empirical bound-
ary layer nucleation mechanism.

To evaluate the model particle size-distribution in marine
regions, we again compare against the observed climatology
of Heintzenberg et al. (2000). Size-resolved aerosol concen-
tration measurements from many field campaigns were com-
bined to produce an observed climatology of number concen-
trations and mean size in the Aitken and accumulation size
ranges. Figure24 compares GLOMAP-mode against this
dataset. In the Northern Hemisphere, the simulated number
concentrations in both modes agree well the observations ex-
cept in polar regions where the model is biased low. The sim-
ulated size of the accumulation mode also agrees very well
with the observations in the Northern Hemisphere although
the Aitken mode is biased large by around 10–20 nm at lati-
tudes>20◦ N. As seen in Fig.17 for CN, simulated number
concentrations in both Aitken and accumulation size ranges
are biased low withb = −0.70 and−0.46, respectively, pos-
sibly related to ultra-fine sea-spray or a missing new particle
formation mechanism. Overall however, the model Aitken

mode size compares favourably to the observations (b = 0.10,
R = 0.54) matching particularly well in the Southern Hemi-
sphere. Simulated accumulation mode size has poor correla-
tion with the observations (R = −0.46) due to a severe high
(large) bias in the Southern Hemisphere.

For a second constraint on simulated marine particle con-
centrations, we compare (Fig.25) against ship-borne ob-
served CCN (defined here as particles larger than 50 nm)
from DMPS measurements over the North Atlantic (Van Din-
genen et al., 1995). The measurements are means over 12–
48 h, whilst the model field is a mean over September and
October (the campaign period). Consequently, the observa-
tions have a much higher variability than the model leading
to only a moderate correlation coefficient of 0.45. However,
on average, the 2-month simulated CCN (>50 nm) compare
well with the observations, the majority being within a fac-
tor 2 of the measured CCN and only a very slight low bias on
average (b = −0.12).

4 Conclusions

We have described and evaluated a new version of the
global size-resolved aerosol microphysics model GLOMAP,
that uses a modal aerosol representation as opposed to the
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Fig. 25. Simulated marine CCN concentrations (particles larger than 50 nm) over the North Atlantic compared to ship-borne observations
from Van Dingenen et al. (1995). Values ofb andR are shown comparing the observations with interpolated values from the model mean
over September and October.

original bin scheme. The treatment of the size-resolved
aerosol microphysical processes (new particle formation, co-
agulation, condensation, cloud-processing) is described in
detail along with the emissions, gas phase chemistry and re-
moval by dry deposition, in-cloud and below-cloud scaveng-
ing. GLOMAP-mode transports multi-component aerosol
masses (sulfate, sea-salt, BC, POM and dust) and number
concentrations in 7 log-normal modes runs giving 26 aerosol
tracers, compared to around 150–200 for an equivalent
aerosol configuration in GLOMAP-bin.

The first part of the model evaluation is against surface ob-
servations of aerosol precursor gases and chemically speci-
ated mass concentrations. Sulphate mass is well represented
in the model on the annual mean, with normalised mean bi-
ases (b) of 0.30, 0.05 and 0.12 and correlation coefficients
(R) of 0.73, 0.98, and 0.96 against surface observations over
Europe, North America, and marine regions. Mass of BC
and POM over North America is underestimated (b = −0.46
and −0.57, respectively) but correlates well spatially with
the observations (R = 0.89 and 0.82). Simulated sea-salt and
dust concentrations perform well in marine regions against
surface observations (b = 0.22 and 0.34;R = 0.13 and 0.95,
respectively).

We have shown simulated global burden, lifetime and frac-
tion of deposition by wet removal of the simulated species,
and find each of them lie close to the median values simulated
by global models participating in the AEROCOM model in-
tercomparison exercise. We have also shown the general be-
haviour of the model by presenting surface maps and zonal
mean latitude-altitude plots of particle concentrations and ge-
ometric mean radii in each of the seven modes.

The second part of the model evaluation has examined
simulated surface CN, CCN and size-resolved number con-
centrations in marine and continental regions and also against
profiles from aircraft observations. Surface CN concentra-
tions compare reasonably well in free troposphere and ma-

rine sites, but are strongly underestimated at continental and
coastal sites related to underestimation of either primary
particle emissions or nucleation events. Vertical CN pro-
files over the Pacific ocean are captured quite well (R =

0.71−0.92) with maximum in the free troposphere due to
binary nucleation, although a low bias is evident (b = −0.15
to −0.57). The model compares well (b = 0.49, R = 0.68)
against a compilation of CCN observations covering a range
of environments and also captures vertical profiles of size-
resolved particle concentrations over Europe (b = −0.37 to
−0.07,R = 0.86−0.95) although a low bias of around a fac-
tor 2–5 is seen in boundary layer number concentrations.

Overall, the evaluation finds the simplified version of
GLOMAP performs well against the observation datasets,
but two main deficiencies are found. Simulated continental
boundary layer number concentrations are low, likely caused
by boundary layer nucleation and too large primary particle
size assumed in the model. Particle concentrations in the
Southern Hemisphere marine boundary layer are underpre-
dicted, with a high bias in simulated accumulation mode size,
likely due to an underprediction of ultra-fine sea-spray emis-
sions. These model deficiencies will be addressed in the next
revision of the model and the performance improvements
measured against the benchmark datasets assembled in this
paper. A separate paper to be submitted soon (Mann et al.,
2010) will re-examine the performance of GLOMAP-mode
with the deficiencies addressed and using the more sophisti-
cated GLOMAP-bin scheme as a global benchmark against
which the impact of the simplified aerosol dynamics will be
assessed.
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