
Database Systems Journal vol. 1, no. 1/2010 9

Database Access Through Java Technologies

Ion LUNGU, Nicolae MERCIOIU

 Faculty of Cybernetics, Statistics and Economic Informatics,

Academy of Economic Studies, Bucharest, Romania,

ion.lungu@ie.ase.ro , nicu.mercioiu@gmail.com

As a high level development environment, the Java technologies offer support to the

development of distributed applications, independent of the platform, providing a robust set of

methods to access the databases, used to create software components on the server side, as

well as on the client side. Analyzing the evolution of Java tools to access data, we notice that

these tools evolved from simple methods that permitted the queries, the insertion, the update

and the deletion of the data to advanced implementations such as distributed transactions,

cursors and batch files.

The client-server architectures allows through JDBC (the Java Database Connectivity) the

execution of SQL (Structured Query Language) instructions and the manipulation of the

results in an independent and consistent manner. The JDBC API (Application Programming

Interface) creates the level of abstractization needed to allow the call of SQL queries to any

DBMS (Database Management System). In JDBC the native driver and the ODBC (Open

Database Connectivity)-JDBC bridge and the classes and interfaces of the JDBC API will be

described.

The four steps needed to build a JDBC driven application are presented briefly,

emphasizing on the way each step has to be accomplished and the expected results. In each

step there are evaluations on the characteristics of the database systems and the way the

JDBC programming interface adapts to each one. The data types provided by SQL2 and

SQL3 standards are analyzed by comparison with the Java data types, emphasizing on the

discrepancies between those and the SQL types, but also the methods that allow the

conversion between different types of data through the methods of the ResultSet object.

Next, starting from the metadata role and studying the Java programming interfaces that

allow the query of result sets, we will describe the advanced features of the data mining with

JDBC. As alternative to result sets, the Rowsets add new functionalities that enhance the

flexibility of the applications. These are analyzed and the approach is described.

Keywords: Java, JDBC, Database access, SQL

Introduction

Java plays a dominant role in client-

server programming, in the presentation

layer of the websites, but also in the

business logic on the applications servers.

A large contributor to this success is

attributed to the ability to interact with

data. Starting from these advantages, a

description of the JDBC (Java Database

Connectivity) was needed, also the way

these instruments can be used,

emphasizing on the new features the latest

version have to offer.

The standardization of SQL (Structured

Query Language) did not block several

DBMS creators to develop proprietary

extensions to SQL, rezulting in the creation

of different interfaces for data

manipulation. However, JDBC technology

offers a consistent interface for

manipulating data, regardless of the format

in which the data is stored (fig. 1).

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26960517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

10 Database Access through Java Technologies

Fig. 1. The role of Java technologies to access data at enterprise level.

Derived from [4] , pag. 7

2. The Evolution of Data Access Java

Instruments

When Sun Microsystems released the

first JDBC API 1.0 (Application

Programming Interface) in 1997, it had

several shortcomings, for instance the

interface to access SQL databases. JDBC

2.0 arrived with new features such as

cursors and batch files. Also, the Optional

Package, javax.sql as well as other

advanced features such as distributed

transactions or the RowSet interface

arrived.

 JDBC 3.0 brought transactional

intermediate saving points and support for

SQL99 types of data. The optional

packages have been included in the Java

1.4 distribution. JDBC 4.0 provides

support for SQL 2003 but also extended

support for CLOB (Character Large

OBject) and BLOB (Binary Large OBject).

Currently, the Java API includes a

JDBC-ODBC driver (Open Database

Connectivity-Java Database Connectivity)

that allows the JDBC driver access to a

native system database, when an ODBC

native system driver exists for that

database. The Java API

does not include drivers for all

databases. The existence of a common

programming interface brings several

benefits. Otherwise, if any database creator

would built its own API, that would lead to

thousands of ways of programming

databases, so any interface would have to

be known. Luckily the software industry

has chosen the JDBC standard, easying the

work of developers, and allowing the

creation of robust and scalable

applications.

3. The Architecture

In client-server architecture the

databases reside on the same or on a

different machine on which the client

connects to the intranet or Internet. JDBC

allows to use SQL instructions and to

process results of the queries in an

independent and consistent manner. Using

a high level of abstractization represented

by the JDBC API, the situation of the

programmer to handle different SQL calls

to a certain DBMS (Database Management

System) is avoided. (fig. 2).

Database Systems Journal vol. 1, no. 1/2010 11

Fig. 2. The role of JDBC in accessing

data –Derived from [3] , pag. 442

In order to be able to connect to a

certain DBMS we only need to switch the

driver, operation that can be done

dynamically, even when the application

runs, without the recompilation of the

application.

The way those drivers are built is

standardized through the JDBC

specifications which describes the standard

interfaces that are to be implemented.

During time an evolution of those

specifications occured, and the

functionalities have been enhanced without

compromising the compatibility with

previous versions of the specifications.

Generally, the JDBC specifications

describe a series of interfaces that the

people who develop the drivers should

implement. Some databases do not allow

stored procedures or other functionalities

due to non-standard development of

databases in general. Therefore, the JDBC

specifications that have emerged from time

forced the drivers creators to implement a

reduced set of interfaces, other things

remaining optional, without restricting the

real posibilities of existing databases.

JDBC provides object-oriented access

to databases through the definition of

classes and interfaces that cover several

abstract concepts. Also, the JDBC standard

defines a series of interfaces that are to be

implemented by the drivers creators in

order to give the developers informations

about the queried database, the DBMS

used and so on. Those intels are also

known as metadata, which means „data

about data”.

JDBC programming covers many

aspects: client-server communication,

drivers, APIs, data types and SQL

instructions. The JDBC API releaves much

of the burden needed to create applications

with databases. It comprises many simple

and intuitive components that can work for

the programmer. In order to create an

application one just need to assemble these

components. Programming JDBC is also a

very methodical way. 90% of the JDBC

application uses the same objects and

methods.

The first step is to obtain, install and

configure the JDBC driver. Afterwards the

needed component can be utilized in all the

JDBC applications. After that compiling

takes place, running the application and

solving the eventual issues.

JDBC is an API that encapsulates calls

on two levels needed to access database

data and interacts through a common

interface. JDK (Java Development Kit) and

JRE (Java Runtime Environment) both

contain the standard API, the interfaces

and classes being contained in two major

packages java.sql and javax.sql. The first

package includes standard components,

whilst the second includes enterprise level

components.

The entire communication with the

database occurs through the JDBC drivers.

This driver converts the SQL instructions

into a database server comprehensible

format, using the correct networking

protocols. JDBC abstracts the specific

communication with the database. (fig. 3).

Fig. 3. The relationship between the

application-JDBC-database

Derived from [4] , pag. 31

12 Database Access through Java Technologies

The Java SDK includes the ODBC-

JDBC driver, thus allowing the access to

ODBC drivers to database. Instead of

accessing directly the database, JDBC

“talks” to the ODBC drivers, which, in its

turn communicates with the database.

Fig. 4. The relationship application-JDBC-ODBC-database

Derived from [4] , pag. 31

Installing the JDBC driver is similar to

installing any other Java API. You only

have to add the path of the driver in the

CLASSPATH variable when compiling

and running the application. When using

the ODBC-JDBC bridge driver, this step is

not required, however other additional

settings have to be done.

First of all, the application should be

able to communicate with the database.

Afterwards, the application has to be able

to establish connections with the database

to create a communcation channel in order

to send SQL commands and retrieve

results. Finallz, the application has to have

a mechanism to deal with the errors. In

order to accomplish all these things, the

JDBC API provides the following

interfaces and classes:

- Driver – this interface controls the

communication with the database server.

Rarely one should need to interact with

objects of the Driver type. Given this, the

DriverManager objects can be used

instead. These have an abstract

representation of the details associated to

the work with Driver objects.

- Connection – instantiating objects of

this interface represents the physical

connection to the database. The result set

and tranzactions can be controlled using

Connection objects.

- Statement – objects created with this

interface in order to send SQL commands

to the database. Some derived interfaces

accept supplemental parameters in order to

execute stored procedures.

- ResultSet – these objects contain the

retrieved data from the database after the

query has been performed using Statement

object. These objects allow the browsing of

the data like an iterator.

- SQLException – a class that traps any

error that is encountered in the application

Any Java application that uses

databases works directly or indirectly with

those four components described earlier.

4. Steps in Writing a Jdbc Application

Practically, the steps that are to be

followed when writing a JDBC application

are:

1. The registration of the JDBC driver

with Class.forName().newInstance().

2. The connection to the database is

open with

DriverManager.getConnection().

3. A Statement type object is created in

order to send SQL commands using the

method Connection.createStatement() and

afterwards execute(), executeUpdate() or

executeQuery()

4. The connection is closed using the

method close().

The first step that is to be made in order

to use a JDBC driver is the exact

determination of the class for the driver

provided by the creator. Usually, the

producers respect the naming conventions

of the packages when naming the drivers.

The java.sql.Driver interface and the

java.sql.DriverManager class are the tools

to work with drivers. Registering a driver

means the registration with a

Database Systems Journal vol. 1, no. 1/2010 13

DriverManager object. There are several

techniques to register JDBC drivers:

- Class.forName(String

driverName).newInstance()

- DriverManager.registerDriver(Driver

driverName)

- jdbc.drivers property

In JDBC, an instance object of the type

Connection represents a physical

connection to the database. The method

Driver.connect() can be used, being

prefered though the getConnection()

method of the DriverManager class

because it allows the choose of the right

driver. Also, the method can be overriden

in order to allow opening of different

menas o open connections. JDBC needs a

special name system to be used when

connecting to a database. The general

format is jdbc:<subprotocol>:<subname>

where <subprotocol> represents the

specific protocol of the producer and

<subname> is the source of the data (the

logical name of the database we’re trying

to connect to).

To open connections, the

getConnection() from the DriverManager

class returns a valid Connection type

object. If the method fails, DriverManger

throws a SQLException containing the

specific database error.

Closing the connection means the

mandatory usage of the close() method.

The method Connection.isClosed() does

not check whether the connection is stil

open or closed, but returns true if the

method close() has been used. The best

way to check a connection is to try a JDBC

operation and the trap of the exception to

determine whether the connection is still

valid.

For the beginning we must be sure that

the client’s session has been closed on the

database server. Some databases cleanse

the remains if the sessions terminate

unexpectadely. Then, the database sees that

the user’s session failed and executes a

rollback to all the changes between the

execution of the programme (for instance

sessions that ended in the middle of the

tranzaction). Explicitly closing the

connections ensures that the client-server

medium has been cleansed completely and

makes the database administrator happier,

conserving the resources used by the

DBMS, for instance free licenses used on

open sessions. Also RAM and CPU is

spared on the server on which the database

resides.

We can interact with the database in

two ways. This way we can send a SQL

query to obtain data about the database

schema or to “learn” the values stored in

some database fields, all these taking place

at runtime. In that case we would need to

create parametric JDBC or stored

procedures. In this case we need to create.

Regardless of what we want to do, the

Statement, PreparedStatement and

CallableStatement object provides the

sufficient tools in order to attain our goals.

The corresponding interfaces define

models and properties that allow sending

commands and receiving data from and to

the data database, as well as methods that

help creating a bridge between different

types of data defined in Java and specific

to each type of SQL database types. For

instance, the data types that have NULL

values in the database in contrast with the

int type in Java, or the different

representation of date and time data

between Java and SQL-92. There are

methods that allow conversion of data

from Java into JDBC. Statement objects

offer DBMS interaction. They allow all the

types of DML (Data Manipulation

Language), DDL (Data Definition

Language) commands to be executed, as

well as other specific commands, batches

and tranzaction management commands.

The three methods of the Statement

objects are execute(), executeUpdate() and

executeQuery() that allow sending

commands to the database and retrieving

results. Execute() processes DML

instructuions, or DML or other specific

database commands. It can return one or

more ResultSet type objects. The method

has flexibility, but the processing of the

14 Database Access through Java Technologies

results is a little bit difficult.

executeUpdate() is used for INSERT,

UPDATE, DELETE or DDL instructions

and returns the number of records affected

by the sent command. executeQuery()

queries the database and returns a result set

(a ResultSet object).

A ResultSet type object contains data

returned by the SQL queries, run with one

of the methods: executeQuery() sau

execute(). Given the fact that many

databases use a query language that have

supplemental commands other than the

DML or DDL, Java has support for a

special type of commands format– JDBC

SQL escape that allows access to specific

functions of the database. When used this

feature, the driver translates the commands

in the specific format of the database. The

execute() method is the most flexible way

to interact with the database because it cas

process result sets or number of records.

The disadvantage here is that when used

you cannot anticipate the type of the results

returned – sets of results, number of

records, or both.

The next figure shows the way the

results returned by the execute() method

are processed.

The interface set Statement can be used

to process batches, i.e. sending multiple

DML instructions (executed as one

command) in a single call, that allows

using a tranzactional control over the

database. This control allows, for instance,

the return to the initial state of all changes

if one of the change failed, and by that

insuring integrity and database

consistency.

The tranzactions allow control of

whether and when the changes are applied

to the database. They allow the

representation of a single instruction or a

group of SQL instructions to be treated as

a single logical unit, and if just one

instruction within fails, the whole

tranzaction fails. Tranzactions present both

advantages and disadvantages. One

advantage is that they allow consistency

and integrity of the data. The disadvantage

is that the blocking system for each

database is different from database to

database and the effect of initial blocking

of the data initiated by the tranzaction can

be sometimes surprising.

Fig. 5. The process of returning results

from the execute() method - [4] , pag. 68

With JDBC tranzactions can be

administered through the Connection type

objects; for instance using the auto-commit

module and the usage of rollback()

method. A saving point is actually a logical

tranzaction rollback point within the

tranzaction. If an error occurs between the

last saving point, the rollback method can

be used to restablish the state of the data at

that saving point.

The PreparedStatement interface offers

some advantages over the classic Statement

especially because of the feature of adding

Database Systems Journal vol. 1, no. 1/2010 15

parameters dynamically. Still, not all the

databases support this feature. Also, all the

commands of this type remain in memory

in this open session or until the

PreparedStatement object is closed. This

PreparedStatement allows input and output

stream, allowing us to store files in the

database as values.

The CallableStatement object allows us

to execute stored procedures in the

database from the application. These

objects utilize parameters as OUT or

INOUT. The result sets are nothing more

than rows and columns obtained from the

ResultSet objects, creating a logical view

of the data from the database. JDBC

provides a class that implements the

ResultSet interface that offers method to

allow data interactivity.

Although a result set contains multiple

records, at a time it is possible to get

access to only one record, the “active”

record. Accessing this record means

moving the cursor with specific methods.

Populating a set of results, the cursor

initially is positioned before the first

record. Obviously, in order to access data,

the cursor has to be moved onto this first

record. The set of records can be browsed

forwards and backwards, also beyond the

last records. Depending on the type of the

result set, it is possible or not to go back to

a previous record. If not possible, in order

to access data again it is necessary to

recreate the result set by executing a SQL

query.

There are several types of results:

The predefined type Standard that

allows only sequential and forward browse

of the set. The data cannot be updated. It is

useable to populate a simple list or other

simple operations.

The second type would be Scrollable,

which allows the browsing of the results

forth and back and jumping to a specific

records. This one reflects the changes in

the database, so it can be used in real-time

applications.

The third type would be Updateable

that allows the update of the result set

without additional SQL instructions.

The Scrollable and Updateable must be

used only when really needed as they can

affect the application’s performance.

5. Main Types of Data

Generally, the databases support a

limited types of data. If SQL2 (SQL92)

offered support for limited standard types,

SQL3 allows customized built types, the

dimension of data that can be accomodated

in a column is now bigger than 1GB of

binary or character data. Also, SQL offers

complex object support in business

modelling and multimedia applications as

well as object identifiers, abstract data and

inheritance. However, not all the databases

support SQL3 standard.

There are discrepancies between Java

types and known database types, that

requires the conversion of those Java types

into SQL types and viceversa. These

conversions are made through the

getXXX(), setXXX() and updateXXX()

methods that belong to the ResultSet

object. It is important to know that every

JDBC data type has a corresponding

recommended Java type. Still, these

methods are not very strict, they allow

conversions from more precise into more

loose types of data and even into other

types (for instance: getString()).

Given the fact that primite Java types do

not have to be defined, they store directly

information, remaining constant from one

application to another and from one virtual

machine to another. Because primitive

objects cannot be instantiated, Java offers

the wrapper class that allows treating the

primitive values as objects.

In SQL, NULL represents a data with

unknown or undefined value. In Java, this

NULL can present a problem, especially

for numeric data types. For instance, the

integer type from Java cannot have NULL

values. Using the ResultSet.getInt() method

JDBC will translate this NULL value into

16 Database Access through Java Technologies

0, which untreated can lead to an erroneous

interpretation of the data. Objects, on the

other hand, can have NULL values in Java.

The ResultSet.wasNull() methods

determines whether the last column read

from the database returned a NULL value.

Data returned from SQL queries must

be formatted as JDBC types. The

conversion to Java types must be made

before assignation to variables.

SQL UDTs (User-Defined Types)

allows the developers to create their own

definition of data types in the database.

These are exlusively defined with SQL

instructions, but JDBC offers support for

UDT in Java applications. The custom

types are materialized on the client, so the

access is not directly to the value, but

through an intermediate LOCATOR that

references a value in the database. The

UDTs allow the usage of large data and the

way those can be used will be presented

later on.

The DISTINCT data type allows the

assignation of the new custom data type

with another type of data, in a similar

manner classes are extended in Java.

STRUCT is a data type built that has

several members, named attributes, each of

them carrying different types of data. A

Java class without methods is an analogical

representation of a STRUCT. In SQL3

STRUCT types of data can be constructed,

each being able to hold any type of data,

including other STRUCT.
Example: Declaring a STRUCT:

CREATE TYPE Sal_DATA(

CNP Number(9),

Nume VARCHAR(20),

Prenume VARCHAR(20),

Salariu NUMBER(9,2))

JDBC allows the creation of Java

classes to mirror UDTs on the database

servers. The process of creation and usage

of a Java class is called mapping of types.

The advantages are: control of access

through classes, data protection, the

possibility to add new methods and

attributes.

6. Data Mining With Jdbc

Understanding the concept of data

mining implies the knowledge of the role

of the metadata.

These are data about data. In databases,

metadata represents information about data

and structure and applications that deal

with data. An example would be tables and

attributes of the columns.

The JDBC API allows the descovery of

the metadate about a database through the

query of the result set using the

DatabaseMetaData and

ResultSetMetaData interfaces. The first

one allows gathering information about the

database attributes and allows taking

decision at runtime upon these

information. The second interface allows

gathering the attributes such as number of

columns, name and type of data of the

result set. This information can be used, for

instance, to populate a report with the

name of the column and to determine

which kind of getXXX() method should be

used.

A ResultSetMetaData object can be

used to create a generic method for

processing result sets. This way, the types

of the data from the column of the result

set and the correct version of getXXX()

methods to obtain data.

DatabaseMetaData allows the creation of

tools which database administrators can

use to inspect databases, the structure of

the tables and the users schemas.

JDBC 3.0 defines a new interface for

metadata - ParameterMetaData. This one

describes the number, type and properties

of the parameters used in prepared

statements.

The ResultSetMetaData provides

information about the columns in the result

set, such as number and type. The interface

does not provide information about the

number of records in the set of results.

The DatabaseMetaData interface is

useful when inspecting the structure of the

database. Creating a DatabaseMetaData

object can be done by using the

getMetaData() method of the Connection

object. A DatabaseMetaData object has

Database Systems Journal vol. 1, no. 1/2010 17

many methods and properties, all those can

be grouped in two categories: refering to

the characteristics of the database, or

refering to the structure of the database.

The first category of methods and

properties answers to questions such as:

- Does the database support batches?

- What is the user which I am connected to

the database?

- What kind of SQL data types does the

database support?

- What are the SQL keywords supported

by the database?

The methods from this category refer to

information about the database return

String results; the ones that offer

information about database limitations

return int.

The methods from the second category

return a ResultSet object which depends on

the method used to query the database. The

majority of the methods are simple and

allow the usage of replacement wildcards:

“_” is used to replace a single character,

while “%” can be used to replace zero, one

or more characters.

Information pertaining to the tables and

columns can be obtained only if sufficient

access rights are given. It is recommended

to use pattern of strings to avoid obtaining

a result set that is too big and unusable.

The getUDT() method offers information

about the UDTs in the database.

getPrimaryKeys() and getImportedKeys()

provide information about the primary key

and the foreign keys. The getProcedures()

and getProcedureColumns() methods

provide information about the stored

procedures in the database.

7. Rowsets

Rowsets represent an alternative to

result sets. The RowSet interface extends

the ResultSet offering the same

functionalities for viewing and

manipulating data, but adds among

features, functionalities that enhance the

flexibility and the power of the application.

Rowsets implement the JavaBean

architecture, can operate without a

coninuous connection to the data source

and can offer tabulary data about any data

source being in constrast with result sets

that can only work with databases.

Extending the ResultSet interface, the

RowSet allows access to the same methods

and properties. A RowSet object can obtain

data from a source in many other ways.

The main differences betwessn these two

interfaces are:

- The RowSet interface supports the

JavaBean component model, allowing the

developers to use the visual tools for

Beans. RowSet can inform the “listeners”

about events that appear.

- The row sets can operate connected or

disconnected. The first way is similar to

the result sets, but the disconnected stores

the rows and the columns in memory,

allowing the manipulaton of data in this

manner.

Because the RowSet is in the javax.sql

package, Sun Microsystems does not

provide a standard implementation. Still, in

JDBC 2.0 there are some implementations

like: JdbcRowSet, CachedRowSet and

WebRowSet.

The development of RowSet object

based applications implies a different

technique than the one with standard

components. Mainly we need a single

object to implement the RowSet interface.

The steps to be pursuit when using a row

set are:

1. Registering the JDBC driver.

2. Setting the connection parameters.

3. Populating the row set.

Because the RowSet object supports the

JavaBean model it is impossible to access

the properties of the object directly, which

requires the usage of the methods get and

set to configure the properties of the class

that implements the RowSet interface.

RowSet objects can generate JavaBean

events and allow the notification of other

components the events that appear in the

RowSet object. A row set, acts differently

than a result set, because it automatically

18 Database Access through Java Technologies

connects to the data source when it has to

retrieve or update data.

Both DDL and DML commands can be

used with RowSet objects but the execution

is different than in standard JDBC. First of

all, it is not necessary to instantiate

Statement, PreparedStatement or

CallableStatement objects to execute SQL

instructions. The object determines if there

is a parametrized query or a stored

procedure to be executed.

The retrieve of the data from the row

sets is done with the getXXX() methods,

where XXX refers to the Java type of data

in which we store the value.

Since the RowSet interface extends the

ResultSet interface, for browsing the rows

the same methods exposed by the ResultSet

can be used. Also, the properties can be

controlled with scrollable and updateable

by the setType() method.

After usage, the RowSet object must be

closed in order to free the database

resources used. The RowSet.close() method

frees all the resources of the database.

Closing the object is critical when this is of

JdbcRowSet type, because this object

maintains an open connection to the server

once the execute() method is called.

Objects of type CachedRowSet and

WebRowSet connect to the data source

when needed. However to eliminate the

possibility of unwanted closing by the

garbage collector, they must be explicitly

closed.

Using a JdbcRowSet object is simple

because it is a JavaBean component. Once

the row set is populated, the methods

inherited from ResultSet can be used to

work on data. This object does not require

a JDBC driver, or an open connection to

the database.

The CachedRowSet object provides a

disconnected and serializable

implementation of the RowSet interface.

Once the object is populated, it can be

made serialized so we can share

information with other users. It is not

recommended for large amounts of data

since it can exhaust the system memory.

The WebRowSet can work independent

and is able to serialize data. This object is

able to generate an XML (eXtensible

Markup Language) file which can be used

as it is or use an XML file to repopulate

itself. Having a row set represented as an

XML file, the data can be presented on

various devices and browsers. The

WebRowSet class works great with HTTP

(HyperText Transfer Protocol). The client

and the server exchange XML documents

that represent WebRowSet objects. The

construction of such an object is not trivial,

but the browsing and he manipulation of

the data set is done in a similat manner to

the other types of objects presented earlier.

Conclusions

The designers of IT systems choose the

combination of Java and JDBC because it

allows the disemination of the information

contained within databases in a simple and

economic way. The operations within the

organization can go on by utilizing existing

databases even if these are used on

different operating systems. The time used

to develop new applications is shorter and

the installation and versioning control is

simplified. All these advantages

determined us to try to describe in a non-

exhaustive manner the concepts, the

methods and the techniques related to

JDBC technology to access databases,

offered by the Java platform from Sun

Microsystems.

References

[1] Leţia T., Programare avansată în Java,

Editura Albastră, 2002;

[2] Patel P., Java Database Programming

with JDBC, The Coriolis Group, 1996;

[3] Tanasă Ş., Olaru C., Andrei Ş., Java de

la 0 la expert, Polirom, 2003;

[4] Thomas T., Java Data Access JDBC,

JNDI, and JAXP, M&T Books, 2002;

[5] Văduva C., Programare în Java,

Editura Albastră, 2002;

[6] Sun Microsystems, JDBC Data Access

API, http://java.sun.com/products/jdbc;

