Lech Adamus, Edyta Leśniak, Beata Orchel

3-BIPLACEMENT OF BIPARTITE GRAPHS

Abstract

Let $G=(L, R ; E)$ be a bipartite graph with color classes L and R and edge set E. A set of two bijections $\left\{\varphi_{1}, \varphi_{2}\right\}, \varphi_{1}, \varphi_{2}: L \cup R \rightarrow L \cup R$, is said to be a 3-biplacement of G if $\varphi_{1}(L)=\varphi_{2}(L)=L$ and $E \cap \varphi_{1}^{*}(E)=\emptyset, E \cap \varphi_{2}^{*}(E)=\emptyset, \varphi_{1}^{*}(E) \cap \varphi_{2}^{*}(E)=\emptyset$, where $\varphi_{1}^{*}, \varphi_{2}^{*}$ are the maps defined on E, induced by φ_{1}, φ_{2}, respectively.

We prove that if $|L|=p,|R|=q, 3 \leq p \leq q$, then every graph $G=(L, R ; E)$ of size at most p has a 3 -biplacement.

Keywords: bipartite graph, packing of graphs, placement, biplacement.

Mathematics Subject Classification: 05C70.

1. INTRODUCTION

1.1. BASIC DEFINITIONS

Throughout the paper we will only consider finite, undirected graphs without loops and multiple edges.

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The cardinality of the set $V(G)$ is called the order of G and is denoted by $|G|$, while the cardinality of the edge set $E(G)$ is the size of G, denoted by $\|G\|$.

For a vertex $x \in V(G), N(x, G)$ denotes the set of its neighbors in G. The degree $d(x, G)$ of the vertex x in G is the cardinality of the set $N(x, G)$. A vertex x of G is said to be pendent (resp. isolated) if $d(x, G)=1$ (resp. $d(x, G)=0$).

A set of pairwise non-incident edges in a graph G is called a matching.
Let G_{1} and G_{2} be vertex disjoint graphs. The union $G=G_{1} \cup G_{2}$ is a graph with $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. If a graph G is the union of k disjoint copies of a graph H, then we write $G=k H$.

Let $G=(L, R ; E)$ be a bipartite graph with vertex set $V(G)=L \cup R$ and edge set $E(G)=E$. We denote then $L(G)=L$ and $R(G)=R$, and we call these sets the left and right set of bipartition of the vertex set of G.
We denote by $\Delta_{L}(G)\left(\right.$ resp. $\left.\Delta_{R}(G)\right)$ the maximum vertex degree in the set L (resp. R).

If $|L|=p$ and $|R|=q$, we say that G is a (p, q)-bipartite graph. $K_{p, q}$ stands for the complete (p, q)-bipartite graph. $\bar{G}^{b i p}$ is the complement of G in $K_{p, q}$. Thus $\bar{G}^{b i p}=\left(L, R ; E^{\prime}\right)$, where E^{\prime} consists of all the edges joining L with R which are not in E.

1.2. 2-PLACEMENT AND 3-PLACEMENT OF SIMPLE GRAPHS

Definition 1. Let G be a simple graph. We say that G is 2-placeable if there exists a bijection $\varphi: V(G) \rightarrow V(G)$ such that

$$
\text { if } x y \in E(G), \quad \text { then } \varphi(x) \varphi(y) \notin E(G) .
$$

The bijection φ will be called a 2-placement of G.
The study of placing problems was initiated by a series of papers published in the late 1970s. The following theorem, proved by Sauer and Spencer [3], was the first result in this area.

Theorem A. Let G be a graph of order n. If $\|G\| \leq n-2$, then G is 2-placeable.
This theorem can be generalized in a great variety of ways. Woźniak and Wojda [5] showed that under the assumptions of Theorem A there exists a 3-placement of a given graph G, unless G is an exception (see Theorem B below).

A 3-placement of a given graph can be defined analogously to a 2-placement.
Definition 2. Let G be a simple graph of order n. A graph G is 3-placeable if there exist bijections $\varphi_{1}, \varphi_{2}: V(G) \rightarrow V(G)$ such that $E(G) \cap \varphi_{1}^{*}(E(G))=\emptyset$, $E(G) \cap \varphi_{2}^{*}(E(G))=\emptyset, \varphi_{1}^{*}(E(G)) \cap \varphi_{2}^{*}(E(G))=\emptyset$, where the map φ_{i}^{*} defined on $E(G)$ is induced by $\varphi_{i}(i=1,2)$, that is $\varphi_{i}^{*}(x y)=\varphi_{i}(x) \varphi_{i}(y)$.
The set $\left\{\varphi_{1}, \varphi_{2}\right\}$ is called a 3-placement of G.
Woźniak and Wojda proved the following theorem.
Theorem B. Let G be a simple graph of order n. If $\|G\| \leq n-2$, then either G is 3-placeable or G is isomorphic to $K_{3} \cup 2 K_{1}$ or to $K_{4} \cup 4 K_{1}$.

Exhaustive surveys of the results concerning the problems of placing of simple graphs are given in [1, Chapter 8] and [4]. However, we would like to focus on placements of bipartite graphs, the so-called biplacements, defined by Fouquet and Wojda [2] in 1993.

1.3. 2-BIPLACEMENT AND 3-BIPLACEMENT OF BIPARTITE GRAPHS

Definition 3. Let $G=(L, R ; E)$ be a bipartite graph. We say that G is 2-biplaceable if there exists a bijection $\varphi: L \cup R \rightarrow L \cup R$ such that $\varphi(L)=L$ and

$$
\text { if } x y \in E \text {, then } \varphi(x) \varphi(y) \notin E \text {. }
$$

The bijection φ is called a 2-biplacement of G.

Fouquet and Wojda [2] proved the following theorem, which is an analogue of Theorem A for bipartite graphs.

Theorem C. Let $G=(L, R ; E)$ be a (p, q)-bipartite graph such that either $p \geq 3$, $q \geq 3$ and $\|G\| \leq p+q-3$, or $2=p \leq q$ and $\|G\| \leq p+q-2$. Then G is 2-biplaceable.

The aim of this paper is to find a sufficient condition for a bipartite graph to be 3-biplaceable; in other words, find an analogue of Theorem B for bipartite graphs.

By analogy to a 2-biplacement we consider a 3-biplacement of a bipartite graph.
Let $G=(L, R ; E)$ be a (p, q)-bipartite graph. Then G can be considered as a subgraph of the complete bipartite graph $K_{p, q}$.

Definition 4. The graph $G=(L, R ; E)$ is 3-biplaceable if there exist bijections $\varphi_{1}, \varphi_{2}: L \cup R \rightarrow L \cup R$ such that $\varphi_{1}(L)=\varphi_{2}(L)=L$ and $E \cap \varphi_{1}^{*}(E)=\emptyset$, $E \cap \varphi_{2}^{*}(E)=\emptyset, \varphi_{1}^{*}(E) \cap \varphi_{2}^{*}(E)=\emptyset$, where the maps $\varphi_{1}^{*}, \varphi_{2}^{*}: E \rightarrow E\left(K_{p, q}\right)$ are induced by φ_{1}, φ_{2}, respectively (i.e., $\varphi_{i}^{*}(x y)=\varphi_{i}(x) \varphi_{i}(y)$ for $\left.i=1,2\right)$. The set $\left\{\varphi_{1}, \varphi_{2}\right\}$ is called a 3-biplacement of G.

It is easy to see that a (p, q)-bipartite graph G is 3 -biplaceable if and only if we can find two edge-disjoint copies of G, say G_{r} and G_{b}, in the graph $\bar{G}^{b i p}$. We then call the edges of G black, the edges of G_{r} red, the edges of G_{b} blue, and there is $L(G)=$ $L\left(G_{r}\right)=L\left(G_{b}\right), R(G)=R\left(G_{r}\right)=R\left(G_{b}\right), E(G) \cap E\left(G_{r}\right)=\emptyset, E(G) \cap E\left(G_{b}\right)=\emptyset$, $E\left(G_{r}\right) \cap E\left(G_{b}\right)=\emptyset$.

Now we are ready to formulate the main result of this paper.

2. MAIN RESULT

Let G_{1} denote a (2,3)-bipartite graph such that $\left\|G_{1}\right\|=2$ and $\Delta_{L}\left(G_{1}\right)=2$.
Our goal is to prove the following theorem.
Theorem 1. Let $G=(L, R ; E)$ be a (p, q)-bipartite graph, $p \leq q$ and $q \geq 3$. If $\|G\| \leq p$ then either G is 3-biplaceable or G is isomorphic to G_{1}.

Proof. We will proceed by induction on $p+q$.
The assertion is easy to check for $p \leq 3$ and $q=3$ (see Fig. 1), and hence for all $q \geq 3$.

Now assume that $p+q \geq 8, q \geq p \geq 4$, and the theorem holds for all integers $p^{\prime} \geq 1, q^{\prime} \geq 3$, such that $p^{\prime} \leq q^{\prime}$ and $p^{\prime}+q^{\prime}<p+q$.

Let $G=(L, R ; E)$ be a (p, q)-bipartite graph with p and q as above. Without loss of generality, we can assume that $\|G\|=p$. We will show that G is 3-biplaceable.

In the proof, we shall consider three cases.
Case 1. $\Delta_{L}(G) \geq 3$.
Let $v \in L$ be a vertex such that $d(v, G)=\Delta_{L}(G)$. It is evident that there are at least two isolated vertices, say x and y, in L.

We define a new graph $G^{\prime}:=G \backslash\{v, x, y\} . G^{\prime}$ is $\left(p^{\prime}, q^{\prime}\right)$-bipartite, where $p^{\prime}=$ $p-3 \geq 1, q^{\prime}=q \geq 4, p^{\prime} \leq q^{\prime}$. Thus $G^{\prime} \neq G_{1}$ and $\left\|G^{\prime}\right\| \leq p-3=p^{\prime}$. Hence, by the inductive hypothesis, G^{\prime} is 3 -biplaceable. Let $\left\{\varphi_{1}^{\prime}, \varphi_{2}^{\prime}\right\}$ be a 3 -biplacement of G^{\prime}.
We define a 3 -biplacement $\left\{\varphi_{1}, \varphi_{2}\right\}$ of G as follows:
$\varphi_{1}(v)=x, \varphi_{1}(x)=v, \varphi_{1}(y)=y, \varphi_{1}(w)=\varphi_{1}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$,
$\varphi_{2}(v)=y, \varphi_{2}(x)=x, \varphi_{2}(y)=v, \varphi_{2}(w)=\varphi_{2}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$.

Case 2. $\Delta_{L}(G)=2$.
Pick $v \in L$ with $d(v, G)=2$. We need to consider several subcases.
Subcase 2.1. There is a pendent vertex in L, say x, such that $N(x, G) \cap N(v, G)=\emptyset$.
Let $N(v, G)=\left\{w_{1}, w_{2}\right\} \subset R, N(x, G)=\left\{w_{3}\right\} \subset R$, and let y be an isolated vertex in L. We have to consider three subcases depending on the degrees of the vertices w_{1}, w_{2}, w_{3}.

Subcase 2.1.1. $d\left(w_{3}, G\right)=1$.
Put $G^{\prime}:=G \backslash\left\{v, x, y, w_{3}\right\} . G^{\prime}$ is a $\left(p^{\prime}, q^{\prime}\right)$-bipartite graph with $p^{\prime}=p-3 \geq 1$, $q^{\prime}=q-1 \geq 3, p^{\prime} \leq q^{\prime},\left\|G^{\prime}\right\|=p^{\prime}$. Obviously, G^{\prime} is not isomorphic with G_{1}, for otherwise $p=5$ and $q=4$, which contradicts the assumption $p \leq q$. By the inductive hypothesis, there is a 3-biplacement of G^{\prime}, say $\left\{\varphi_{1}^{\prime}, \varphi_{2}^{\prime}\right\}$. We define bijections φ_{1} and φ_{2} in the following way:
$\varphi_{1}(v)=y, \varphi_{1}(x)=v, \varphi_{1}(y)=x, \varphi_{1}\left(w_{3}\right)=w_{3}, \varphi_{1}(w)=\varphi_{1}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$, $\varphi_{2}(v)=x, \varphi_{2}(x)=y, \varphi_{2}(y)=v, \varphi_{2}\left(w_{3}\right)=w_{3}, \varphi_{2}(w)=\varphi_{2}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$. $\left\{\varphi_{1}, \varphi_{2}\right\}$ is a 3-biplaceament of G.

Subcase 2.1.2. $d\left(w_{3}, G\right)>1$ and $d\left(w_{1}, G\right)=d\left(w_{2}, G\right)=1$.
In the case of $p=q=4$, we get one graph only. Obviously, it is 3-biplaceable (see Fig. 2).

Thus we can assume that $q \geq 5$. Then we define a graph $G^{\prime}:=G \backslash\left\{v, x, y, w_{1}, w_{2}\right\}$, which is $\left(p^{\prime}, q^{\prime}\right)$-bipartite with $p^{\prime}=p-3 \geq 1, q^{\prime}=q-2 \geq 3, p^{\prime} \leq q^{\prime}$. Since $\left\|G^{\prime}\right\|=p^{\prime}$, there exists a 3-biplacement of G^{\prime}, unless $G^{\prime}=G_{1}$.

In the case of $G^{\prime}=G_{1}$, the graph G is 3 -biplaceable (see Fig. 3).

In the case of $G^{\prime} \neq G_{1}$, let $\left\{\varphi_{1}^{\prime}, \varphi_{2}^{\prime}\right\}$ be a 3-biplacement of G^{\prime}. To get a 3 -biplacement $\left\{\varphi_{1}, \varphi_{2}\right\}$ of G, put:
$\varphi_{1}(v)=y, \varphi_{1}(x)=v, \varphi_{1}(y)=x, \varphi_{1}\left(w_{1}\right)=w_{1}, \varphi_{1}\left(w_{2}\right)=w_{2}$, $\varphi_{1}(w)=\varphi_{1}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$,
$\varphi_{2}(v)=x, \varphi_{2}(x)=y, \varphi_{2}(y)=v, \varphi_{2}\left(w_{1}\right)=w_{1}, \varphi_{2}\left(w_{2}\right)=w_{2}$, $\varphi_{2}(w)=\varphi_{2}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$.

Fig. 2

Fig. 3

Subcase 2.1.3. $d\left(w_{3}, G\right)>1 ; d\left(w_{1}, G\right)>1$ or $d\left(w_{2}, G\right)>1$.
These assumptions imply that $p \geq 5$. It is easy to check that, for $q \geq p=5, G$ is 3-biplaceable. Therefore, we may assume that $q \geq p \geq 6$.

Let u_{1}, u_{2} be isolated vertices in R and $G^{\prime}:=G \backslash\left\{v, x, y, w_{3}, u_{1}, u_{2}\right\}$. Again, G^{\prime} is 3-biplaceable; let $\left\{\varphi_{1}^{\prime}, \varphi_{2}^{\prime}\right\}$ be a 3 -biplacement of G^{\prime}.
A set of bijections $\left\{\varphi_{1}, \varphi_{2}\right\}$ such that
$\varphi_{1}(v)=y, \varphi_{1}(x)=v, \varphi_{1}(y)=x, \varphi_{1}\left(w_{3}\right)=u_{1}, \varphi_{1}\left(u_{1}\right)=w_{3}, \varphi_{1}\left(u_{2}\right)=u_{2}, \varphi_{1}(w)=$ $\varphi_{1}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$,
$\varphi_{2}(v)=x, \varphi_{2}(x)=y, \varphi_{2}(y)=v, \varphi_{2}\left(w_{3}\right)=u_{2}, \varphi_{2}\left(u_{1}\right)=u_{1}, \varphi_{2}\left(u_{2}\right)=w_{3}, \varphi_{2}(w)=$ $\varphi_{2}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$,
is then a 3-biplacement of G.
Subcase 2.2. There is a pendent vertex in L, say x, such that $N(x, G) \cap N(v, G) \neq \emptyset$.
Without loss of generality, we put $N(v, G)=\left\{w_{1}, w_{2}\right\}$ and $N(x, G)=\left\{w_{2}\right\}$.
Consequently, for all $z \in L$ of degree 2 , there is $N(z, G) \supset\left\{w_{2}\right\}$, and for all $y \in L$ of degree 1 , there is $N(y, G) \subset\left\{w_{1}, w_{2}\right\}$. Otherwise, we get Subcase 2.1.

We have to consider the following subcases.
Subcase 2.2.1. For all $z \in L$ of degree 2, there is $N(z, G)=\left\{w_{1}, w_{2}\right\}$.
In this case all (p, q)-bipartite graphs for $p+q=8,9,10$ are 3-biplaceable, which is easily verifiable. Hence we can assume that $q \geq 6$. If so, there are at least four isolated vertices in R, say $u_{1}, u_{2}, u_{3}, u_{4}$.
A 3-biplacement $\left\{\varphi_{1}, \varphi_{2}\right\}$ of G is defined as follows:
$\varphi_{1}\left(w_{1}\right)=u_{1}, \varphi_{1}\left(w_{2}\right)=u_{2}, \varphi_{1}\left(u_{1}\right)=w_{1}, \varphi_{1}\left(u_{2}\right)=w_{2}$,
$\varphi_{1}(w)=w \forall w \in V(G) \backslash\left\{w_{1}, w_{2}, u_{1}, u_{2}\right\}$,
$\varphi_{2}\left(w_{1}\right)=u_{3}, \varphi_{2}\left(w_{2}\right)=u_{4}, \varphi_{2}\left(u_{3}\right)=w_{1}, \varphi_{2}\left(u_{4}\right)=w_{2}$,
$\varphi_{2}(w)=w \forall w \in V(G) \backslash\left\{w_{1}, w_{2}, u_{3}, u_{4}\right\}$.

Subcase 2.2.2. There exists $z \in L$ of degree 2 such that $N(z, G)=\left\{w_{2}, w_{3}\right\}$ and $w_{3} \neq w_{1}$.

It follows that $p \geq 5$. Moreover, every pendent vertex in L is joined with w_{2}, for otherwise we would get Subcase 2.1. Consequently, all non-isolated vertices in L are joined with w_{2}.

Firstly, suppose that $d\left(w_{3}, G\right)=1$.
A trivial verification shows that the theorem is true for $q \geq p=5$. Therefore, assume that $p \geq 6$. Let $y_{1}, y_{2} \in L, u \in R$ be isolated vertices in G.
Consider a graph $G^{\prime}:=G \backslash\left\{v, x, z, y_{1}, y_{2}, w_{2}, w_{3}, u\right\} . G^{\prime} \neq G_{1}$ and by the inductive hypothesis G^{\prime} is 3 -biplaceable.
A 3-biplacement of G is given by the maps φ_{1}, φ_{2} defined as:
$\varphi_{1}(v)=z, \varphi_{1}(x)=x, \varphi_{1}(z)=v, \varphi_{1}\left(y_{1}\right)=y_{1}, \varphi_{1}\left(y_{2}\right)=y_{2}, \varphi_{1}\left(w_{2}\right)=u, \varphi_{1}\left(w_{3}\right)=w_{3}$, $\varphi_{1}(u)=w_{2}, \varphi_{1}(w)=\varphi_{1}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$,
$\varphi_{2}(v)=y_{1}, \varphi_{2}(x)=x, \varphi_{2}(z)=y_{2}, \varphi_{2}\left(y_{1}\right)=v, \varphi_{2}\left(y_{2}\right)=z, \varphi_{2}\left(w_{2}\right)=w_{3}, \varphi_{2}\left(w_{3}\right)=u$, $\varphi_{2}(u)=w_{2}, \varphi_{2}(w)=\varphi_{2}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$,
where $\left\{\varphi_{1}^{\prime}, \varphi_{2}^{\prime}\right\}$ is a 3 -biplacement of G^{\prime}.
Secondly, suppose that $d\left(w_{3}, G\right) \geq 2$.
It follows that $d\left(w_{1}, G\right) \geq 2$, for if not, we would replace w_{1} with w_{3}, and get the case proved above. Since all non-isolated vertices in L are joined with w_{2}, then $d\left(w_{2}, G\right) \geq 5$.
We conclude that $q \geq p \geq 9$ and there are at least three isolated vertices in L and six isolated vertices in R. Let us denote by y_{1}, y_{2}, y_{3} isolated vertices in L and by $u_{1}, u_{2}, u_{3}, u_{4}$ isolated vertices in R. Consider a graph $G^{\prime}:=$ $G \backslash\left\{v, x, z, y_{1}, y_{2}, y_{3}, w_{2}, w_{3}, u_{1}, u_{2}, u_{3}, u_{4}\right\}$. As $p \geq 9$, there is $G^{\prime} \neq G_{1}$. Thus G^{\prime} has a 3 -biplacement, say $\left\{\varphi_{1}^{\prime}, \varphi_{2}^{\prime}\right\}$.
A 3-biplacement $\left\{\varphi_{1}, \varphi_{2}\right\}$ of G is defined below:
$\varphi_{1}(v)=z, \varphi_{1}(x)=x, \varphi_{1}(z)=v, \varphi_{1}\left(y_{i}\right)=y_{i}$ for $i=1,2,3, \varphi_{1}\left(w_{2}\right)=u_{1}$, $\varphi_{1}\left(w_{3}\right)=u_{2}, \varphi_{1}\left(u_{1}\right)=w_{2}, \varphi_{1}\left(u_{2}\right)=w_{3}, \varphi_{1}\left(u_{3}\right)=u_{3}, \varphi_{1}\left(u_{4}\right)=u_{4}, \varphi_{1}(w)=\varphi_{1}^{\prime}(w)$ $\forall w \in V\left(G^{\prime}\right)$,
$\varphi_{2}(v)=y_{1}, \varphi_{2}(x)=x, \varphi_{2}(z)=y_{2}, \varphi_{2}\left(y_{1}\right)=v, \varphi_{2}\left(y_{2}\right)=z, \varphi_{2}\left(y_{3}\right)=y_{3}$,
$\varphi_{2}\left(w_{2}\right)=u_{3}, \varphi_{2}\left(w_{3}\right)=u_{4}, \varphi_{2}\left(u_{1}\right)=u_{1}, \varphi_{2}\left(u_{2}\right)=u_{2}, \varphi_{2}\left(u_{3}\right)=w_{2}, \varphi_{2}\left(u_{4}\right)=w_{3}$, $\varphi_{2}(w)=\varphi_{2}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$.
Subcase 2.3. There are no pendent vertices in L.
It follows that all vertices in L are of degree 0 or 2 . Three subcases need to be considered.

Subcase 2.3.1. There are no pendent vertices in R.
Then we define sets:
$A:=\{w \in L: d(w, G)=2\}, B:=\{w \in L: d(w, G)=0\}$,
$C:=\{w \in R: d(w, G) \geq 2\}, D:=\{w \in R: d(w, G)=0\}$.
We have $A \subset L, B \subset L,|A|=|B|$ (since $\|G\|=p$) and $C \subset R, D \subset R$, $|C| \leq|A|,|C| \leq|B|,|C| \leq|D|$.

It is easy to see that G is 3 -biplaceable (see Fig. 4).

Fig. 4

Subcase 2.3.2. There are no vertices in R of degree greater than 1.
Set $N(v, G)=\left\{w_{1}, w_{2}\right\} \subset R$. There is $d\left(w_{1}, G\right)=d\left(w_{2}, G\right)=1$. We deduce that there are at least two isolated vertices in L, say y_{1}, y_{2}, and, apart from v, at least one other vertex of degree 2 , say x.

It is a simple matter to show that G is 3-biplaceable in the case of $q \geq p=4$. Therefore, we assume that $p \geq 5$ and apply the inductive hypothesis to the graph $G^{\prime}:=G \backslash\left\{v, x, y_{1}, y_{2}, w_{1}, w_{2}\right\}$. We extend bijections φ_{1}^{\prime} and φ_{2}^{\prime} of a 3-biplacement of G^{\prime} to φ_{1} and φ_{2}, maps of a 3-biplacement of G, in the following way:
$\varphi_{1}(v)=x, \varphi_{1}(x)=v, \varphi_{1}\left(y_{1}\right)=y_{1}, \varphi_{1}\left(y_{2}\right)=y_{2}, \varphi_{1}\left(w_{1}\right)=w_{1}, \varphi_{1}\left(w_{2}\right)=w_{2}$, $\varphi_{1}(w)=\varphi_{1}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$,
$\varphi_{2}(v)=y_{2}, \varphi_{2}(x)=y_{1}, \varphi_{2}\left(y_{1}\right)=x, \varphi_{2}\left(y_{2}\right)=v, \varphi_{2}\left(w_{1}\right)=w_{1}, \varphi_{2}\left(w_{2}\right)=w_{2}$, $\varphi_{2}(w)=\varphi_{2}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$.

Subcase 2.3.3. There is a vertex of degree 2 in L such that one of its neighbors has degree 1 and the other has degree at least 2.

Without loss of generality, we can choose our v to be this vertex. Put $N(v, G)=$ $\left\{w_{1}, w_{2}\right\}$ with $d\left(w_{1}, G\right)=1, d\left(w_{2}, G\right) \geq 2$.

It follows that there exists a vertex $x \in L$ such that $N(x, G)=\left\{w_{2}, w_{3}\right\}, w_{3} \neq w_{1}$, and there exist isolated vertices, say $y_{1}, y_{2} \in L$ and $u \in R$.

The case of $q \geq p=4$ is left to the reader. We assume that $q \geq p \geq 5$. In fact, since every non-isolated vertex in L has degree 2 and $\|G\|=p$, it implies that $p \geq 6$.

Let $G^{\prime}:=G \backslash\left\{v, x, y_{1}, y_{2}, w_{1}, w_{2}, u\right\}$. If $G^{\prime}=G_{1}$, then G is one of the two graphs which are 3-biplaceable, which is easy to check. If $G^{\prime} \neq G_{1}$, then by the inductive hypothesis there exists a 3-biplacement $\left\{\varphi_{1}^{\prime}, \varphi_{2}^{\prime}\right\}$ of G^{\prime}.
A 3-biplacement of G is given by the maps φ_{1}, φ_{2} defined as
$\varphi_{1}(v)=x, \varphi_{1}(x)=v, \varphi_{1}\left(y_{1}\right)=y_{1}, \varphi_{1}\left(y_{2}\right)=y_{2}, \varphi_{1}\left(w_{1}\right)=w_{1}, \varphi_{1}\left(w_{2}\right)=u$, $\varphi_{1}(u)=w_{2}, \varphi_{1}(w)=\varphi_{1}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$,
$\varphi_{2}(v)=y_{1}, \varphi_{2}(x)=y_{2}, \varphi_{2}\left(y_{1}\right)=v, \varphi_{2}\left(y_{2}\right)=x, \varphi_{2}\left(w_{1}\right)=w_{2}, \varphi_{2}\left(w_{2}\right)=w_{1}$, $\varphi_{2}(u)=u, \varphi_{2}(w)=\varphi_{2}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$.
Case 3. $\Delta_{L}(G)=1$.
By the assumption $\|G\|=p$, all vertices in L are pendent.
We shall consider three subcases depending on the maximum vertex degree in the set R.

Subcase 3.1. $\Delta_{R}(G)=1$.
The theorem is evident in this case, since the edges of G define a matching $p K_{1,1}$.
Subcase 3.2. $\Delta_{R}(G) \geq 3$.
It is easily seen that the theorem is true for $q \leq 5$. For this reason, assume that $q \geq 6$. Let u be a vertex in R such that $d(u, G)=\Delta_{R}(G)$ and let v_{1}, v_{2}, v_{3} be neighbors of u. There are at least two isolated vertices in R, say w_{1}, w_{2}. We define a graph $G^{\prime}:=G \backslash\left\{w_{1}, w_{2}, u, v_{1}, v_{2}, v_{3}\right\}$. Obviously, $G^{\prime} \neq G_{1}$, since all vertices in L are pendent. Consequently, we may define a 3-biplacement $\left\{\varphi_{1}, \varphi_{2}\right\}$ of G as follows:
$\varphi_{1}\left(w_{1}\right)=u, \varphi_{1}\left(w_{2}\right)=w_{2}, \varphi_{1}(u)=w_{1}, \varphi_{1}\left(v_{i}\right)=v_{i}$ for $i=1,2,3$, $\varphi_{1}(w)=\varphi_{1}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$,
$\varphi_{2}\left(w_{1}\right)=w_{1}, \varphi_{2}\left(w_{2}\right)=u, \varphi_{2}(u)=w_{2}, \varphi_{2}\left(v_{i}\right)=v_{i}$ for $i=1,2,3$, $\varphi_{2}(w)=\varphi_{2}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$,
where $\left\{\varphi_{1}^{\prime}, \varphi_{2}^{\prime}\right\}$ is a 3 -biplacement of G^{\prime}.
Subcase 3.3. $\Delta_{R}(G)=2$.
In this case, we have to consider the two situations: either there is a pendent vertex in R or all non-isolated vertices in R are of degree 2 .

Subcase 3.3.1. There is a pendent vertex in R, say w_{1}.
If $q \leq 5$, then G is 3 -biplaceable, which is easy to check. Assume that $q \geq 6$. Let $w_{2} \in R$ be of degree 2 and let u be an isolated vertex in R. Let $N\left(w_{1}, G\right)=\left\{v_{1}\right\}$ and $N\left(w_{2}, G\right)=\left\{v_{2}, v_{3}\right\}$. We may apply the inductive hypothesis to the graph $G^{\prime}:=G \backslash\left\{w_{1}, w_{2}, u, v_{1}, v_{2}, v_{3}\right\}$. Again, $G^{\prime} \neq G_{1}$ and, in consequence, G^{\prime} has a 3 -biplacement, say $\left\{\varphi_{1}^{\prime}, \varphi_{2}^{\prime}\right\}$.
A 3-biplacement $\left\{\varphi_{1}, \varphi_{2}\right\}$ of G is defined below:
$\varphi_{1}\left(w_{1}\right)=w_{2}, \varphi_{1}\left(w_{2}\right)=u, \varphi_{1}(u)=w_{1}, \varphi_{1}\left(v_{i}\right)=v_{i}$ for $i=1,2,3$,
$\varphi_{1}(w)=\varphi_{1}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$,
$\varphi_{2}\left(w_{1}\right)=u, \varphi_{2}\left(w_{2}\right)=w_{1}, \varphi_{2}(u)=w_{2}, \varphi_{2}\left(v_{i}\right)=v_{i}$ for $i=1,2,3$,
$\varphi_{2}(w)=\varphi_{2}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$.
Subcase 3.3.2. There are no pendent vertices in R.
A trivial verification shows that in the cases of $p+q=8,9,10,11$ the theorem is true. For $q \geq p \geq 6$, we define a graph $G^{\prime}:=G \backslash\left\{w_{1}, w_{2}, u, v_{1}, v_{2}, v_{3}, v_{4}\right\}$, where $w_{1}, w_{2} \in R$ are vertices of degree $2, u$ is an isolated vertex in R, v_{1}, v_{2} and v_{3}, v_{4} are neighbors of w_{1} and w_{2}, respectively. G^{\prime} is 3 -biplaceable, hence so is G : put $\left\{\varphi_{1}, \varphi_{2}\right\}$ to be:
$\varphi_{1}\left(w_{1}\right)=w_{2}, \varphi_{1}\left(w_{2}\right)=u, \varphi_{1}(u)=w_{1}, \varphi_{1}\left(v_{i}\right)=v_{i}$ for $i=1,2,3,4$,
$\varphi_{1}(w)=\varphi_{1}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$,
$\varphi_{2}\left(w_{1}\right)=u, \varphi_{2}\left(w_{2}\right)=w_{1}, \varphi_{2}(u)=w_{2}, \varphi_{2}\left(v_{i}\right)=v_{i}$ for $i=1,2,3,4$,
$\varphi_{2}(w)=\varphi_{2}^{\prime}(w) \forall w \in V\left(G^{\prime}\right)$,
where $\left\{\varphi_{1}^{\prime}, \varphi_{2}^{\prime}\right\}$ is a 3 -biplacement of G^{\prime}.

Acknowledgements

The research was partially supported by the AGH University of Science and Technology grant No 1142004.

REFERENCES

[1] B. Bollobás, Extremal Graph Theory, Academic Press, London, 1978.
[2] J.L. Fouquet, A.P. Wojda, Mutual placement of bipartite graphs, Discrete Math. 121 (1993), 85-92.
[3] N. Sauer, J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978), 295-302.
[4] M. Woźniak, Packing of graphs, Dissertationes Mathematicae CCCLXII, Warszawa, 1997.
[5] M. Woźniak, A.P. Wojda, Triple placement of graphs, Graph Combin. 9 (1993), 85-91.

Lech Adamus
ladamus@wms.mat.agh.edu.pl
AGH University of Science and Technology
Faculty of Applied Mathematics
al. Mickiewicza 30, 30-059 Cracow, Poland
Beata Orchel
orchel@uci.agh.edu.pl
AGH University of Science and Technology
Faculty of Applied Mathematics
al. Mickiewicza 30, 30-059 Cracow, Poland
Received: September 25, 200%.
Revised: February 15, 2008.
Accepted: March 1, 2008.

