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Abstract:  
 A model for phonon heat conduction in a molecular nanowire is developed. The 
calculation takes into account modification of the acoustic phonon dispersion relation due to 
the electron-phonon interaction. The results obtained are compared with models based upon 
a simpler, Callaway formula. 
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Introduction 
 
 In some systems a strong electron-phonon interaction could cause the appearance of 
small polarons. As discussed in many experimental and theoretical studies in recent years, the 
presence of small polarons in these systems could be of great importance for all processes of 
charge and energy transfer through different mechanisms in various materials such as 
polymers with a large electrical conductivity, molecular chains, organic macromolecules, etc. 
[1,2]. Moreover, a strong electron-phonon interaction can to a certain degree change 
oscillatory properties of a lattice [1,2]. Having in mind the modification of the dispersion 
relation for acoustic phonons caused by the polaron effect, the flow of thermal energy and 
thermal conductivity of one-dimensional structures are the subject of this paper. Investigation 
of thermal properties of one dimensional structures has become one of the very interesting 
problems in recent years due to its theoretical importance and also application of these 
structures in different areas of science and technology [3,4,5]. Existing theoretical studies of 
the above-mentioned problem discard a possible polaron effect. Our results are compared 
with the results obtained using other models and they show that the existence of a small 
polaron changes the dispersion relation and, in this way, changes thermal conductivity in a 
certain temperature range. 
 
 
Theoretical analysis 
 
 Heat current is the energy flux due to the transport of phonons, carrying an energy of 

. The energy flux in the direction of a small temperature gradient is given by: ωh
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where subscript  refers to a particular phonon polarization type, qs v  is the phonon wave 
vector, ω  is the phonon frequency, )(qvs

vv  is the phonon group velocity, and 
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v −=  is the deviation of the phonon distribution, , from its equilibrium 

value, . The equilibrium phonon distribution  is given as by the Bose-Einstein 

distribution, and the deviation of the phonon distribution,  is given as a solution of 
Boltzmann's equation [6,7]: 
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where  is the combined phonon relaxation time. By definition, heat current is cτ

TJ lattQ ∇−= κ
v

, (3) 

for isotropic media where  is the thermal conductivity coefficient [7]. Substituting Eq (2) 
in Eq (1) and comparing the results with Eq (3), we obtained a regular three-dimensional 
formula for lattice thermal conductivity: 
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v The density of states in q  spaces is sufficient by large so the sum in Eq (4) may be 
replaced by an integral according to the standard procedure. We supposed that the optical 
modes would not be excited at the low temperatures we are interested in [8]. In the other case 
their contribution to thermal conductivity is limited by their low group velocity [9]. In the1D 
case we obtain 
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 The factor 3 originates from the three contributing branches of the vibrational 
spectrum and  is the density of phonon states. Eq. (5) could be transformed into equations 
that were used in literature [5]. 

qn

 To obtain thermal conductivity we must compute both complete dispersion relations 
for the 1D system, , enabling calculation of the group velocity using )(qω

dqqdqv /)()( ω=  and the total relaxation time )(ωτc . The total relaxation time is 
commonly given by Matheissen's rule, expressing the total inverse lifetime as a sum of the 
inverse lifetimes corresponding to each scattering mechanism [10]. The expression used for 
boundary, anharmonic and impurity scattering are [5,8]: 
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where the values of the , ,  and c  are obtained from the literature [8]: A 1B 2B L/
441057,2 −⋅=A  s-3,  s/deg23

21 1077,2 −⋅=+ BB 3,  m/s,  m 3105,3 ⋅=c 3108,1 −⋅=L
 In order to take into account the possible influence of the small polaron effect on the 
problem of heat conduction we shall use Eqs. (5) and (6), by simply replacing phonon 
frequency with the renormalized dispersion relation [1, 2]: 
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respectively,  is small-polaron binding energy, ∑=
k
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the small-polaron concentration, where 1}1]/){exp[( −+−= TkEEn BFk
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 denotes the small-
polaron mean number. In order to calculate the effective carrier concentration we supposed 
that the polaron zone is half-full, so k f π=  and πν /4n=  [1,2]. We assumed that 

1== knn  for a small temperature range  [1,2]. 
 
 
Results and discussion 
 
 The results we obtained are shown in Figs 1 (a,b) and 2 (a,b). 
 

 

 
Fig. 1. Coefficient of thermal conductivity for A=0.5 (a) and 0.7 (b) 
 
 
 On Fig. 1 we plotted the temperature dependence of thermal conductivity, for several 
values of the adiabatic parameter and coupling constant. Dotted lines present the results 
obtained by the Callaway formula. As it could be seen from Fig. 1, the results obtained using 
Callaway are in agreement with our calculation for the lower range of temperatures.  
 Above the inflection point, the change of the dispersion relation caused by the 
polaron effect yields an increase of thermal conductivity (the difference is about 20 percent 
and it is the function of adiabatic parameters and constants in the expression for the relaxation 
time). This difference decreases when the temperature and coupling constants increase and 
increases when the adiabatic parameter increases. 
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Fig. 2. Relaxation time for B=0.5 (a) and 0.7 (b) 
 
 
 The total relaxation time, including the renormalized dispersion relation (eq. 7), and 
total relaxation time obtained using the approximative linear dispersion relation are both 
shown in Fig. 2. 
 The dotted line presents the total relaxation time obtained by the simple linear 
dispersion law 2/ vvq ω= vv . As it can be seen, renormalization of the dispersion law causes 
decrease of the total relaxation time. The decreasing effect is also more noticeable for small 
values of S and in this case it increases when B increases. 
 
 
Conclusion 
 
 Changes of the phonon spectrum caused by the polaron effect produce a larger 
coefficient of thermal conductivity in the area above the temperature on which the thermal 
conductivity becomes maximal. The results obtained are in good agreement with predictions 
made, using Callaway’s formula at lower temperatures. The influence of the change of 
dispersion law also disappeared at higher temperatures that is in agreement with our previos 
results. The influence of the change of the dispersion relation caused by the polaron effect is 
more noticeable for lower values of the coupling constant and it disappears when this constant 
increases. This influence also increases when the adiabacy of the system increases. The total 
influence of the polaron effect on heat flow and thermal conductivity requires an additional 
study of the relaxation time and derivation of expressions for terms, which should describe 
phonon scattering on polarons, and will the subject of further research. 
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Садржај:  У раду је развијен модел провођења топлоте у молекуларним наножицама 
заснован на транспорту фонона. При прорачуну је узета у обзир модификација 
дисперзионог закона за акустички фононски спектар која је последица електрон-
фононске интеракције. Добијени резултати упоређени су са резултатима који се 
добијају применом једноставније  Калвејеве формуле. 
Кључне речи: молекуларне нано жице, фононско провођење топлоте, моделовање. 
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