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Abstract. The present study consists in studying the mean "~ Osculating Orbit bult with GPS Data
orbital motion of the CHAMP satellite, through a single long  "Observed” Mean Elements
arc on a period of time of 200 days in 2001. We actually
investigate the sensibility of its mean motion to its accelero-
metric data, as measures of the surface forces, over that pe !
riod. erre
In order to accurately determine the mean motion of | £"™
CHAMP, we use “observed” mean orbital elements com-
puted, by filtering, from 1-day GPS orbits. On the other
hand, we use a semi-analytical model to compute the arc,
It consists in numerically integrating the effects of the mean
potentials (due to the Earth and the Moon and Sun), and the [
effects of mean surfaces forces acting on the satellite. Thesg¢ ras ! - -
later are, in case of CHAMP, provided by an averaging of the Time (Day in 2001)
Gauss system of equations.
Results of the fit of the long arc give a relative sensibility Fig. 1. The Observed Mean Elements (circles) deduced from the
of about 10°3, although our gravitational mean model is not osculating orbits
well suited to describe very low altitude orbits. This tech-
nique, which is purely dynamical, enables us to control the
decreasing of the trajectory altitude, as a possibility to vali-
date accelerometric data on a long term basis. We call “mean motion” the motion described by 6 orbital
parameters for which all short periodic variations, linked to
the period of revolution of the satellite, have been removed:
the osculating differential equations of dynamics are trans-
formed in an analytical way to get the averaged equations
1 Introduction of dynamics (see [tris and Exertier, 1995). This transfor-
mation has been expressed bgtks (1991), for all the per-

Why studying the solely long period effects on orbits, and inturbatipns acting on the sate_llite;, with_ respect to glqssical
particular for the CHAMP satellite? Among the advantages,k€plerian elements: the semi-major axisthe eccentricity

we can quote the continuous description of the evolution of¢: the inclination:, the ascending nod®, the argument of
orbital parameters: over a given period of time, the computed?€rigeéew, and the mean anomallf. To take into account
orbital elements are adjusted on observations only at the inith€ coupling effects between geodynamical parameters, an
tial epoch of the arc. That long period approach has beer@lgorithm deduced from (Deprit, 1969) has been used, and
developed by the GRGS, “Groupe de Recherche @ndsie computed with the algebrlc manlpulat'or MS.(CIaes et al.,
Spatiale”, for about more than 10 years, in the CODIOR soft-1988). Then the obtained averaged differential system ver-
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ware (Exertier et al., 1994). ified by 4t 4. di 4% 4o and 2L is then integrated
numerically. The integration step size varies from 12 hours
Correspondence td=. Deleflie for satellite with a high altitude such as LAGEOS, to 01:30

(Florent.Deleflie@obs-azur.fr) for CHAMP.
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Table 1. “Observed” Mean Elements of CHAMP. (at 0" 19° for each date)

Day in 2001 || a (km) e i (rad) Q (rad) w (rad) M (rad)
(DOY)

25/05 (145) || 680628221 | 3.88858@ — 03 | 1.523132 + 00 | 5.71683% — 01 | 2.81412% + 00 | 5.363Q& + 00
30/05 (150) || 680607340 | 4.308192 — 03 | 1.52312% 4+ 00 | 5.38767% — 01 | 2.526122 + 00 | 6.108% — 01
09/06 (160) || 680568345 | 4.89379% — 03 | 1.523094 + 00 | 4.729402 — 01 | 2.00114% + 00 | 3.6857% + 00
14/06 (165) || 680545877 | 5.027612 — 03 | 1.52310@ + 00 | 4.39998% — 01 | 1.75152% + 00 | 5.2434 + 00
19/06 (170) || 680520278 | 5.04219@ — 03 | 1.52309@ + 00 | 4.07064% — 01 | 1.50443@ + 00 | 5.4073% — 01
14/07 (195) || 680421183 | 3.556922 — 03 | 1.52308@ + 00 | 2.42198% — 01 | 1.55704% — 01 | 2.639% + 00
19/07 (200) || 680404726 | 3.08236% — 03 | 1.52306% + 00 | 2.09214% — 01 | 6.09375% + 00 | 4.446% + 00
24/07 (205) || 680390098 | 2.64612& — 03 | 1.52308& + 00 | 1.762222 — 01 | 5.687902 + 00 | 4.7583% — 02
29/07 (210) || 680376524 | 2.33076% — 03 | 1.52308% + 00 | 1.43255% — 01 | 5.20503% + 00 | 2.024% + 00
03/08 (215) || 680363319 | 2.22874% — 03 | 1.52309@ + 00 | 1.102704 — 01 | 4.66207% + 00 | 4.074% + 00
08/08 (220) || 680345822 | 2.37537% — 03 | 1.52311& 400 | 7.730452 — 02 | 4.127782 + 00 | 6.132& + 00
13/08 (225) || 680325792 | 2.714502 — 03 | 1.52311% + 00 | 4.43486& — 02 | 3.66178% + 00 | 1.8597 + 00
18/08 (230) || 680301890 | 3.151972 — 03 | 1.52312% + 00 | 1.137314 — 02 | 3.270242 + 00 | 3.8187% + 00
23/08 (235) || 680278114 | 3.61123% — 03 | 1.52314% 4+ 00 | 6.26161% 4 00 | 2.934492 + 00 | 5.747&% + 00
28/08 (240) || 680251174 | 4.03758% — 03 | 1.523132 + 00 | 6.22865% + 00 | 2.63555@ + 00 | 1.383% + 00
12/09 (255) || 680148869 | 4.83634% — 03 | 1.52313& + 00 | 6.129772 + 00 | 1.84648% + 00 | 9.4686 — 01
17/09 (260) || 680106083 | 4.890452 — 03 | 1.52315@ + 00 | 6.096802 + 00 | 1.59846% + 00 | 2.962( + 00
27/09 (270) || 680016159 | 4.65764% — 03 | 1.52312@& + 00 | 6.03082% + 00 | 1.10085@ + 00 | 8.4366G — 01
02/10 (275) || 679956850 | 4.37550% — 03 | 1.52312@ + 00 | 5.99782% 4 00 | 8.43578& — 01 | 3.0177% + 00
07/10 (280) || 679905970 | 4.00321& — 03 | 1.52308@ + 00 | 5.96478& + 00 | 5.739722 — 01 | 5.265% + 00
12/10 (285) || 679851899 | 3.56081& — 03 | 1.52308& + 00 | 5931724 + 00 | 2.82756% — 01 | 1.307& + 00
17/10 (290) || 679804108 | 3.080134 — 03 | 1.52306% + 00 | 5.89866% + 00 | 6.24062% + 00 | 3.7206 + 00
01/11 (305) || 679617552 | 2.008292 — 03 | 1.52300@ + 00 | 5.79929% + 00 | 4.83528% + 00 | 5.476& + 00
06/11 (310) || 679560040 | 2.07175% — 03 | 1.52299& + 00 | 5.76611% + 00 | 4.270222 + 00 | 2.102% + 00
01/12 (335) || 679297150 | 4.14249&@ — 03 | 1.52296% + 00 | 5.60005& + 00 | 2.40833@ + 00 | 4.004% + 00
06/12 (340) || 679241668 | 4.45960& — 03 | 1.52297@ + 00 | 5.56681& + 00 | 2.14785% + 00 | 6.6662 — 01
11/12 (345) || 679183220 | 4.66843% — 03 | 1.52296% + 00 | 5.533574 + 00 | 1.904352 + 00 | 3.657% + 00
16/12 (350) || 679124413 | 4.76761% — 03 | 1.52298% + 00 | 5.50031@ + 00 | 1.66369@ + 00 | 4.2466 — 01
21/12 (355) || 679065526 | 4.74205@ — 03 | 1.522992 + 00 | 5.467064 + 00 | 1.425274 + 00 | 3.536Q + 00
26/12 (360) || 678997174 | 4.59880@ — 03 | 1.52298%& + 00 | 5.43380% + 00 | 1.18572@ + 00 | 4.323& — 01

Due to divisions by the eccentricity if-, dd—‘*l’/, nddd—"f', The long arc of CHAMP is shown in Sect. 4. Such a long

(Deleflie, 2002) has formulated the averaged differential sysperiod approach for CHAMP permits to give the characteris-
tem with respect to the non-singular elements for eccentrictics of the orbital mean motion on the basis of observations
ity C = ecosw, S = esinw, andir = w + M. For satellites  obtained over a long period of time. And for example the
with a small eccentricity such as CHAMP, this is in fact the initial conditions of the motion. These conditions are all the
equations verified b dgl’%’% which are integrated in a more determined with a great precision as there are few pa-
numerical way, for gravitational effects as well as for non- rameters which are used to compute the mean orbit.
gravitational effects. The conclusion (Sect. 5) sums up the reached accuracy on
We propose here to apply to the CHAMP orbit the methodthe long arc of CHAMP, and presents what can now be de-
we have developed for geodetic satellites such as STARVeloped to improve it.
LETTE (Exertier et al., 1999) or AJISAI (Deleflie, 2002).
We transform in Sect. 2 the_osculating orbits computed,  The removal of short period effects from the observa-
from May to December 2001 with GPS data to get the “ob- o
served” mean elements. These quantities are comparable to

those computed with the CODIOR software. To adjust a mean orbit on measurements, it is necessary to
Let note that a specific approach has been developed foget quantities comparable to those computed in the CODIOR

CHAMP to build the second member of the averaged equasoftware. We call these quantitiésbserved” mean ele-

tions of dynamics verified by non-gravitational forces with ments even if they are not the quantities effectively observed

the data obtained from the STAR accelerometer (Perret et al(this explaining the inverted comma).

2001). This specific approach makes it possible to give mean There are two steps to build these “observed mean ele-

characteristics of the STAR accelerometer, this is the subjecinents”.

of Sect. 3.
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Table 2. Mean characteristics of the STAR accelerometer derived from CODIOR

Limits ofareas | Cr CnN Br By

(DOY in 2001) (m.s~2) (m.s~2)
Aeral || from143t0173| 0,42 | 0,47 | —1,64106 | —0,4710°6
Area? || from173t0226| 0,71 | 0,25 | —2,610°° 0,3310°°
Area3 || from226t0281| 0,77 | 0,25 | —2,810°6 0,810°7
Area 4 || from281t0293| 0,85 | 0,25 | —3,210°6 0,810°7
Area5 || from293t0341| 0,62 | 0,25 | —2,310°6 | 0,1910°
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Cr: Tangential scale facto€ y: Normal scale factorB7: Tangential biasBy : Normal bias.

First, short arcs are computed with a classical numericakcase of CHAMP. That’s why we have chosen a window width
integration: we use the GINS software to compute 1-dayequal to 5 days. This width is not far from the Nyquist pe-
arcs, from the end of May 2001 to the end of December 2001riod, but allows to get enough “observed mean elements”
derived from on board GPS tracking data with the short per-about one every 5 days (see Table 1).
turbations being present. These orbits are formulated with As a result, we give the filtered orbital paramet&gs> in
orbital elements and not with positions and velocities, in or-Fig. 1.
der to isolate the short from the long period perturbations.

The metric elements of all these orbits are shown in Fig. 1.

Secondly, all the short period terms are removed. This3 Mean characteristics of the STAR accelerometer
filtering approach, applied in the CANEL software, is de- , i
scribed in (Exertier, 1990), and made up of two steps: first arl" the CODIOR software, the equations of dynamics are for-
analytical step based on an explicit formulation of the shortMulatéd in a set of non singular elements for eccentricity:
period terms, expressed in a set of non singular elements fdf» € = €C0Sw, i, 2, § = esinw, A = » + M. We use
eccentricity. This formulation is deduced from an analytical tNerefore the averaged Gauss equations to take into account
solution of the Lagrange planetary equations (Deleflie et al. € influence of a perturbative for@), with respect to the
2003). The osculating elemeni,. contain long as well correspondlng mean var!ables (wnh a prime). This fgrce is
as short period termsE,s, = E.p + Esp. This solution decomposed in the classical frame linked to the satellite, and
formulates the short period ternig p on the basis of the os-

R
culating elements, terms which are removed frBgy.. This

oriented by the radial positiorf T

step enables to remove terms whose amplitude range from N

decimeters to 10km. Secondly, there is a numerical step Definingn = +1—C?— 5’2, andi the mean motion
based on a convolution product (Goad, 1977), to filter shortof the satellite (linked to the third law of Kepl@fa® = .
terms not yet removed, in particular the resonances with avherep is the gravitational constant of the Earth), we can
characteristic period of about a few days: 2,3 days in thewrite (Deleflie, 2002):

da _ 2
dt 7
ac’ _ S 1 ( o € CC2e5D\ | 3, cos
dt ~  qd iia’ 2 2(1+1n) 2" fa'nsini’
di'’ 3¢
dt ~ 2id
a3 @
dr 2 nan sini’
s’ ¢’ 1 s §(C?+57? 3 cosi’
- = _nR+_7/ —S/YI—*‘Fg T+ - //%
dt 7] na 2 2(1+n) 2 na’n sini
dx 1 3 cosi’
— —n=—(-3 R 7S/7.
dt . fza’( +mR+ 2 nd'nsini’

The STAR accelerometer on board CHAMP measures, evirack), thatis to say the quantitiBgTar, TSTAR NSTAR:
ery second, the resultant acceleration due to non gravitalo take into account the instrumental characteristics, these
tional forces (air drag, Earth albedo, solar radiation, manoeuguantities are corrected, in each axe, with a scale factor and
vers,...) in these three axes (radial, along-track and across-
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STAR ACCELEROMETER - CALIBRATION RESULTS
Estimated corrections for 5 periods between may and december 2001
with the GRGS tools CODIOR (circle) and GINS (square).
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Fig. 2. Characteristics of the STAR accelerometer: comparison between GINS and CODIOR

a bias, before their use in the Gauss equations: What is at stake in a long arc computation is the definition
of the mean characteristics of the accelerometer, i.e. only one
Rreal = CRRSTAR + Br value for each bias and each scale factor over a long period
Treal= C1TSTAR + Br (2 of time. A possible application of such an approach is the
Nreal = CNNSTAR + BN study of possible slow drift in these characteristics. With no

Before the use of these measurements in the CODIOR Oryncontrolled jumps in the accelerometric data, this would be

bit computation, the raw data (level 1 data from GFZ Post-©2SY- But these jumps have a great influence on the mean

dam) have been filtered to reduce the noise, to eliminate Out[notlon. To manage them to a certain extent, we have empiri-

liers and to fill the data gaps. This numerical preprocessinqc:""IIy divided the con5|dereq period in f“{e areas (see Table 2).
. : : i or each area, we have adjusted the bias and the scale factor
is realized in three steps:

for the along track and accross track axes (i.e. 20 parameters

1. Filtering of the short periods smaller than the orbital pe-over the whole period).
riod of about 5400 s in the raw data, thanks to a Vakdr The results of these adjustments are shown in Table 2.
filter (Vondrak, 1969; 1977), They have been adjusted at the same time as the initial con-
ditions of the arc. Figure 2 shows the comparison between
2. Detection and removal of outliers by comparing raw andthe results derived by CODIOR and those derived by GINS,
filtered data (3 criterion), the GRGS classical software.
o _ o _ The results are quite similar, even if CODIOR adjusts so
3. Filling of the data gaps using spline interpolations. Only fey empirical parameters. In particular, let note that the tan-
the gaps smaller than the orbital period can correctly begential bias has a better stability in GINS than in CODIOR.
filled. The difference of stability of the normal scale factor between
. the two softwares is still unexplained. A part of these dif-
Due to problems on STAR, the data of the radial axe canferences could come from the difference of nature of the ad-
not be used (Koenig et al., 2001). We suppose thereforgusted parameters in CODIOR and GINS. In this figure, for
R = 0. Moreover, the biases and scale factors in the twoGINS, the plotted coefficients a@r, Cn, CrB7r, CnBn,
other axes can be affected by very strong variations (in parsince the parameters adjusted by GINS,, Cw, Br, Bn,
ticular the biases), meaning the changes of the spatial enviverify:

ronment of the satellite (magnetic storms for example). Ne\%Rreal = Cr(RSTAR + BR)

freal= Cr(TsTAR+ A7) 3)
Nreal = CN(NSTAR + BN)

ertheless, they can be considered constant over the durati
of a short arc (1 or 2 days).
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4 The Long Arc of CHAMP

On the basis of the available accelerometric data and of th&i9- 4. Comparison of the results obtained with accelerometric data
“observed” mean elements, we have computed a mean a@d with non gravitational models. The residuals we get on the
of CHAMP over a period o;c 190 days in 2001, from May semi-major axis are about 30-40 meters, and have to be compared to

25th to December 1st: since onlv the gaps in accelerometri the total decrease due to the atmospheric drag which reaches 12 km.
) y 9ap For the inclination, we get lower residuals when using accelerome-

data smaller than the orbital period Ca_n correctly bef filled, thetric data, since the non-gravitational model we have used does not
length of the mean arc computed with CODIOR s shorterjncjyde the management of shadow effects. On the eccentricity, we
than the period when “observed” mean elements are availyet a level of residuals of,3 10~ (which corresponds to 150 m,
able, but reaches nevertheless more than the period of tw@ be compared to a total variation of about 21 km). The residuals
revolutions of the argument of the perigee (about 92 days). obtained on the angular elements are abo@tB > on the ascend-
First, we have checked that CODIOR enables to computéng node, 32 10~3 on the argument of the perigee, 21102 on

a mean orbit as low as this of CHAMP: in Table 3, we show the rapid variable.

that the semi-analytical model built to compute mean orbits
with an altitude of 800 km or more still leads to a great preci-

sion, and that the neglected coupling effects have not a stron X )
g only the atmospheric drag (modelled in DTM-94; Berger

influence at 400 kilometers. | . : 4
Over that period of 190 days, we have computed a Singleet al., 19_98). At the same t_|me, the comparison with the flrs_t
long arc with the following standards: arc confirms that, at low altitudes, acgelerometrlc datg pgrmlt
to reach a better accuracy of the orbit than non-gravitational
— GRIMS5-S1 for the gravity field model (Biancale et al., models, even if the values of air drag scale factors are close

2000), to 1 (see Table 4).

— (Schwiderski, 1980) for the ocean tides,

— the Love numbers; = 0,299 andkz = 0,094tocom- 5 Conclusion
pute the terrestrial tides,

— the VSOP82 theory for the luni-solar effects and the Since few years, the concept of mean orbital motion is devel-
planets (Bretagnon and Francou, 1988). oped into the CANEL/CODIOR package, allowing to anal-

yse the long periodic and secular variations affecting a long

The shapes of the computed metric elements are showarc orbit (typically over several thousands of revolutions).
Fig. 3, and the residuals in Fig. 4. In order to validate the The mean gravitational model of the semi-analytical the-
averaging method of the accelerometric data, another arory is actually suited for altitude greater than 800 km. Nev-

§1as been computed with a non-gravitational model includ-
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Table 3. Long period effects on the orbital parameters: Theoretical amplitudes due to gravitational effects, and corresponding residuals in
the CODIOR software. Amplitudes of the long period effects depend on the altitude of the satellite. For each satellite, and for each mean
variabled’, i’, @/, C’, §’, \’, are shown these theoretical amplitudes due to gravitational effects (static part of the gravity field developed up

to degree and order 40, terrestrial and oceanic tides, luni-solar effects) in the first column (not including the influgh@ndfthe level of

residuals obtained in CODIOR in the second one. In each case, the residuals are not equal to zero because some negligible coupling effect
are not included in the model [Deleflie,2002]. All quantities are expressed in metensith arcs computed over a period of 200 days. It
appears that the level of the residuals is still very satisfactory, even with a low altitude such as this of CHAMP.

LAGEOS STELLA CHAMP

~ 600%km =~ 800km ~ 400km
Ampl. of RMS Ampl. of RMS Ampl. of RMS
signal(m) | (m) signal(m) | (m) signal(m) | (m)

a || 47103 | 451031 96103 | 9,5103 || 53103 | 53103
i’ || 6,010 7,910°5 || 3,810° 6,610°1 || 1,110 22101
Q || 4,810 6,41075 || 4,510 2,010 2,010 2,010
Aol 1,310 2,51 1,910 7,610 3,810 4,410
c || 3,510 11,1102 || 1,410 43102 || 2,610 2,61
s || 1,210 36109 || 1,110 1,410° || 1,110 57104

Table 4. Values of air drag scale factors. Atmospheric drag model: riod of 200 days, are the greatest, allowing to compute along

DTM-94 track coefficients with precision. In addition, the control of
the decreasing of the satellite altitude is at the same relative
Limits of areas level: the residual in the mean semi-major axis are around
(DOY in 2001) 30m rms.

Aeral || from 143t0173| 1,03
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