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Abstract. The present study consists in studying the mean
orbital motion of the CHAMP satellite, through a single long
arc on a period of time of 200 days in 2001. We actually
investigate the sensibility of its mean motion to its accelero-
metric data, as measures of the surface forces, over that pe-
riod.

In order to accurately determine the mean motion of
CHAMP, we use “observed” mean orbital elements com-
puted, by filtering, from 1-day GPS orbits. On the other
hand, we use a semi-analytical model to compute the arc.
It consists in numerically integrating the effects of the mean
potentials (due to the Earth and the Moon and Sun), and the
effects of mean surfaces forces acting on the satellite. These
later are, in case of CHAMP, provided by an averaging of the
Gauss system of equations.

Results of the fit of the long arc give a relative sensibility
of about 10−3, although our gravitational mean model is not
well suited to describe very low altitude orbits. This tech-
nique, which is purely dynamical, enables us to control the
decreasing of the trajectory altitude, as a possibility to vali-
date accelerometric data on a long term basis.

Key words. Mean orbital motion, accelerometric data

1 Introduction

Why studying the solely long period effects on orbits, and in
particular for the CHAMP satellite? Among the advantages,
we can quote the continuous description of the evolution of
orbital parameters: over a given period of time, the computed
orbital elements are adjusted on observations only at the ini-
tial epoch of the arc. That long period approach has been
developed by the GRGS, “Groupe de Recherche en Géod́esie
Spatiale”, for about more than 10 years, in the CODIOR soft-
ware (Exertier et al., 1994).
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Osculating Orbit built with GPS Data
"Observed" Mean Elements

Fig. 1. The Observed Mean Elements (circles) deduced from the
osculating orbits

We call “mean motion” the motion described by 6 orbital
parameters for which all short periodic variations, linked to
the period of revolution of the satellite, have been removed:
the osculating differential equations of dynamics are trans-
formed in an analytical way to get the averaged equations
of dynamics (see Ḿetris and Exertier, 1995). This transfor-
mation has been expressed by Métris (1991), for all the per-
turbations acting on the satellites, with respect to classical
keplerian elements: the semi-major axisa, the eccentricity
e, the inclinationi, the ascending node�, the argument of
perigeeω, and the mean anomalyM. To take into account
the coupling effects between geodynamical parameters, an
algorithm deduced from (Deprit, 1969) has been used, and
computed with the algebric manipulator MS (Claes et al.,
1988). Then the obtained averaged differential system ver-
ified by da′

dt
, de′

dt
, di′

dt
, d�′

dt
, dω′

dt
, and dM ′

dt
, is then integrated

numerically. The integration step size varies from 12 hours
for satellite with a high altitude such as LAGEOS, to 01:30
for CHAMP.
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Table 1. “Observed” Mean Elements of CHAMP. (at 0h 0min 19s for each date)

Day in 2001 a (km) e i (rad) � (rad) ω (rad) M (rad)

(DOY)
25/05 (145) 6806.28221 3.888580e − 03 1.523132e + 00 5.716833e − 01 2.814128e + 00 5.3630e + 00
30/05 (150) 6806.07340 4.308192e − 03 1.523125e + 00 5.387671e − 01 2.526129e + 00 6.1088e − 01
09/06 (160) 6805.68345 4.893797e − 03 1.523094e + 00 4.729402e − 01 2.001149e + 00 3.6857e + 00
14/06 (165) 6805.45877 5.027619e − 03 1.523100e + 00 4.399983e − 01 1.751527e + 00 5.2434e + 00
19/06 (170) 6805.20278 5.042196e − 03 1.523090e + 00 4.070647e − 01 1.504430e + 00 5.4073e − 01
14/07 (195) 6804.21183 3.556922e − 03 1.523080e + 00 2.421985e − 01 1.557047e − 01 2.6393e + 00
19/07 (200) 6804.04726 3.082365e − 03 1.523063e + 00 2.092147e − 01 6.093751e + 00 4.4463e + 00
24/07 (205) 6803.90098 2.646128e − 03 1.523088e + 00 1.762229e − 01 5.687903e + 00 4.7583e − 02
29/07 (210) 6803.76524 2.330767e − 03 1.523087e + 00 1.432553e − 01 5.205031e + 00 2.0243e + 00
03/08 (215) 6803.63319 2.228741e − 03 1.523090e + 00 1.102704e − 01 4.662077e + 00 4.0749e + 00
08/08 (220) 6803.45822 2.375377e − 03 1.523118e + 00 7.730452e − 02 4.127783e + 00 6.1328e + 00
13/08 (225) 6803.25792 2.714502e − 03 1.523113e + 00 4.434866e − 02 3.661787e + 00 1.8597e + 00
18/08 (230) 6803.01890 3.151972e − 03 1.523125e + 00 1.137314e − 02 3.270249e + 00 3.8187e + 00
23/08 (235) 6802.78114 3.611237e − 03 1.523143e + 00 6.261611e + 00 2.934493e + 00 5.7478e + 00
28/08 (240) 6802.51174 4.037581e − 03 1.523132e + 00 6.228651e + 00 2.635556e + 00 1.3831e + 00
12/09 (255) 6801.48869 4.836343e − 03 1.523138e + 00 6.129779e + 00 1.846483e + 00 9.4686e − 01
17/09 (260) 6801.06083 4.890453e − 03 1.523156e + 00 6.096809e + 00 1.598467e + 00 2.9620e + 00
27/09 (270) 6800.16159 4.657645e − 03 1.523126e + 00 6.030825e + 00 1.100856e + 00 8.4366e − 01
02/10 (275) 6799.56850 4.375503e − 03 1.523120e + 00 5.997823e + 00 8.435786e − 01 3.0177e + 00
07/10 (280) 6799.05970 4.003218e − 03 1.523086e + 00 5.964788e + 00 5.739729e − 01 5.2659e + 00
12/10 (285) 6798.51899 3.560818e − 03 1.523088e + 00 5.931724e + 00 2.827565e − 01 1.3078e + 00
17/10 (290) 6798.04108 3.080134e − 03 1.523061e + 00 5.898661e + 00 6.240625e + 00 3.7206e + 00
01/11 (305) 6796.17552 2.008292e − 03 1.523006e + 00 5.799295e + 00 4.835287e + 00 5.4768e + 00
06/11 (310) 6795.60040 2.071759e − 03 1.522998e + 00 5.766118e + 00 4.270222e + 00 2.1025e + 00
01/12 (335) 6792.97150 4.142496e − 03 1.522963e + 00 5.600058e + 00 2.408330e + 00 4.0049e + 00
06/12 (340) 6792.41668 4.459608e − 03 1.522976e + 00 5.566818e + 00 2.147855e + 00 6.6662e − 01
11/12 (345) 6791.83220 4.668439e − 03 1.522969e + 00 5.533574e + 00 1.904352e + 00 3.6575e + 00
16/12 (350) 6791.24413 4.767613e − 03 1.522987e + 00 5.500310e + 00 1.663690e + 00 4.2466e − 01
21/12 (355) 6790.65526 4.742050e − 03 1.522999e + 00 5.467064e + 00 1.425274e + 00 3.5360e + 00
26/12 (360) 6789.97174 4.598800e − 03 1.522988e + 00 5.433801e + 00 1.185720e + 00 4.3238e − 01

Due to divisions by the eccentricity inde′

dt
, dω′

dt
, and dM ′

dt
,

(Deleflie, 2002) has formulated the averaged differential sys-
tem with respect to the non-singular elements for eccentric-
ity C = e cosω, S = e sinω, andλ = ω + M. For satellites
with a small eccentricity such as CHAMP, this is in fact the
equations verified bydC′

dt
,dS′

dt
,dλ′

dt
which are integrated in a

numerical way, for gravitational effects as well as for non-
gravitational effects.

We propose here to apply to the CHAMP orbit the method
we have developed for geodetic satellites such as STAR-
LETTE (Exertier et al., 1999) or AJISAI (Deleflie, 2002).

We transform in Sect. 2 the osculating orbits computed
from May to December 2001 with GPS data to get the “ob-
served” mean elements. These quantities are comparable to
those computed with the CODIOR software.

Let note that a specific approach has been developed for
CHAMP to build the second member of the averaged equa-
tions of dynamics verified by non-gravitational forces with
the data obtained from the STAR accelerometer (Perret et al.,
2001). This specific approach makes it possible to give mean
characteristics of the STAR accelerometer, this is the subject
of Sect. 3.

The long arc of CHAMP is shown in Sect. 4. Such a long
period approach for CHAMP permits to give the characteris-
tics of the orbital mean motion on the basis of observations
obtained over a long period of time. And for example the
initial conditions of the motion. These conditions are all the
more determined with a great precision as there are few pa-
rameters which are used to compute the mean orbit.

The conclusion (Sect. 5) sums up the reached accuracy on
the long arc of CHAMP, and presents what can now be de-
veloped to improve it.

2 The removal of short period effects from the observa-
tions

To adjust a mean orbit on measurements, it is necessary to
get quantities comparable to those computed in the CODIOR
software. We call these quantities“observed” mean ele-
ments, even if they are not the quantities effectively observed
(this explaining the inverted comma).

There are two steps to build these “observed mean ele-
ments”.
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Table 2. Mean characteristics of the STAR accelerometer derived from CODIOR

Limits of areas CT CN BT BN

(DOY in 2001) (m.s−2) (m.s−2)

Aera 1 from 143 to 173 0, 42 0, 47 −1, 64 10−6
−0, 47 10−6

Area 2 from 173 to 226 0, 71 0, 25 −2, 6 10−6 0, 33 10−6

Area 3 from 226 to 281 0, 77 0, 25 −2, 8 10−6 0, 8 10−7

Area 4 from 281 to 293 0, 85 0, 25 −3, 2 10−6 0, 8 10−7

Area 5 from 293 to 341 0, 62 0, 25 −2, 3 10−6 0, 19 10−6

CT : Tangential scale factor.CN : Normal scale factor.BT : Tangential bias.BN : Normal bias.

First, short arcs are computed with a classical numerical
integration: we use the GINS software to compute 1-day
arcs, from the end of May 2001 to the end of December 2001,
derived from on board GPS tracking data with the short per-
turbations being present. These orbits are formulated with
orbital elements and not with positions and velocities, in or-
der to isolate the short from the long period perturbations.
The metric elements of all these orbits are shown in Fig. 1.

Secondly, all the short period terms are removed. This
filtering approach, applied in the CANEL software, is de-
scribed in (Exertier, 1990), and made up of two steps: first an
analytical step based on an explicit formulation of the short
period terms, expressed in a set of non singular elements for
eccentricity. This formulation is deduced from an analytical
solution of the Lagrange planetary equations (Deleflie et al.,
2003). The osculating elementsEosc contain long as well
as short period terms:Eosc = ELP + ESP . This solution
formulates the short period termsESP on the basis of the os-
culating elements, terms which are removed fromEosc. This
step enables to remove terms whose amplitude range from

decimeters to 10 km. Secondly, there is a numerical step
based on a convolution product (Goad, 1977), to filter short
terms not yet removed, in particular the resonances with a
characteristic period of about a few days: 2,3 days in the

case of CHAMP. That’s why we have chosen a window width
equal to 5 days. This width is not far from the Nyquist pe-
riod, but allows to get enough “observed mean elements”,
about one every 5 days (see Table 1).

As a result, we give the filtered orbital parametersELP in
Fig. 1.

3 Mean characteristics of the STAR accelerometer

In the CODIOR software, the equations of dynamics are for-
mulated in a set of non singular elements for eccentricity:
a, C = e cosω, i, �, S = e sinω, λ = ω + M. We use
therefore the averaged Gauss equations to take into account
the influence of a perturbative force

−→
F , with respect to the

corresponding mean variables (with a prime). This force is
decomposed in the classical frame linked to the satellite, and

oriented by the radial position:
−→
F

R
T
N

Defining η =
√

1 − C′2 − S′2, and n̄ the mean motion
of the satellite (linked to the third law of Keplern̄2a3

= µ

whereµ is the gravitational constant of the Earth), we can
write (Deleflie, 2002):

da′

dt
=

2η

n̄
T

dC′

dt
= −

S′η

n̄a′
R +

1

n̄a′

(
−C′η −

C′

2
+

C′(C′2
+ S′2)

2(1 + η)

)
T −

3

2
S′2 cosi′

n̄a′η sini′
N

di′

dt
= −

3

2

C′

n̄a′η
N

d�′

dt
= −

3

2

S′

n̄aη sini′
N

dS′

dt
=

C′η

n̄
R +

1

n̄a′

(
−S′η −

S′

2
+

S′(C′2
+ S′2)

2(1 + η)

)
T +

3

2
C′S′ cosi′

n̄a′η sini′
N

dλ′

dt
− n̄ =

1

n̄a′
(−3 + η)R +

3

2
S′ cosi′

n̄a′η sini′
T

(1)

The STAR accelerometer on board CHAMP measures, ev-
ery second, the resultant acceleration due to non gravita-
tional forces (air drag, Earth albedo, solar radiation, manoeu-
vers,...) in these three axes (radial, along-track and across-

track), that is to say the quantitiesRSTAR, TSTAR, NSTAR.
To take into account the instrumental characteristics, these
quantities are corrected, in each axe, with a scale factor and
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STAR ACCELEROMETER - CALIBRATION RESULTS

with the GRGS tools CODIOR (circle) and GINS (square).

Fig. 2. Characteristics of the STAR accelerometer: comparison between GINS and CODIOR

a bias, before their use in the Gauss equations:

Rreal = CRRSTAR + BR

Treal = CT TSTAR + BT

Nreal = CN NSTAR + BN

(2)

Before the use of these measurements in the CODIOR or-
bit computation, the raw data (level 1 data from GFZ Post-
dam) have been filtered to reduce the noise, to eliminate out-
liers and to fill the data gaps. This numerical preprocessing
is realized in three steps:

1. Filtering of the short periods smaller than the orbital pe-
riod of about 5400 s in the raw data, thanks to a Vondrák
filter (Vondŕak, 1969; 1977),

2. Detection and removal of outliers by comparing raw and
filtered data (3σ criterion),

3. Filling of the data gaps using spline interpolations. Only
the gaps smaller than the orbital period can correctly be
filled.

Due to problems on STAR, the data of the radial axe can
not be used (Koenig et al., 2001). We suppose therefore
R = 0. Moreover, the biases and scale factors in the two
other axes can be affected by very strong variations (in par-
ticular the biases), meaning the changes of the spatial envi-
ronment of the satellite (magnetic storms for example). Nev-
ertheless, they can be considered constant over the duration
of a short arc (1 or 2 days).

What is at stake in a long arc computation is the definition
of the mean characteristics of the accelerometer, i.e. only one
value for each bias and each scale factor over a long period
of time. A possible application of such an approach is the
study of possible slow drift in these characteristics. With no
uncontrolled jumps in the accelerometric data, this would be
easy. But these jumps have a great influence on the mean
motion. To manage them to a certain extent, we have empiri-
cally divided the considered period in five areas (see Table 2).
For each area, we have adjusted the bias and the scale factor
for the along track and accross track axes (i.e. 20 parameters
over the whole period).

The results of these adjustments are shown in Table 2.
They have been adjusted at the same time as the initial con-
ditions of the arc. Figure 2 shows the comparison between
the results derived by CODIOR and those derived by GINS,
the GRGS classical software.

The results are quite similar, even if CODIOR adjusts so
few empirical parameters. In particular, let note that the tan-
gential bias has a better stability in GINS than in CODIOR.
The difference of stability of the normal scale factor between
the two softwares is still unexplained. A part of these dif-
ferences could come from the difference of nature of the ad-
justed parameters in CODIOR and GINS. In this figure, for
GINS, the plotted coefficients areCT , CN , CT βT , CNβN ,
since the parameters adjusted by GINS,CT , CN , βT , βN ,
verify:

Rreal = CR(RSTAR + βR)

Treal = CT (TSTAR + βT )

Nreal = CN (NSTAR + βN )

(3)
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Semi-major Axis

Time (DOY)

145                    173                                            226                                      281        293                                   335

Eccentricity

145                    173                                            226                                      281        293                                   335

Inclination

145                    173                                            226                                      281        293                                   335

Fig. 3. Evolution of the metric elements of the long arc of CHAMP.

Nevertheless, we think that we can conclude that there is
no slow drift in the accelerometer, drift which can not be seen
with short arcs. A longer period of analysis would be useful
to confirm that.

4 The Long Arc of CHAMP

On the basis of the available accelerometric data and of the
“observed” mean elements, we have computed a mean arc
of CHAMP over a period of 190 days in 2001, from May
25th to December 1st: since only the gaps in accelerometric
data smaller than the orbital period can correctly be filled, the
length of the mean arc computed with CODIOR is shorter
than the period when “observed” mean elements are avail-
able, but reaches nevertheless more than the period of two
revolutions of the argument of the perigee (about 92 days).

First, we have checked that CODIOR enables to compute
a mean orbit as low as this of CHAMP: in Table 3, we show
that the semi-analytical model built to compute mean orbits
with an altitude of 800 km or more still leads to a great preci-
sion, and that the neglected coupling effects have not a strong
influence at 400 kilometers.

Over that period of 190 days, we have computed a single
long arc with the following standards:

– GRIM5-S1 for the gravity field model (Biancale et al.,
2000),

– (Schwiderski, 1980) for the ocean tides,

– the Love numbersk2 = 0, 299 andk3 = 0, 094 to com-
pute the terrestrial tides,

– the VSOP82 theory for the luni-solar effects and the
planets (Bretagnon and Francou, 1988).

The shapes of the computed metric elements are shown
Fig. 3, and the residuals in Fig. 4. In order to validate the
averaging method of the accelerometric data, another arc

Residuals on the semi-major axis
with the use of accelerometric data

with the use of non gravitational models

145                    173                                            226                                      281        293                                   335

145                    173                                            226                                      281        293                                   335

Time (DOY)
(a)

Residuals on the inclination

with the use of accelerometric data

with the use of non gravitational models

Time (DOY)

145                    173                                            226                                      281        293                                   335

145                    173                                            226                                      281        293                                   335

(b)

Fig. 4. Comparison of the results obtained with accelerometric data
and with non gravitational models. The residuals we get on the
semi-major axis are about 30-40 meters, and have to be compared to
the total decrease due to the atmospheric drag which reaches 12 km.
For the inclination, we get lower residuals when using accelerome-
tric data, since the non-gravitational model we have used does not
include the management of shadow effects. On the eccentricity, we
get a level of residuals of 2, 3 10−5 (which corresponds to 150 m,
to be compared to a total variation of about 21 km). The residuals
obtained on the angular elements are about 6, 2 10−5 on the ascend-
ing node, 3, 2 10−3 on the argument of the perigee, 1, 2 10−2 on
the rapid variable.

has been computed with a non-gravitational model includ-
ing only the atmospheric drag (modelled in DTM-94; Berger
et al., 1998). At the same time, the comparison with the first
arc confirms that, at low altitudes, accelerometric data permit
to reach a better accuracy of the orbit than non-gravitational
models, even if the values of air drag scale factors are close
to 1 (see Table 4).

5 Conclusion

Since few years, the concept of mean orbital motion is devel-
oped into the CANEL/CODIOR package, allowing to anal-
yse the long periodic and secular variations affecting a long
arc orbit (typically over several thousands of revolutions).

The mean gravitational model of the semi-analytical the-
ory is actually suited for altitude greater than 800 km. Nev-
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Table 3. Long period effects on the orbital parameters: Theoretical amplitudes due to gravitational effects, and corresponding residuals in
the CODIOR software. Amplitudes of the long period effects depend on the altitude of the satellite. For each satellite, and for each mean
variablea′, i′, �′, C′, S′, λ′, are shown these theoretical amplitudes due to gravitational effects (static part of the gravity field developed up
to degree and order 40, terrestrial and oceanic tides, luni-solar effects) in the first column (not including the influence ofJ2), and the level of
residuals obtained in CODIOR in the second one. In each case, the residuals are not equal to zero because some negligible coupling effects
are not included in the model [Deleflie,2002]. All quantities are expressed in meters (m), with arcs computed over a period of 200 days. It
appears that the level of the residuals is still very satisfactory, even with a low altitude such as this of CHAMP.

LAGEOS STELLA CHAMP
' 6000km ' 800km ' 400km

Ampl. of RMS Ampl. of RMS Ampl. of RMS
signal(m) (m) signal(m) (m) signal(m) (m)

a′ 4, 7 10−3 4, 5 10−3 9, 6 10−3 9, 5 10−3 5, 3 10−3 5, 3 10−3

i′ 6, 0 103 7, 9 10−5 3, 8 103 6, 6 10−1 1, 1 103 2, 2 10−1

�′ 4, 8 103 6, 4 10−5 4, 5 104 2, 0 100 2, 0 103 2, 0 100

λ′ 1, 3 105 2, 5 100 1, 9 106 7, 6 101 3, 8 105 4, 4 102

C′ 3, 5 103 1, 1 10−2 1, 4 104 4, 3 10−2 2, 6 103 2, 6 100

S′ 1, 2 102 3, 6 10−9 1, 1 103 1, 4 10−6 1, 1 103 5, 7 10−4

Table 4. Values of air drag scale factors. Atmospheric drag model:
DTM-94

Limits of areas
(DOY in 2001)

Aera 1 from 143 to 173 1, 03
Area 2 from 173 to 226 1, 10
Area 3 from 226 to 281 0, 94
Area 4 from 281 to 293 1, 18
Area 5 from 293 to 335 0, 82

ertheless, an application to the CHAMP orbit has been re-
alized here. Instead of mean non-gravitational models, we
use accelerometric data provided by the STAR accelerome-
ter. These are measured accelerations (of the total surface
forces acting on the satellite), which are to be averaged dur-
ing the long arc computation. Many difficulties have come
from the use of these data, because of the data noise level,
the numerous gaps in a long time-serie, and also because of
the few parameters used in CODIOR to calibrate the mea-
surements.

In this context, we have investigated the sensibility of
the mean orbital motion of CHAMP to a long term varia-
tion (through the biases and scale factors) of the STAR ac-
celerometer. The method is purely dynamical. We use the
fact that analysing a single long arc of 200 days is much more
efficient than using 1-day arcs, even if the later approach is
much more precise, in terms of orbit determination, than the
former.

Results of the long arc fitting thus allow to determine em-
pirical coefficients with a level of relative precision of around
10−3. This precision directly depends on the variations of the
mean orbital elements. Obviously, in case of the CHAMP or-
bit, the semi-major axis variations, of about 12 km over a pe-

riod of 200 days, are the greatest, allowing to compute along
track coefficients with precision. In addition, the control of
the decreasing of the satellite altitude is at the same relative
level: the residual in the mean semi-major axis are around
30 m rms.
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Métris, G. and Exertier, P.: Semi-Analytical Theory of the Mean
Orbital Motion, Astron. Astrophys., 294, 278–286, 1995.

Perret, A., Biancale, R., Camus, A. L., Lemoine, J.-M., Fayard,
T., Loyer, S., Perosanz, F., and Sarrailh, M.: CHAMP mission:
STAR Commissioning Phase Calibration/Validation Activities in
CNES, Technical Report CNES, 2001.

Schwiderski, E. W.: Ocean tides, Part 1: Global ocean tidal equa-
tions, Marine Geodesy, 3, 161–207, 1980.
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