
Piotr Poznański
Mariusz Wawrowski

IMPROVING SOFTWARE SYSTEMS
BY FLOW CONTROL ANALYSIS

Abstract Using agile methods during the implementation of the system that meets mission
critical requirements can be a real challenge. The change in the system built of
dozens or even hundreds of specialized devices with embedded software requires
the cooperation of a large group of engineers. This article presents a solution that
supports parallel work of groups of system analysts and software developers.
Deployment of formal rules to the requirements written in natural language
enables using formal analysis of artifacts being a bridge between software and
system requirements. Formalism and textual form of requirements allowed the
automatic generation of message flow graph for the (sub) system, called the
“big-picture-model”. Flow diagram analysis helped to avoid a large number of
defects whose repair cost in extreme cases could undermine the legitimacy of
agile methods in projects of this scale. Retrospectively, a reduction of technical
debt was observed. Continuous analysis of the “big picture model” improves the
control of the quality parameters of the software architecture. The article also
tries to explain why the commercial platform based on UML modeling language
may not be sufficient in projects of this complexity.

Keywords software engineering, architecture definition, requirements management,
testing, agile, systems modeling

19 czerwca 2012 str. 1/12

Computer Science • 13 (2) 2012 http://dx.doi.org/10.7494/csci.2012.13.2.81

81

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26957505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Nowadays system engineers are facing new challenges [13]. Finding a strategy that
enables the rapid development of high-quality products being a hybrid of software
components developed using numerous specific technologies is not a trivial task. Suita-
ble technology and process should support efficient system evolution the management
of technical debt should be element of this strategy. For example, the traditional em-
bedded system should be developed the way to minimize potential cost of migration
from/to the system on the chip (SoC) solution to/from the system in the box (SIB).
This expectation usually leads to solution where implementation gets independent
of hardware and technology as much as possible. Achieving greater scalability and
viability of solutions in distributed systems without compromising on other quality
parameters is next step.

Software developers often use UML language while system engineers work on
quality attribute scenarios using six-part-templates (SPT). Fortunately, there is a na-
tural convergence between UML diagrams and the model contained in the SPT nota-
tion. This has become an incentive for authors to create a tool allowing for automatic
generation of high level message flow. The diagram is limited to collaboration betwe-
en active objects. It can be generated based on SPT specification. It is interesting to
see how SPT in conjunction with formal language supported by the tool impacts on
software development in terms of:

• Productivity

– Speed up startup work on implementation.
– Optimize refactoring effort.
– Reduce the cost of maintenance work on requirements and initial model.

• Quality

– Reduce the total number of defects.
– Minimize defect introduced in the requirements.
– Improve traceability – control scope change (work out method allowing to

get formal link between system and software implementation).

• Technical debt

– Control modifiability, scalability, performance indicators.
– Open architecture for Commodity-Off-The-Shelf (COTS) hardware compo-

nents to enable rapid development.
– Reduce dependency from IDE to minimize migration between (environments

e.g. from TAU to IBM Rational Rhapsody).

2. Literature review

Since the “Structured Design” article [8] was published, the subject of software ar-
chitecture modeling has been widely discussed among engineers in the IT industry. It

19 czerwca 2012 str. 2/12

82 Piotr Poznański, Mariusz Wawrowski

is worth paying attention to the Data Flow Diagram (DFD), not only for historical
reason, but because it represents a procedural system analysis method being used
often in legacy systems that need support until now [9]. Nowadays, the best-known
modeling language is UML, representing object oriented design (OOD) techniques.
An interesting comparison OOD and DFD is presented by Morris [10]. UML is also
widely used during embedded software development. Samek presents the effective use
of UML state-charts for modeling small embedded systems [11]. IBM Rational Rhap-
sody is an example of an environment that may address the expectations of engineers
who work on more complex embedded systems. The methodology based on this tool
is presented by Bruce Powel Douglass [3]. On the other hand, some inconveniences
of the UML are listed by Scott W. Ambler [2]. For example, he stresses the lack of
effective support for systems based on SOA. Ambler also shows how DFDs are used
in projects driven by agile practices. Using DFD in today’s modeling is also shown by
Fairbanks [1]. Attention is drawn to the simplicity of DFD generation based on the
static analysis of the source code. The lecture of the article of M. Dalgarno and M.
Fowler [14] is also interesting. The authors discuss the benefits and disadvantages of
domain specific languages (DSL). An important opinion contained in this work is the
statement: “a basic DSL can be produced using UML profiles and this will often be
a viable and relatively quick approach”. It is necessary to mention the architecture
tradeoff analysis method (ATAM) [12][5]. SPT is related to this method and assumes
writing requirements as quality attribute scenarios (QA)[1].

3. The six-part template and formal language

Since the choice of software development process is associated with enabling optimal
communication between all project stakeholders, the presented approach focuses on
the information flow between requirement or architecture developers and code deve-
lopers. Architects may use SPT to analyze and document use cases in text form (user
scenario) stored in requirement repository e.g. DOORS. SPT at lower levels of de-
sign may be also used. Active Objects [13] behavior and communication is described
in SPT. Therefore, linking the user scenarios and design artifacts in a natural way
(traceability) is facilitated, and formal verification of the completeness and consisten-
cy between the requirements (architecture and code) is possible using the presented
approach.

The approach consists of a specification language based on SPT and a self-
developed toolsuite. It allows for:

• system message flow visualization on a directed graph,
• querying endpoints (objects) for protocols and protocols for endpoints,
• identification of orphaned messages and finding lacks in the design specification,
• identification of uncovered or duplicated areas and message flow paths,
• having plain-text model representation that could be testable.

19 czerwca 2012 str. 3/12

Improving software systems by Flow Control Analysis 83

As a result of the analysis of the data obtained by the toolsuite, it is possible to:
• identify critical paths through the system and plan for tests,
• identify possible points of failure and risk areas,
• identify possible flaws and suboptimal design such as overloaded components.

3.1. Language

The specification language is a DSL plain text based on SPT described in the literature
[5]. Project legacy requirements had already had textual representation, deployed tools
(DOORS) were text oriented and in such circumstances it was also faster to create
processing tools for textual representation. An example of a specification requirement
shows the basic concepts of the language (Listing 1).

Artifact: TService::TServiceManager,TService::TDownlinkService,
RFModemDst_I, TService::TRepeatController
Source: RFModemDst_I
Stimulus: acceptFrame() with ICW START (TRANS MODULA APCO ICW
or TRANS MODULA ACTLICW)
Environment:
TServiceManager is in IDLE state (no on-going Services)
TDownlinkService is in IDLE state (no on-going Services)
Response:
TServiceManager converts the ICW START to OutboundServiceRequest
TServiceManager sets the infrastructureActive flag
TServiceManager grants the Downlink Service
TServiceManager sends initServiceRequest() signal to TDownlinkService
TServiceManager sends TDownlink() signal to TRepeatController

Listing 1: A requirement specification example

The Artifact section specifies all the actors (objects) taking part in a specifica-
tion requirement. The Source section specifies the originator of a message that triggers
specified behaviour. Stimulus is a signal sent by the Source (in this example, RFMo-
demDst I). The purpose of the Environment section is to specify the internal state of
the requirement’s actor (in this case TServiceManager). Finaly, the Response section
describes all the actions taken by the actor triggered by the Stimulus sent by the
Source. In the Reponse section the following statements are recognised by the parser:
• X sends signal to Y,
• X sets SomeVariable/SomeFlag to value,
• X enters S state.

The language parser in contrast to a regular programming language parsers by
the design choice allows statements that are not recognised. It is allowed to enter
comments or very specific annotations, which are just skipped. This fact forced by
legacy considerations introduces some relaxation of the expression rules, however, it
opens up the door for entering erroneous statements. The parser generates warnings

19 czerwca 2012 str. 4/12

84 Piotr Poznański, Mariusz Wawrowski

on such occasions and it is possible to obtain simple reports on how many lines were
found and parsed in requirements as a very simple countermeasure (listing 2). It is
planned to remove this feature and leave only a strict parsing mode with stop on error
behaviour, once legacy syntax is removed out of all requirements.

Number of parsed lines in responses
COMP-USE-CASE-6009 (Req): 5 of 5
COMP-USE-CASE-5717 (Req): 3 of 4
COMP-USE-CASE-5978 (Req): 5 of 5
COMP-USE-CASE-5714 (Req): 3 of 3
COMP-USE-CASE-5713 (Req): 3 of 6
COMP-USE-CASE-6154 (Req): 5 of 9
COMP-USE-CASE-6151 (Req): 3 of 8
COMP-USE-CASE-5738 (Req): 2 of 6
COMP-USE-CASE-5736 (Req): 3 of 11
COMP-USE-CASE-6152 (Req): 7 of 15
COMP-USE-CASE-6153 (Req): 5 of 13
...

Listing 2: An example of parser output

3.2. Graph Representation

Graph representation is generated out of the specification. Actors (objects) are the
nodes, and vertices are marked with messages and numbers of requirements which
describe specific interactions. An example of a subgraph generated for about a dozen
and hundreds (out of several thousands) requirements are presented in Fig. 1 and
Fig. 2, respectively.

IServiceAo IServiceAppContext

acceptShortTermRxData (6151)

processFrame (5717 5978)

acceptRxFrameTerminate (5738 5736)
processAbnormalRxFrameTerminate (6154)

processWaveRssi (5714)

acceptWaveRxAccessCode (6154 6152 5719 6153 5713)

Figure 1. An example of a graph of 12 requirements

4. Results

A few main metrics were used to measure the productivity of a software development
team and the quality of its result – software product. Some of them are interrelated

19 czerwca 2012 str. 5/12

Improving software systems by Flow Control Analysis 85

StartApp

LssConfigPDFacade

getSiteID (7176)

RFModemSrc_I

initialize (5939)

disableService (5939)

TransmitterInterface

setBusyQualifiers (6037)
updateBusyQualifiers (5983)

getBusyQualifiers (5983)
updateBusyQualifiers (5984)

getBusyQualifiers (5984)

CvBRConfigPDFacade

getTxNac (6014)

RFSrc_I

acceptAstroAccessCode (6014)

configureBusyQualifiers (6014)

stopCall (5942)

startCall (6060)

stopCall (6063)

stopCall (6064)

startCall (6064)

stopCall (6072)

acceptAstroAccessCode (6036)

configureBusyQualifiers (5983)

startCall (5983)

stopCall (6040)

configureBusyQualifiers (5984)

startCall (5984)

stopCall (6041)

acceptLaunchTime (6005)

acceptLaunchTime (6006)

acceptFrame (6050)

acceptFrame (6051)

TxPDFacade
getControlChannelSlotSize (6014)

InfrastructCallAo

InfrastructCallCvBrContext

acceptAstroRxAccessCode (5719)

processFrame (5717)

processFrame (5978)

processAstroRssi (5714)

acceptAstroRxAccessCode (5713)

acceptAstroRxAccessCode (6154)

acceptAstroRxAccessCode (6153)

InfrastructCallCvBRContext

processAbnormalRxFrameTerminate (6154)

acceptShortTermRxData (6151)

acceptRxFrameTerminate (5738)

acceptRxFrameTerminate (5736)

acceptAstroRxAccessCode (6152)

LssConfigNonPDFacade

setAstroNetworkAccessCode (5719)

setAstroNetworkAccessCode (5713)

setAstroNetworkAccessCode (6154)

setAstroNetworkAccessCode (5738)

setAstroNetworkAccessCode (5736)

setAstroNetworkAccessCode (6152)

setAstroNetworkAccessCode (6153)

setAstroNetworkAccessCode (5858)

RxNacValidator

acceptNAC (5719)

validateNac (5713)

validateNac (6154)

acceptNAC (6152)

acceptNAC (6153)

RfModemSrc_I
startCall (5719)

stopCall (6152)

startCall (6152)

stopCall (6153)

startCall (6153)

It WirelineFrameembedReceiveInfo (5717)

Context

acceptFrame (5717)

acceptFrame (5978)

processAbnormalCallTermination (5736)

processValidAccessCode (6152)

acceptNAC (6152)

processNormalRxFrameTerminate (6151)

stopCall (6154)

stopCall (6151) frame

delete (5677)

sendFrame newembedReceiveInfo (5857)

TxCallManager

processAstroRssi (5890)
calculateBer (6047)
calculateBER (5971)
calculateBer (5863)
calculateBer (5970)
calculateBer (5880)
calculateBer (5880)
calculateBer (6102)
calculateBer (6104)
calculateBer (6105)

TxDownlinkCall

initCallRequest (5732)

initCallRequest (5731)

sourceTakeover (5905)

sourceTakeover (6102)

initCallRequest (5903)

initCallRequest (6107)

TxRepeatController

txDownlink (5732)

txDownlink (5731)

txIdle (6049)

txIdle (6048)

txIdle (5905)

txIdle (6102)

txIdle (6108)

txDownlink (5903)

txDownlink (6107)

itself

setRepeaterActivity (6049)

setRepeaterActivity (5862)

setRepeaterActivity (6047)

setRepeaterActivity (6019)

setRepeaterActivity (6048)

setRepeaterActivity (5904)

setRepeaterActivity (6104)

setRepeaterActivity (6105)

setRepeaterActivity (6108)

setRepeaterActivity (5903)

setRepeaterActivity (6107)

UplinkLcInfo

calibrateRssi (5890)

calculateRssiBerSourceId (6111)

WirelessFrame

accumulateBer (6027)

extractSourceIdInfo (6027)

TxAPCStorage

isSourceIdDecoded (6027)

isSourceIdDecoded (6111)

GenericWirelessTermLcembedAdapPowerInfo (6111)

on

reInitAdapPowerLcInfo (6111)

reInitAdapPowerLcInfo (5970)

reInitAdapPowerLcInfo (6104)

TxRepeatCall

initCallRequest (5862)

initCallRequest (6047)

initCallRequest (5904)

initCallRequest (6108)

sourceTakeover (5906)

startCall (6044)

acceptFrame (5729)

acceptFrame (5728)

acceptFrame (5778)

acceptFrame (5725)

acceptFrame (5782)

acceptFrame (5722)

acceptFrame (5790)

stopCall (5723)

acceptFrame (5727)

acceptFrame (5979)

acceptFrame (5740)

stopCall (5942)

callFinished (5723)

callFinished (5942)

callFinished (5988)

command

execute (5728)

execute (5790)

DownlinkTxBuffer

dequeueNextFrame (5727)

dequeueNextFrame (5979)

BsiTransStateObserver

BsiScheduler
bsiEnabled (5822)

applicationDisabled (5829)

startBsi (5825)

startBsi (5826)

stopBsi (5827)

stopBsi (5829)

stopBsi (5830)

BsiSchedulerTxActivityObserver

txActive (5823)

txInactive (5824)

txActive (6000)

txActive (6001)

txActive (6004)

txActive (5830)
BsiIntervalTimerObserver

bsiIntervalTimerChanged (5831)

acceptFrame (6112)

startCall (6046)

acceptLaunchTime (6046)

acceptFrame (5876)

acceptFrame (5977)

acceptFrame (5874)

acceptFrame (5872)

stopCall (5974)

acceptFrame (5871)

acceptFrame (5869)

stopCall (5870)

stopCall (5972)

callFinished (5974)

callGrant (5910)

callFinished (5870)

callFinished (5972)

callFinished (5987)

TxCall

TransmitterTest

startTxTest (6059)

startTxTest (6061)

launchtime (6061)

stopTxTest (6062)

TxCallInterfaceBase transmitterBusy (6862)

transmitterIdle (6863)

TxRepeatConfig

callSTOP (5911)

updateRepeaterConfig (6854)

updateRepeaterConfig (6855)

TxNonPDFacade

setRepeaterConfig (6856)

setRepeaterConfig (6856)

setRepeaterConfig (6856)

RtsApplicationMgr BrStatus_IperformRts (6091)
performRts (6093)

ForceRptrGateStateObserver CvBRConfigNonPDFacade

getForceRptrGateState (8669)

setGateConfig (8669)

setGateConfig (8669)

CvBRBrstatContext BrstatContext

initialize (5940)

infrastructureInterfaceChanged (5940)

infrastructureStateChanged (5940)

IllegalCarrierAo

IllegalCarrierConditionFsm
reset (6926)

reset (6927)

IllegalCarrierStateFsm

reset (6926)

reset (6927)

StartAppCvBR StartAppCommonstartVerVal (6155)

startVerVal SwdlClient_IinitSwdlServiceCmd (6155)

Figure 2. An example of a graph of hundreds requirements

19 czerwca 2012 str. 6/12

86 Piotr Poznański, Mariusz Wawrowski

not always in linear or sublinear manner, and sensitive to general project structure.
This again can be analysed further by introducing more specific and detailed metrics.
However, some qualitative indication with a reasonable trust level are conducted based
on:

• effort used e.g. expressed in man-month,
• software and process quality expressed in defects found in software during inte-

gration and acceptance testing.

Two more metrics should be mentioned as very important:

• team size
• overall project time

because they impact the effort and quality strongly. The better the development
project scales, the longer man-month, project time and development team size are
interdepedent lineary. In the general defect number depends on project size, process,
tools, and team experience neglecting other dependencies such as overall time. The
better process and tools are, less the defect number is affected by the team experience.

Technical debt, a very important metric, very often estimated in man-month is
measured indirectly as a difference of planned effort spent between two consecutive
releases.

For the sake of clarity and to avoid blurring the discussion, the analysis will be
conveyed with effort, defects number, and technical debt. Quantitive indication to
draw conclusions will not suffer.

Results and conclusions are given based on metrics gathered during three conse-
cutive software projects (Project 1, 2, 3) of adding new features to an existing code
base. Essentially, the second project was a continuation of the first one, and the third
a continuation of the second one. Sizes of the projects varied as the number and nature
of the features did.

Project 1 was lead using an old development process without having in place
the solution presented in this paper. The solution was introduced in Project 2 with
roughly a new development and architecture team (team A). Project 3 was lead with
the same process as Project 2, however, in addition to team A (with rotation about
50% of developers) an entirely new team (team B) was introduced. Team B was
couched by team A to some extend, however, team B did not use strict rules for
creating and managing SPT.

Projects metrics data are presented in Table 1. They had been estimated with:

• COCQALMO for estimating the number of defects injected by a particular de-
velopment team.
• Function Points Analysis (FPA) and Wideband Delphi for estimating effort ne-

eded for software development.

Project 1 and 2 were estimated exactly with the same parameters in FPA and
COCQALMO, thus did not take into account probable gains of the new development
process in both resource demand and quality plains for Project 2. The estimation

19 czerwca 2012 str. 7/12

Improving software systems by Flow Control Analysis 87

Table 1
Project metrics data

project
/team

estimated
effort

effort refactoring /
estimated
technical debt
decrease

estimated
defect
numbers

actual defect
number

1/x 220 220 n/a 70 70
2/a 220 200 20 65 40
3/a 400 380 20 120 80
3/b 500 550 n/a 200 210

methods were customised for the new process and advances in team A experience for
Project 3. There are a few important observations based on presented metrics:

Technical debt decrease
Although, for Project 2 effort was consumed as estimated, the same as for Project
1, in contrast to Project 1 at the end legacy and new architecture and implemen-
tation were refactored to achieve more general architecture leading to enable
a better fit of implementation of new features in Project 3. It took about 10% of
the effort, which makes for 20 man-months. Therefore, it may be estimated that
the technical debt was decreased by 20 man-months.

Software quality increase
The defects number (per man-month) was lower in Project 2, which proved the
new process to result in better quality software

Project structuring
Comparison of defects number between teams in Project 3 shows that when
a loose approach to SPT was excercised the quality of code decreased and effort
increased beyond estimations.

5. Consequences and considerations

The presented solution has an impact on several aspects of the software process deve-
lopment. The most important benefits and disadvantages are highlighted and discus-
sed below.

Architecture analysis
The flow diagram shows the so-called “big picture” and allows for rapid overview
and semi-automate analysis of the entire system at this level. For example, this
may be a qualitative analysis of architecture (scalability, performance, modifia-
bility), in effect leading to the construction of a software development strategy,
taking into account a compromise between factors such as “time to market” and
quality.

Reverse and forward engineering
Possibility to generate specification in SPT based on the existing source code

19 czerwca 2012 str. 8/12

88 Piotr Poznański, Mariusz Wawrowski

(reverse engineering) is also an interesting feature. The auto-generated artifact is
a model, a bridge between requirements (written in text form) and source code.
The audit of this model can be done manually or automatically. It may lead
to discovering incompatibilities between source code and requirements. Further
analysis leads to the conclusion that model may be used during various software
development phases.

• The forward engineering approach assumes optimizing the design phase ef-
fort. The new function can be visualized as a change in a relation between
components and in message flow. Naturally, the “big picture” does not in-
clude implementation details that affect the overall quality of the product.
It comes from the assumption that a detailed analysis of individual compo-
nents takes place during code and unit test implementation e.g. test driven
development methodology (TDD). Responsibility for low level details is de-
legated to developers working on source code. The high level view presented
in the flow diagram is also useful to define an optimal test strategy [6, 7].
Enabling efficient ramp-up for less experienced engineers is another positive
side effect of this approach.
• The reverse engineering approach is based on the review and audit of the

design after software code creation. The result of this review leads to deci-
sions helping to manage the source code refactoring in future projects. For
example, after agile iteration engineers may execute a static source code
analysis to capture the flow diagram. It facilitates design audit in the post-
development phase and defines the strategy how technical debt should be
paid.

Defect number reduction
As shown quality improvements were achieved mostly by catching errors in the
early stages of software development.

Technical debt
Technical debt management designates the direction of long term software evo-
lution. The optimal strategy of payoff the technical debt should be driven by
business value referring to predicted revenue, effort distribution across system,
product quality, cost and time to market factor. The “big picture” diagram helps
us to assess the architecture quality indicators and estimate technical debt value.

Commercial of the shelf (COTS)
Usually the best option is to invest in commercial tools supporting modeling
in UML. The message sequence chart or high level collaboration diagrams are
sufficient to create “big picture”. Unfortunately, there are also potential disa-
dvantages:

• Model environment is not integrated with upstream artifacts that impacts
the maintenance of traceability between requirements, model, and source
code.

19 czerwca 2012 str. 9/12

Improving software systems by Flow Control Analysis 89

• Integration between modules developed in other commercial environment is
difficult.
• Model representation written in non-standard language hinders the exten-

sion of commercial toolsets.
• The cost of migration between commercial environments impacts on tech-

nical debt value.
• The cost of license and maintenance impacts on return of investment (ROI)

Extra effort
The specific language using SPT, requirements repository, tools and integration
it to existing development environment require additional investment. However,
improving the development environment and deploying methods that fits to pro-
ject domain can be supported by incremental development processes. The gradual
change and frequent feedback allows for the assessment of the benefits and mini-
mizes the risk of bad investments during the project.

Despite these considerations, industry results show that the commercial environ-
ment and toolkit give a lot of benefits in terms of quality and rapid development.
However, there is still place for domain specific solution. Language and tool presented
in previous section extends capability of the commercial toolkit, where mitigation of
the above disadvantages may be as result. For example IBM Rational Rose model
used by software developers may be easily linked to requirements written in SPT
notation. This formal link reduces unintended differences between requirements and
source code. This form of requirements enables migration to any new more advanced
environment where the development of new features may be done more efficiently.

6. Future plans

The presented solution will be extended in two areas: specification language and the
processing toolsuite. As for the language, it is foreseen to include UML and research
in the area of workflow description specific languages. The toolsuite may be extended
to allow for:

• Technical debt analysis.
• Using XML to facilitate integration with widely accepted tools such as Rational

Rose Architect.
• Code reverse engineering – it is desired to recreate at least a partial specification

by reading e.g. C++ language. It will be highly domain specific and assume some
tight constraints on the expressiveness of a programming language being reverse
engineered.
• Code generation same as some tools already supplied, e.g. IBM Rational Rose.

The ideal vision is to have a one tool or workflow with possibility of system
specification, implementation and creating tests, so to speak, to close loop, and
encompass the formal development from the specification formulation down to
very implementation and testing.

19 czerwca 2012 str. 10/12

90 Piotr Poznański, Mariusz Wawrowski

• Integration with a database system to enable efficient querying for specific pro-
perties such as definitions of protocols, endpoints, etc.

7. Summary

Formally, presented language and toolsuite are oriented on modeling. The main goal
was to create specific collaboration diagram. Initially, presented language was created
as an efficient method for auditing requirements and design, and optimization of
project effort. Defect number was reduced. The tool is a promising method to manage
technical debt efficiently therefore a method for identification of enablers leading to
more scalable and open architecture in the future – similar to SOA.

References

[1] George H. Fairbanks; Just Enough Software Architecture: A Risk-Driven Appro-
ach Marshall & Brainerd, 2010

[2] Scott W. Ambler; The Object Primer: Agile Model-Driven Development with
UML 2.0;Cambridge University Press; 2004

[3] Bruce Powel Douglass; Real-Time Agility: The Harmony/ESW Method for for
Real-Time and Embedded Systems Development (Kindle Edition); Addison-
Wesley Professional, 2009.

[4] Bruce Powel Douglass; Real Time UML Workshop for Embedded Systems (Em-
bedded Technology); Newnes, 2006

[5] Robert L. Nord,Mario R. Barbacci,Paul Clements,Rick Kazman,Mark Klein,
Liam O’Brien, James E. Tomayko; Integrating the Architecture Tradeoff Analy-
sis Method (ATAM) with the Cost Benefit Analysis Method (CBAM); Carnegie
Mellon University, 2004

[6] Cheng A.M.K.: Real-Time Systems: Scheduling, Analysis, and Verification. John
Wiley & Sons, 2002

[7] Porter A.; Accelerated Testing and Validation. Elsevier, 2004
[8] Wayne P. Stevens, Glenford J. Myers, Larry L. Constantine: Structured Design

(IBM Systems Journal, 13 (2), 115-139, 1974 IBM Systems Journal, 13 (2),
115-139, 1974)

[9] Bruza, P. D., Van der Weide, Th. P.:The Semantics of Data Flow Diagrams,
University of Nijmegen, 1993

[10] Morris, M. G., Speier, C. and Hoffer, J. A. (1999), An Examination of Proce-
dural and Object-oriented Systems Analysis Methods: Does Prior Experience
Help or Hinder Performance?. Decision Sciences, 30: 107-136. doi: 10.1111/j.1540-
5915.1999.tb01603.x

[11] Samek, M. (2006). UML Statecharts at $10.99. Dr.Dobbs Journal, May 24, 2006
[12] Bass, Len, Clements, Paul and Kazman, Rick: Software Architecture in Practice,

2nd edition.Addison-Wesley, 2003

19 czerwca 2012 str. 11/12

Improving software systems by Flow Control Analysis 91

[13] P. Poznański, M. Wawrowski, J. Smagłowski. Trendy rozwoju architektury apli-
kacji osadzonych na systemach czasu rzeczywistego. KKIO, 2011

[14] Mark Dalgarno, Matthew Fowler: “UML vs. Domain-Specific Languages”, Me-
thods & Tools – Summer 2008

Affiliations

Piotr Poznański
Institute of Teleinformatics, CUT Kraków, poznan@mars.iti.pk.edu.pl

Mariusz Wawrowski
Motorola Solutions, Kraków, mariusz.wawrowski@motorolasolutions.com

Received: 19.12.2011
Revised: 04.04.2012
Accepted: 23.04.2012

19 czerwca 2012 str. 12/12

92 Piotr Poznański, Mariusz Wawrowski

