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Abstract. Weichselian cryogenic calcites collected in what
is referred to as the R̈atselhalle of the Herbstlabyrinth-
Advent Cave system are structurally classified as rhombo-
hedral crystals and spherulitic aggregates. The carbon and
oxygen isotopic composition of these precipitates (δ13C =
+0.6 to −7.3‰; δ18O = −6.9 to −18.0‰) corresponds to
those of known slowly precipitated cryogenic cave calcites
under conditions of isotopic equilibrium between water and
ice of Central European caves. The carbon and oxygen iso-
topic composition varies between different caves which is at-
tributed to the effects of cave air ventilation before the freez-
ing started.

By petrographic and geochemical comparisons of Weich-
selian cryogenic calcite with recent to sub-recent precipitates
as well as Weichselian non-cryogenic calcites of the same lo-
cality, a model for the precipitation of these calcites is pro-
posed. While the recent and sub-recent pool-calcites isotopi-
cally match the composition of interglacial speleothems (sta-
lagmites, etc.), isotope ratios of Weichselian non-cryogenic
pool-calcites reflect cooler conditions. Weichselian cryo-
genic calcites show a trend towards lowδ18O values with
higher carbon isotope ratios reflecting slow freezing of the
precipitating solution. In essence, the isotope geochemistry
of the Weichselian calcites reflects the climate history chang-
ing from overall initial permafrost conditions to permafrost-
free and subsequently to renewed permafrost conditions.
Judging from the data compiled here, the last permafrost
stage in the R̈atselhalle is followed by a warm period (in-
terstadial and/or Holocene). During this warmer period, the
cave ice melted and cryogenic and non-cryogenic Weich-
selian calcite precipitates were deposited on the cave ground
or on fallen blocks, respectively.

Correspondence to:D. K. Richter
(detlev.richter@rub.de)

1 Introduction

In contrast to most carbonate speleothems (e.g. stalagmites)
which precipitate from supersaturated waters above 0◦C
(e.g. Hill and Forti 1997)cryogeniccavecalcites (CCC sensu
Žák et al., 2004) form during freezing of cave waters. This
process takes place when seepage waters enter a cave char-
acterized by mean temperatures below 0◦C. In present-day
ice caves of the temperate zone with high ventilation, wa-
ter freezes in a thin film on the surface of ice. Due to rapid
kinetic escape of CO2 from the solution, rapid freezing of
cave waters leads to highδ13C values of precipitated calcites
(Lacelle, 2007; Sp̈otl, 2008). In contrast, slowly freezing wa-
ters and related preferential18O incorporation into the ice in
more or less isolated cavities within permafrost, leads to low
δ18O values of calcite precipitates from this fluid (Žák et al.,
2004).

In recent years, Quaternary cryogenic cave calcites formed
by slow growth conditions from Central European caves have
been described in a series of publications (locations between
Scandinavian and Alpine ice sheets;Žák et al., 2004, 2008,
2009; Richter and Niggemann, 2005; Richter and Riechel-
mann, 2008; Richter et al., 2008, 2009, 2010). The genesis
of these calcite particles is essentially bound to water pools
on top of ice bodies in caves during the transition periods be-
tween glacial/stadial to interglacial/interstadial. Conversely,
the precipitation of similar calcites from pool waters on the
cave floor is not yet documented. Nevertheless, during these
transitional periods, mean annual temperatures outside of the
cave gradually decreased and then fell below freezing point.
Because of the low heat conductivity of rocks this decrease
in temperature reached the subsurface with some delay (as
described by Pielsticker, 2000) so that low-frequency tem-
perature changes are not recorded in cryogenic cave calcite
records, depending on the overburden of the cave. Follow-
ing a subsequent temperature rise, cave ice formed during

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


502 D. K. Richter et al.: Cryogenic and non-cryogenic pool calcites indicating permafrost and non-permafrost periods

Fig. 1. Map showing the position of the Herbstlabyrinth-Advent
Cave system as well as other caves of Central Europe from which
cryocalcite has been described (light brown – Rhenish Slate Moun-
tains, light grey – Weichselian glaciated areas). See lower left inset
for more details.

previous cold periods, melted and different types of cryo-
genic cave calcites accumulated on the cave ground or on
collapsed blocks covering the cave floor.

Unconsolidated sediments of calcite particles with a broad
range of structures are present on the cave floor and on blocks
in the R̈atselhalle of the Herbstlabyrinth-Advent Cave system
(sensu Grubert (1996) and Hülsmann (1996)) in NW Hesse
(see Fig. 1). These deposits were sampled in 2004 and 2009
for detailed structural and geochemical analyses and are the
topic of the present publication.

The age of the main type of the calcite particles found,
namely aggregates of euhedral calcite crystals, was dated to
29 170± 480 years based on the U/Th method (Kempe et al.,
2005). These precipitates were interpreted as having formed
as rafts on pool water situated on cave ice bodies (Kempe,
2008). The less commonly found types of calcite aggregates,
here referred to as composite spherulites, were petrographi-
cally compared with cryogenic calcites described by Richter
and Niggemann (2005) and Richter and Riechelmann (2008).
The later ones were attributed to a precipitation setting in
slowly freezing pools on ice bodies due to their lowδ18O
signature (−14 to−18‰ VPDB).

The genetic relation between before-mentioned types of
“crystal sand” present in the Rätselhalle was previously
poorly constrained. Here, the petrographic and geochemi-
cal properties of the different types of these crystal sands are
documented in detail and a comparison with recent/subrecent
calcite formations in a pool in the Rätselhalle is presented.
The aim of this publication is to improve the understanding
of cryogenic cave calcites as novel archives of cold continen-
tal climate phases.

Fig. 2. Sketch map of Herbstlabyrinth-Advent Cave system show-
ing the location of R̈atselhalle as well as a speleological map of this
chamber with sampling locations.

2 Geographical and geological setting

The Herbstlabyrinth-Advent Cave system formed in the
Upper Devonian Iberg Limestone of Breitscheid on the
NE margin of the Tertiary Westerwald volcanic complex
(Fig. 1). The reefal deposits of the Iberg Limestone (Kayser,
1907; Krebs, 1966), located on a volcano basement in
the Rhenohercynian trough of the Rhenish Slate Mountains
(Krebs, 1971), is well known for its abundant epi- and endo
karst phenomena of Late Cenozoic age (Stengel-Rutkowski,
1968). The Herbstlabyrinth-Advent Cave system was first
discovered in the winter of 1993/1994 during quarry works
(Grubert, 1996). Deposits with bones of small mammals as
well as some remains of cave bears indicate at least episodic
connections to the surface in the past. A second artificial
entrance was built in order to develop a touristic cave. Fol-
lowing Dorsten et al. (2005), this cave system formed in a
shallow phreatic system. Several of the cave levels reflect the
palaeo-position of ancient long-lasting ground water tables.
Kaiser et al. (1998, 1999) identified four karst levels, which
today are situated in the vadose zone with a temporal active
fluvial system in the lowest part of the cave, and three sub-
sequent stages of speleothem formation have been identified
but not yet dated. The Herbstlabyrinth-Advent Cave system
is located between the villages of Erdbach and Breitscheid
(Fig. 2). With an overall length of more than 5300 m, it is the
largest cave system in Hesse and one of the most significant
ones in Germany. The R̈atselhalle (altitude 363 m above sea
level) providing the sampling material for this study belongs
to the western part of the EW trending main cave area and is
20 m long, 15 m wide and 5 m high on average. This part of
the cave can be accessed via a narrow passage. Because of
its remote location the average annual air temperature in this
chamber is about 9◦C. The thickness of the hostrock above
the R̈atselhalle reaches about 40 m.
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Fig. 3. “Crystal sand” on collapse block (arrows) in the Rätselhalle.

Calcite-cemented debris on the cave walls marks the for-
mer presence of ice attached to the cave wall (Pielsticker,
2000).

3 Methodology

Accumulations of “crystal sand” (loose individual crystals
and aggregates – mostly sand-sized, sometimes more than
2 mm in diameter) consisting of speleothem particles cover-
ing the cave floor or lying on collapsed blocks (Figs. 2 and
3) were sampled at five locations. In addition, specimens of
recent and sub-recent rafts of speleothem deposits in a pool
located in the NW-part of the R̈atselhalle (Fig. 2) were col-
lected for comparative studies.

The sample material was cleaned in an ultrasonic bath
prior to a manual separation of the various speleothem types
under the reflected-light microscope. The particles were ex-
amined using a high-resolution field emission scanning elec-
tron microscope (HR-FEM) of type LEO/Zeiss 1530 Gem-
ini. For this purpose, selected samples were sputtered with
a thin gold coating. X-ray diffraction analysis (XRD) was
performed using a Philips counting-tube diffractometer (PW
1050/25) with an AMR monochromator using CuKα radia-
tion (40 kV, 35 mA) in order to identify the carbonate min-
eralogy. For this, powdered samples with quartz powder
as internal standard were measured at a diffraction angle
range of 26–38◦2θ , identifying each d(104) value of the
rhombohedral carbonates in terms of their Ca/Mg distribu-
tion (Füchtbauer and Richter, 1988).

The carbon and oxygen isotopic composition of calcite
was determined with a Delta S mass spectrometer (Finnigan
MAT) and reported relative to the V-PDB standard. The 1σ -
reproducibility of the measurements is 0.04‰ forδ13C and
0.08‰ forδ18O.

4 Data presentation and interpretation

4.1 Speleothem particles

Samples of speleothem particles are composed of nearly sto-
ichiometric calcite (d(104) 3.034–3.036Å) as documented
by diffractometer analysis. This outcome is not unexpected
given that the host rock of the cave is mainly composed of
low Mg-calcite (d(104) 3.030–3.034̊A). Only small amounts
of secondary dolomite are present in the hostrock carbonate.
Below, speleothem particles sampled from the (i) cave floor
and collapsed blocks and (ii) from pools are described sep-
arately, because different modes of formation are proposed
based on field observations.

4.1.1 Speleothem particles collected from the cave floor
and on collapsed blocks

The most common form of speleothem particles are aggre-
gates and individual crystals with rhombohedral faces which
occur at all sampling points (Fig. 2). In essence, two types
are identified, (a) translucent aggregates and individual crys-
tals with acute rhombohedral faces on the edges and ob-
tuse rhombohedral faces at their growth termination, and
(b) white to buff-colored, aggregates and individual crystals
with rhombohedral faces.

Translucent aggregates and individual crystals with rhom-
bohedral faces (type a) with acute rhombohedral faces on the
flanks and obtuse rhombohedral faces at their growth termi-
nation (Fig. 4a, b) are present in the Rätselhalle. Rhombohe-
dra are commonly connected to platy aggregates approach-
ing more than 1 cm in size. In most cases one side of these
platy aggregates is commonly straight but also curved ones
are found (Fig. 4c). The opposite side of platy aggregates is
commonly convex and covered by euhedral crystals (Fig. 4a).
Less common are platy aggregates with euhedral crystals on
both sides (Fig. 5a, b) reflecting sunken rafts of a former
pool. Asteroidal intergrowth of the rhombohedra is uncom-
mon (up to>1 mm in diameter) whereas individual rhombo-
hedra are rare (<1 mm in diameter).

White to buff-colored aggregates and individuals of crys-
tals with rhombohedral faces (type b) were exclusively ob-
served at location 1 (Fig. 2). They commonly occur as aggre-
gates of up to 1 cm in diameter (Fig. 4e) but rare examples of
individual crystals were found, too (Fig. 4d). The inclusion-
rich rhombohedra display pronounced zoning and, where
fully developed, curved crystal faces, which are less acute
relative to the before-mentioned translucent type a rhombo-
hedra. Type b particles frequently overgrow nuclei of type a
(Figs. 4f and 5c, d).

Only at locality 1 (Fig. 2) were frequentspherulitic aggre-
gates(crystals with a radiate fibrous structure) found. They
have a more white to buff-coloured appearance as a result of
inclusions (see type b above) and rarely exceed 1 mm in size.
Most spherulites are dumbbell-shaped and display complex
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Fig. 4. SEM images of various types of “crystal sand”.(a) Surface
of a speleothem platelet (central particle) with translucent rhom-
bohedral crystals (acute rhombohedral faces on the flanks, obtuse
rhombohedral faces at growth end); particles to the left mark bottom
of speleothem platelet.(b) Growth end of a translucent rhombohe-
dral crystal with obtuse rhombohedral faces at the apex area of the
crystal.(c) Moderately curved bottom of a speleothem, platelet with
translucent rhombohedral crystals.(d, e)Aggregates and individu-
als of crystals with rhombohedral faces (whitish to buff-colored)
without acute rhombohedral faces but with distinct domain devel-
opment; d = single crystals, e = chain.(f) Partial overgrowth of
translucent aggregates and individuals of crystals with rhombohe-
dral faces (type a; smooth surfaces) by aggregates and individuals
of crystals with rhombohedral faces (type b) with a distinct domain
growth. (g) Dumbbell-shaped spherulithic crystal aggregates.(h)
Braided-shaped spherulitic aggregates.

intergrowth features (Fig. 4g). Chain-like linked spherulites
(“Zopfsinter” sensu Erlemeyer et al., 1991; Richter et al.,
2008) are uncommon (Fig. 4h). Rhombohedra display a
curved shape similar to aggregates and individuals of crys-
tals with rhombohedral faces of type b.

Fig. 5. Thin section photomicrographs of aggregates and individu-
als of crystals with rhombohedral faces at locality 1:(a, b) sunken
rafts with rhombohedral crystals on both sides (b cross-polarized
light). (c, d)Calcitic aggregates with translucent crystals in the inte-
rior and with darker (inclusion-rich) overgrowth (d cross-polarized
light).

4.1.2 Speleothem particles from a modern
carbonate-precipitating pool

At locality 6 (Fig. 2) crystal rafts, several centimeters in di-
ameter, were observed in a pool. These crystal aggregates are
characterized by a planar upper boundary at the air-water in-
terface and a rhombohedral boundary downward (Fig. 7a, b)
extending into the pool water. At the edge of this pool, above
the present water level, former raft deposits are attached to
flowstones (cp. Fig. 2). The morphology of these pool cal-
cites, characterized by acute rhombohedral faces at the flanks
and obtuse rhombohedral faces at their growth ends (Fig. 6a,
b), are similar to calcite precipitates (Fig. 6c, d) on watch
glasses placed beneath drip sites in Bunker Cave (Northern
Sauerland/NRW; Riechelmann, 2010).

4.2 Carbon and oxygen isotopic composition

Isotope analysis reveals a distinct difference between host
limestone and speleothem samples. Host limestone samples
exhibit δ13C values between +1.8 and +2.7‰ andδ18O val-
ues between−5.3 and−1.0‰. These values are character-
istic of the isotopic composition of Middle/Upper Devonian
limestones of the Rhenish Slate Mountains (Fig. 7).

Aggregates and individuals of crystals with rhombohe-
dral faces as well as spherulitic aggregates collected at the
cave floor and on collapsed blocks displayδ13C values be-
tween +0.6 and−7.3‰ andδ18O values between−6.9 and
−18.0‰ (Fig. 7). Carbon versus oxygen isotope plots re-
veal an overall trend towards elevated carbon and depleted
oxygen isotope ratios. In essence, spherulitic aggregates
represent the depletedδ18O end-member whereas translu-
cent aggregates and individuals of crystals with rhombohe-
dral faces (type a) are characterized by higherδ18O val-
ues close to those measured from stalagmites, stalactites
and draperies collected in the Herbstlabyrinth-Advent Cave
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Fig. 6. (a)Crystals (precipitated in the pool, locality 6, Fig. 4b) with
acute rhombohedral faces on the flanks and obtuse rhombohedral
faces at growth end.(b) detailed view of a single crystal shown
in a). (c) Calcite crystals grown on watch glass, placed on top of
stalagmites in Bunker Cave (Riechelmann; 2010).(d) detailed view
of a single crystal shown in c).

Fig. 7. Carbon and oxygen isotopic composition of various cal-
cite particles from the R̈atselhalle in comparison to those measured
from calcitic host rock samples (1) and common calcites of stalag-
mites, stalactites and draperies (2). (3) acute clear rhombohedra
overgrown by cryogenic cave calcites, (4) cryogenic cave calcites.
Numbers represent amount of samples measured.

system (Fig. 7). Particles with buff-colored rhombohedral
aggregates form a cluster with slightly higherδ18O values
than spherulitic aggregates. Particles with composite crys-
tals, built by nuclei of translucent aggregates and individu-
als of crystals with rhombohedral faces and white to buff-
colored rhombohedral cortices are located in a transition
zone between type a and type b aggregates and individuals of

Fig. 8. Carbon and oxygen isotopic composition of selected zones
of composite crystals with translucent nuclei and white to buff-
colored coatings.

crystals with rhombohedral faces. In some cases it was pos-
sible to separate the translucent and the buff-colored zones
of the composite crystals: the nuclei show lowerδ13C and
higherδ18O values compared to the coatings (Fig. 8). The
C/O isotope composition of the separated nuclei is not iden-
tical to that of the particles with acute clear rhombohedra
only, perhaps because of the polyphase composition of the
nuclei (comparing Figs. 7 and 8)

The rafts of the pool at locality 6 showδ13C values be-
tween−10.8 and−10.3‰ andδ18O values between−6.5
and−6.4‰. These values match those obtained from stalag-
mites, stalactites or draperies sampled in the Herbstlabyrinth-
Advent Cave system (Fig. 7).

4.3 U/Th age dating

TIMS U/Th age dating of “crystal sand” collected in the
Rätselhalle yielded an age of 29 170± 480 yrs BP (Kempe
et al., 2005). According to Kempe (2008), the dated mate-
rial belongs to the most common type of crystals, i.e. type
a of the aggregates and individuals of crystals with rhom-
bohedral faces as described above. A similar date of
28 700± 1500 yrs BP was obtained by TIMS U/Th dating of
aggregates of type b (white to buff-coloured, rhombohedral
crystals) speleothems at the Research Centre for Radiome-
try, Heidelberg Academy of Sciences (using a Finnigan MAT
262 RPQ mass spectrometer; laboratory of A. Mangini). An-
alytical results: δU (corrected) = 431.5‰ (absolute error
8.2), 238U = 0.9889 ng/g (absolute error 0.0035),232Th =
22.45 ng/g (absolute error 0.29),230Th = 5.48 pg/g (abso-
lute error 0.24). As FE-SEM studies revealed overgrowths
of type b on type a and as these two precipitates could not
be separated prior to U/Th analysis, the resulting age data
of 28 700± 1500 yrs likely underestimates the age of type b
rhombohedral crystals.
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5 Discussion

The accumulations of unconsolidated aggregates in the stud-
ied cave are exclusively characterized by calcite morpholo-
gies with rhombohedral faces of different steepness. Accord-
ing to Gonzales et al. (1992), this is a typical feature of cal-
cite precipitation in caves. Similarly, calcite crystals with
acute rhombohedral faces on the edges and obtuse rhombo-
hedral faces at their free ends were described by Mergener et
al. (1992) from pools of several caves of the Sauerland (NE
Rhenish Slate Mountains).

Aggregates of this type dominate aggregates of “crystal
sand” at locality 1 as well as recent to sub-recent pool pre-
cipitates (location 6) on pool walls and floors. Moreover, in
the latter pool this type occurs below rafts up to a paleo-water
level characterized by a shelfstone 10 cm above the present-
day water level. In the case of the localities 1–5 there is no
field evidence suggesting that fluctuating water levels in the
cave represent a controlling factor for the formation of crys-
tal accumulations and other modes of formation are conse-
quently discussed. However, other authors (e.g., Andrieux,
1963; Diaconu, 1990; Onac, 1996) described various aspects
of the morphology of speleothems as a result of a fluctuating
paleo-water table in pools from other localities. Perhaps the
strongest evidence is given by the different isotopic composi-
tion of these precipitates in comparison to other speleothem
allowing for an interpretation of the formation conditions of
calcites in pools under specific physicochemical conditions
(Žák et al., 2004, 2008; Richter and Niggemann, 2005; La-
celle, 2007).

a. Recent and subrecent rafts (location 6) are isotopically
depleted relative to normal speleothems (Fig. 7). This
is perhaps best understood in the context of their pre-
cipitation in pools fed by drip water as opposed to the
crystallization on stalagmite surfaces under a thin, semi-
permanent water film. In addition, evaporation pro-
cesses play an important role on stalagmite and stalac-
tite surfaces including kinetic effects related to CO2 de-
gassing (Mickler et al., 2006). In contrast, these effects
are far less significant in permanent cave pools.

b. The aggregates of translucent calcites with acute and
obtuse rhombohedral crystal faces (locations 1–5) show
only minor overlap with “normal” speleothems in terms
of their isotope composition. Elevated carbon and de-
pleted oxygen isotope values are probably indicative for
less soil activity and a rather scarce vegetation cover re-
lated to an overall cooler climate in comparison to the
present-day setting.

c. The calcite particles with obtuse and curved rhombohe-
dra (loc. 1) reveal13C-enriched and18O-depleted val-
ues relative to precipitates mentioned under (a) and (b).
This is interpreted as precipitation from gradually freez-
ing residual water. During this process,18O is prefer-

entially incorporated in the newly formed ice (O’Neil,
1968; Clark and Fritz, 1997). Possibly only at this local-
ity a relict water pool on top of the ice which allowed the
precipitation of cryogenic calcite below a frozen layer at
the air-water contact due to progressive freezing. This
shallow pool was apparently large enough to allow for a
slow evolution of the water during slow freezing.

d. Acute, clear rhombohedra with coatings of buff-colored
rhombohedra (location 1, cp. Figs. 4f and 5c, d) range,
in terms of their isotopic composition, between the cal-
cites described in (b) and (c). These precipitates suggest
the transition from non-freezing to freezing pool waters.
The isotopic values of the separated aggregates (Fig. 8)
indicate the transition to freezing conditions with the
change of the precipitation of particle type a to the over-
growth by type b.

e. Individual spherulites and spherulitically structured
braid speleothems (location 1) reveal the highest carbon
and the lowest oxygen isotope composition relative to
other particles of the “crystal sand”. This is considered
evidence for the final freezing stages of the pool waters.

Based on arguments given above and constrained by the
U/Th date (29 170± 480 yrs BP – Kempe et al., 2005) crystal
precipitates as well as crystal aggregates present as “crystal
sand” in the R̈atselhalle are explained by a climate model
involving different stages of evolution (I to VI in Fig. 9):

I. Permafrost stage prior to (Weichselian) Greenland
interstadial no. 4 (terminology in accordance with
Johnsen et al., 1992 and Bond et al., 1997); no
speleothem formation is recorded.

II. Beginning of cave ice formation when the 0◦C
isotherm reached the roof of the cave with some delay,
because of the low heat conductivity of the rock (Piel-
sticker, 2000), during the beginning of Weichselian in-
terstadial no. 4. The precipitation of small calcite crys-
tals from rapidly freezing dripping water is possible but
no evidence was found yet.

III. Residual ice still exists on the cave floor during the
Weichselian interstadial no. 4. Formation of calcite-
cemented debris along the cave walls (“ice attach-
ments”) took place and precipitation of aggregates with
isotopic values that overlapped with those of stalagmites
and stalactites occurred in meltwater pools on ice.

IV. Slow freezing of water in pools on the ice bodies in
the cave during cooling at the beginning of renewed
permafrost conditions following Weichselian intersta-
dial no. 4. Cryogenic calcites precipitated from slowly
freezing pool water.

V. Permafrost after Weichselian interstadial no. 4 inhibited
crystal precipitation as all water in the cave was frozen.

The Cryosphere, 4, 501–509, 2010 www.the-cryosphere.net/4/501/2010/
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Fig. 9. Cartoon illustrating proposed succession of events that lead to the formation of cryogenic and non-cryogenic calcites during a
Weichselian interstadial. Refer to schematic temperature evolution in lower left inset. See text for details.

VI. A renewed stage of warming followed the permafrost
interval. Ice bodies in caves melted and cryogenic and
other speleogenic particles accumulated in an unsorted
manner on the cave floor or on collapse blocks.

The isotopic composition of genetically different, small
cryogenic speleothems (aggregates and individuals of crys-
tals with rhombohedral faces, spherulitic aggregates) found
in the R̈atselhalle ranges from the typicalδ18O andδ13C sig-
nature of “normal” speleothems to highδ13C and lowδ18O
values of cryogenic cave calcites (see arrow B–C in Fig. 7).
A compilation of published data on slowly precipitating cry-
ocalcites from various Central European caves suggests a
site-specific isotope signature (Fig. 10). This implies cave-
specific climate conditions.̌Zák et al. (2004) and Richter et
al. (2009a) proposed enhanced ventilation of the cave or of
portions of a given cave resulting in a trend towards elevated

δ13C values, because degassed CO2 is increasingly removed
under increasing ventilation. This is important for the stage
at which the slowly freezing of the water pool starts when the
isotopic exchange is inhibited, at least to some extent, by a
layer of ice at the water/cave air interface.

6 Conclusions

Based on the data shown here, these following main points
are concluded:

– Weichselian cryogenic cave calcites from the
Herbstlabyrinth-Advent Cave system are present
as rhombohedral and spherulitic aggregates.

– Geochemical data (δ18O andδ13C) of these precipitates
match those of known slow cryogenic cave precipitates
reported from other Central European caves.

www.the-cryosphere.net/4/501/2010/ The Cryosphere, 4, 501–509, 2010
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Fig. 10. Carbon and oxygen isotopic composition of cryogenic
cave calcites from various cave localities in Central Europe: I–
III: regression lines according tǒZák et al. (2004): I Jaskinia
Jaworznicka Cave system, II BUML Cave, III Stratenská Jaskya
Cave. The different data fields are based on the interpretation by
the Bochum group. O = Ostenberg Cave - Richter and Nigge-
mann (2005); S = Sunderner Cave - Richter et al. (2009a); H
= Heilenbecke Cave - Richter et al. (2008); M = Malachitdom
– Richter and Riechelmann (2008); Br = Herbstlabyrinth-Advent
Cave system – this work, G = Glaseis Cave – Richter et al. (2009b).

– The oxygen and carbon isotopic composition of com-
posite crystals indicates the transition from non-
freezing to freezing conditions.

– Variable geochemical signatures probably reflect cave
air ventilation changes.

– The overall isotope trend is in agreement with a model
of permafrost conditions followed by an interstadial
causing ice melt, and finally renewed cold, stadial con-
ditions.

– After melting of the ice body polymict “crystal sand”
accumulated on the floor and on collapsed blocks.

– The combined petrographical and geochemical data are
clear evidence for the significance of cryogenic cave
calcites as important but complex cave archives of cold
(glacial) climate periods.

7 Outlook

The need for more research of the often complex cryogenic
calcites in caves of the Rhenish Slate Mountains and in other
localities is great. Specifically, attention should be paid to
overgrowth on nuclei of older crystals. Furthermore, differ-
ent generations of cryogenic calcites must be separated in
terms of their mineralogy, crystallography and geochemical

composition. If successful, the combination of paleoenvi-
ronmental information from stalagmites recording primar-
ily interglacials and locally also interstadials with evidence
from cold-climate periods during which cryogenic cave cal-
cite formed, will allow an improved reconstruction of the
Pleistocene climate evolution of Central Europe.
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Höhleneis in Mitteleuropa, Stalactite, 58, 39–42, 2008.

Kempe, S., Doeppes, D., Bauer, I., Dirks, H., Dorsten, I., Hueser,
A., and Eisenhauer, A.: Naturally damaged speleothems, indica-
tors of glacial cave ice in Central Europe, Karst Waters Institute
Special Publication, 10, 35 pp., 2006.

Krebs, W.: Der Bau des oberdevonischen Langenaubach-
Breitscheider Riffes und seine Entwicklung im Unterkarbon
(Rheinisches Schiefergebirge), Abh. Senkenberg, Naturforsch.
Ges., 511, 1–105, 1966.

Krebs, W.: Devonian Reef Limestones in the Eastern Rhenish
Schiefergebirge, Sedimentology of parts of Central Europe,
edited by: M̈uller, G. and Friedman, G. M., Verlag Waldemar
Kramer, Frankfurt am Main, Heidelberg, 1971.

Lacelle, D.: Environmental setting, (micro)morphologies and stable
C-O isotope composition of cold climate carbonate precipitates;
a review and evaluation of their potential as paleoclimatic prox-
ies, Quat. Sci. Rev., 26, 1670–1689, 2007.

Mergner, W., Brix, M. R., Hagemann, P., Oelze, R., and Richter,
D. K.: Sinterbecken im Malachitdom mit wasserspiegelparalle-
len Karbonatkrusten, in: Der Malachitdom – Ein Beispiel inter-
disziplinärer Ḧohlenforschung im Sauerland, Geologisches Lan-
desamt Nordrhein-Westfalen, Krefeld, 151–173, 1992.

Mickler, P. J., Stern, L. A., and Banner, J. L.: Large kinetic isotope
effects in modern speleothems, Geol. Soc. Amer. Bull., 118, 65–
81, 2006.

O’Neil, J. R.: Hydrogen and oxygen isotope fractionation between
ice and water, J. Phys. Chem., 72, 3683–3684, 1968.

Onac, B. P.: Mineralogy of speleothems from caves in Padurea
Craiului Mountains (Romania), and their palaeoclimatic signifi-
cance, Cave and Karst Science, 24, 109–124, 1996.
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seisḧohle am Schneiber (Steinernes Meer/ Nationalpark Bercht-
esgaden, Deutschland), Die Höhle, 60, 3–9, 2009a.
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