
Nonlinear Processes in Geophysics (2005) 12: 291–298
SRef-ID: 1607-7946/npg/2005-12-291
European Geosciences Union
© 2005 Author(s). This work is licensed
under a Creative Commons License.

Nonlinear Processes
in Geophysics

Kinetic slow mode-type solitons
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Abstract.
One-dimensional hybrid code simulations are presented,

carried out in order both to study solitary waves of the slow
mode branch in an isotropic, collisionless, medium-β plasma
(βi=0.25) and to test the fluid based soliton interpretation
of Cluster observed strong magnetic depressions (Stasiewicz
et al., 2003; Stasiewicz, 2004) against kinetic theory. In the
simulations, a variety of strongly oblique, large amplitude,
solitons are seen, including solitons with Alfvenic polariza-
tion, similar to those predicted by the Hall-MHD theory, and
robust, almost non-propagating, solitary structures of slow
magnetosonic type with strong magnetic field depressions
and perpendicular ion heating, which have no counterpart in
fluid theory. The results support the soliton-based interpre-
tation of the Cluster observations, but reveal substantial defi-
ciencies of Hall-MHD theory in describing slow mode-type
solitons in a plasma of moderate beta.

1 Introduction

This work is related to observations presented in ‘Slow mag-
netoacoustic solitons detected by the Cluster spacecraft’ by
Stasiewicz et al.(2003), hereafter referred to as S. These au-
thors report on the observation of significant magnetic field
depressions accompanied with an increase in both plasma
density and temperature by the Cluster satellites at the dusk
flank of the magnetosphere (Figs. 1, 2 in S). The solitary
structures have been seen by the electric and magnetic field
instruments as short duration pulses (≈10 s) sweeping with a
speed of 250 km/s over the slowly moving spacecrafts. The
velocity of the structure relative to the background medium
could not directly been measured but was estimated to be a
fraction of the Alfven velocity. The structures seen in the
magnetic field represent deep depressions (up to 85%) of
the ambient field with maximum variation of the field mag-
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nitude in a direction close to perpendicular to the field di-
rection. The observed features were interpreted in terms of
obliquely propagating Hall-MHD solitons of slow magne-
toacoustic type. This suggestion was based on a compar-
ison of observed spatial profiles of magnetic field magni-
tude and density with corresponding numerically calculated
soliton profiles. The comparison, which was continued in
a subsequent paper (Stasiewicz, 2004), shows good agree-
ment with respect to the depth of the magnetic field depletion
and the density increase, but MHD theory predicts a some-
what too small (factor of 2) thickness of the whole structure.
Other quantities, such as plasma bulk velocity and ion tem-
perature, were not included in the comparison since the res-
olution of the ion instruments was not sufficient to get time
profiles within the structure.

The aim of this study is to extend the theoretical basis
for the interpretation of the observed structures by includ-
ing kinetic theory. Efforts in this direction appear to be
desirable because the measurements were made in a col-
lisionless plasma of moderate ion beta (βi≈0.25) whereas
the interpretation is given in terms of a fluid plasma model.
There is a general reservation to apply fluid theory to finite
beta plasmas because of the discrepancies between fluid and
kinetic predictions with respect to the properties of small-
amplitude waves (Krauss-Varban et al., 1994; Karimabadi et
al., 1995). Analytical efforts to incorporate kinetic effects
in soliton theory have been focused, so far, on the DNLS
equation (‘Derivative Nonlinear Schrödinger equation’) as
one of the most widely used evolution equations for the case
of parallel or quasi-parallel propagating MHD wave pack-
ets (e.g.,Mjolhus and Wyller, 1988; Medvedev and Dia-
mond, 1996). The DNLS equation, however, can be ruled
out as basis for our purposes since for conditions considered
here (large amplitudes, moderate ion beta and large propa-
gation angle) it is not an appropriate approximation to the
superior system of Hall-MHD equations (Baumg̈artel, 1999;
Ruderman, 2002). Since an analytical treatment of nonlin-
ear phenomena such as solitons on the basis of the Vlasov-
Maxwell system is prohibitively complicated, a numerical
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Fig. 1. Constraints on the propagation velocity of Hall-MHD soli-
tons in aβ=0.25 plasma.V is the soliton speed andθ is the propa-
gation angle relative to the ambient magnetic field. Solitons are per-
mitted in the shaded areas. Upper area: fast-mode solitons; lower
area: slow mode solitons.cf ast , cI , cslow are the propagation
speeds in the large wavelength limitk=0 of the fast magnetosonic
wave, the intermediate (Alfven type) wave and the slow magne-
tosonic wave, respectively.cs is the ion sound speed. All velocities
in units of the Alfven velocityvA. β=pkin/pmagn.=2/γ c2

s /v2
A

;
polytropic equation of state withγ=5/3.

approach is required to incorporate kinetic theory. We em-
ploy one-dimensional hybrid code simulations (particle ions,
fluid electrons) and show, that in a collisionless, moderate
ion-β plasma a noticeable variety of obliquely propagating
solitons of the slow mode branch may exist, partly not pre-
dicted by the Hall-MHD theory. Roughly speaking, we see
two primary types of solitons which differ in respect to po-
larization and propagation velocity. One of them corresponds
to the Alfvenic soliton of the fluid theory which turns out to
be less sensitive to kinetic effects. The other can be catego-
rized as non-propagating, pressure-balanced structure (PBS),
with large-amplitude magnetic depressions, without counter-
part in MHD theory. A manifold of solitary slow mode struc-
tures may develop in a collisionless plasma which comprise
properties of both of the two types. These results may im-
prove our understanding to what extent a fluid treatment is
applicable to explain nonlinear phenomena in collisionless
plasmas.

2 Recall: fluid results on slow mode solitons

In this preliminary section we remind briefly on some re-
sults of the fluid theory with respect to properties of obliquely
propagating Hall-MHD solitons of the slow mode branch. In
order to examine solitary solutions of the Hall-MHD equa-
tions one may proceed in two distinct ways. A rather direct
way uses the stationary wave approximation of the basic sys-
tem (all variables depend only onx−V t), from which soli-
tary waves can be isolated with the help of the fixed-point-

analysis (Hau and Sonnerup, 1991; Baumg̈artel et al., 1997;
McKenzie and Doyle, 2002). An alternative method derives
first an evolution equation from the superior system, contain-
ing nonlinearity and dispersion only to lowest order, and tries
to apply inverse scattering theory in order to find ‘genuine’
solitons. The most general evolution equation that has been
derived from the Hall-MHD system, the DNLS equation, de-
scribes preferentially quasi-parallel, small-amplitude pertur-
bations in a low-β plasma. It was recently shown byRud-
erman(2002) that the DNLS covers oblique wave evolution
with arbitrary amplitudes as well, confirming an early sug-
gestion ofKennel et al.(1989). It does not, however, apply
to the parameter combination reported in S (large amplitudes,
strong obliquity, moderateβ). The fixed-point analysis re-
veals, that the soliton speedV relative to the plasma is con-
straint to areas not accessible for any of the small-amplitude
wave types for any real wave number (‘gaps’). Figure 1 de-
picts regions of permission in theV -θ -plane (shaded areas)
of solitons in aβ=0.25 plasma. It is seen from this figure that
for large propagation angles the slow mode soliton velocity
may vary between the speedscslow of the slow magnetosonic
wave andcI=vA cosθ (vA Alfven velocity) of the intermedi-
ate wave, both in thek=0 limit. It should be pointed out here
thatMcKenzie and Doyle(2002) erroneously calculated the
extended intervalcslow<V <cs as constraint for the veloc-
ity of slow mode solitons. With respect to polarization, the
soliton exhibits elements of both the slow magnetosonic and
the intermediate wave. Thus, the slow mode soliton gener-
ally is associated with pressure perturbations as well as non-
coplanar variations of magnetic field and plasma velocity.
The character of the soliton, however, especially the mag-
netic field variation across the structure, changes markedly
within the region of permissioncslow<V <cI . This is illus-
trated in Fig. 2 which depicts shapes for different types of
solitons.

Figure 2a shows a soliton with a polarization like that
of a slow magnetosonic wave (magnetic vector changes in
magnitude rather than in direction, ‘cigar-like’ shape of the
By-Bz phase plot). When the soliton speed approaches the
lower limit cslow, the amplitude rapidly decays and simulta-
neously the polarization tends to become linear. In the op-
posite limit V →cI the soliton approaches a quite different
state, which is depicted in Fig. 2c. Unlike the former case,
neither the amplitude decreases nor the polarization becomes
linear, as dispersion theory requires for an oblique, small-
amplitude Alfven wave. Instead, the magnetic vector rotates
once around the propagation direction with little variation in
magnitude (‘pancake-like’ phase plot), associated with large-
amplitude variations in the transverse bulk velocity compo-
nentsuy anduz. The soliton size increases and approaches
a value of about 10c/ωpi . The whole structure resembles a
finite-amplitude, obliquely propagating, nearly circularly po-
larized, Alfven wave packet. It might be alternatively catego-
rized as a special case of a rotational discontinuity, in which
the magnetic vector undergoes a full rather than half a ro-
tation. Since the magnetic field depression remains moder-
ate, these Alfvenic solitons are not in the focus of interest
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Fig. 2. Examples of magnetically rarefactive Hall–MHD solitons of the slow mode branch in a �7� �0� ���
plasma, propagating at an angle of 	8�:9 � ; relativ to the ambient magnetic field in positive x–direction. Ac-
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from those above in the sign of N-O (not shown), N-P , and QSR .
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Fig. 2. Examples of magnetically rarefactive Hall-MHD solitons of the slow mode branch in aβ=0.25 plasma, propagating at an angle
of θ=80◦ relativ to the ambient magnetic field in positive x-direction. According to Fig. 1 the soliton speed V is constraint to the interval
cslow<V <cI (herecslow≈0.072vA, cI ≈0.174vA). (a) Soliton of slow magnetosonic type,V ≈0.1vA, size≈4c/ωpi . (b) Soliton hav-
ing approximetely the largest possible magnetic depression,V ≈0.143vA, size≈4c/ωpi . (c) Soliton of Alfvenic type,V ≈0.17vA, size
≈10c/ωpi . The profiles result from numerical integration of the fully nonlinear Hall-MHD equations in stationary wave approximation,
using the fixed-point technique. Left-propagating solitons differ from those above in the sign ofux (not shown),uz, andBy .

in the context of the discussions in S. The soliton shown in
Fig. 2b has been selected from the one-parameter manifold
by looking for a most large magnetic field depression. It is
almost identical with that shown in Fig. 3 in S. Since the
transverse componentBy generally goes through zero in the
center of the soliton, the maximum depression is realized in
the case whenBz reaches zero, leading toB=Bx=B0 cosθ .
Figure 2b shows a case close to this situation. Note that the
size in this case is less than half of that of the Alfvenic soliton
in Fig. 2c.

3 Kinetic slow mode-type solitons

3.1 Hall-MHD versus kinetic theory: two examples

The first point we wish to make is to show that only a small
fraction of the manifold of oblique slow mode solitons, pre-
dicted by the fluid model, survive in kinetic theory. To
demonstrate this, we set up MHD-predicted spatial soliton
profiles as initial conditions in a hybrid code simulation and
permit the system to evolve in time selfconsistently. A few
details concerning the simulations are given in the Appendix.
Figure 3 illustrates what happens to the Alfvenic fluid soli-

ton of Fig. 2c when launched in a collisionless plasma (same
propagation angle and ion-β). The soliton has been specified
as left-propagating; in order to keep it longer in the simula-
tion box, the plasma is streaming as a whole with a velocity
of 0.165vA in positive x-direction. It is seen from the time
sequence plots ofB andn in Fig. 3 that this soliton is little
affected and not in conflict with kinetic theory. It appears
as stable, long-lived structure, maintaining its shape until the
end of the run (t=2000�−1

i ). Kinetic modifications are not
fundamental in nature and concern the ion temperature evo-
lution: while a somewhat reduced peak in the perpendicular
temperatureTi⊥ is maintained, the parallel temperatureTi‖

rapidly relaxes to the equilibrium value, leaving an ion tem-
perature anisotropyTi⊥/Ti‖>1 inside the soliton.

Unlike the former case, the soliton with maximum field
depression (Fig. 2b) does not survive in the simulation. This
is demonstrated in Fig. 4. As seen from the stackplots ofB

andn in Fig. 4, the soliton rapidly degenerates to a small-
amplitude perturbation which is not of further interest. The
only features worth to mention are a splitting into two events,
each of them associated with an increase in the perpendicular
ion temperature (not shown), and the emission of two right-
propagating intermediate wave pulses (not shown). At a first
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Fig. 3. Space–time evolution of the

Alfvenic fluid soliton of Fig. 2(c)

when launched in negative x–direction

in a collisionless plasma with isotropic

Maxwellian ion distribution ( �-& ��0� � � � � U � ��� � � ��X 	 � 9 � ; ) and a

bulk speed of
���ED�[B� � � in positive \ –

direction, as a result of a hybrid code

simulation. Shown are stackplots of Q ,
] (top) and profiles of relevant quanti-

ties at the time ^ � ��� � �e_S`Jb& (bot-

tom). The soliton is almost standing in

the simulation box, i.e., in the plasma

frame it travels with � @ �0�ED�[ � � � to

the left.

Fig. 4. Space–time evolution of the

fluid soliton of Fig. 2(b), with maxi-

mum field depression, when launched

in a collisionless plasma; same �%& , �-U ,
and 	 as in Fig. 3. Shown are stackplots

of Q and ] .

.
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Fig. 3. Space-time evolution of the Alfvenic fluid soliton
of Fig. 2c when launched in negative x-direction in a col-
lisionless plasma with isotropic Maxwellian ion distribution
(βi=0.25, βe=0.025; θ=80◦) and a bulk speed of 0.165vA in pos-
itive x-direction, as a result of a hybrid code simulation. Shown are
stackplots ofB, n (top) and profiles of relevant quantities at the time
t=2000�−1

i
(bottom). The soliton is almost standing in the simu-

lation box, i.e., in the plasma frame it travels withV ≈0.165vA to
the left.

look, this behaviour might rise doubts on the qualification of
fluid predicted solitons to describe solitary phenomena in a
collisionless plasma.

3.2 Initial conditions/mechanisms used to generate solitons

Our second point is to stress that a collisionless plasma, in
addition to the Alfvenic soliton, does admit a variety of large-
amplitude, solitary structures with a polarization of the slow
magnetosonic type, not predicted by the fluid model. In the
following we illustrate general aspects of the evolution and
the properties of such kinetic solitons with a few specific
cases in a series of hybrid simulations. As we have seen
above, fluid solitons are not necessarily appropriate as ini-
tial conditions in the simulations for this purpose. Since
we do not know the criteria for an arbitrary initial condi-
tion to generate solitons during the time evolution, we try
several artificial initial states which have in common a local-
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Fig. 4. Space-time evolution of the fluid soliton of Fig. 2b,
with maximum field depression, when launched in a collisionless
plasma; sameβi , βe, andθ as in Fig. 3. Shown are stackplots ofB

andn.

ized perturbation of an otherwise uniform plasma. Thereby,
we do not address the question whether or not such initial
states/generation mechanisms may arise in nature. First,
we study the space-time evolution of two initial perturba-
tions with a polarization similar to that of the fluid soliton
in Fig. 2b. Second, we study the plasma response to two al-
ternative perturbation mechanisms: we run a simulation in
which ions are locally injected into the uniform plasma dur-
ing a time period, and we consider a case in which the plasma
is locally perturbed by an external double-sheet current. In
all runs solitary structures develop, illustrating the manifold
and the robustness of kinetic slow mode solitons. At the same
time, the particular role of the non-propagating (or almost
non-propagating) structures, which emerge in all of the runs
with nearly the same features, becomes evident.

3.3 Initial conditions with large field depressions

The first example, illustrated in Fig. 5, depicts stack plots
of B and n (top) giving the evolution tot=1000�−1

i of
an initial structure which corresponds to the fluid soliton in
Fig. 2b, stretched in space by a factor of 8. Subsequent to
a transient deformation of the initial profile, two soliton-
like entities emerge self-consistently after about 300�−1

i .
One of them propagates to the right with a velocity near
to V =cI , maintaining its shape almost until the end of the
run. It exhibits typical features of the Alfvenic soliton in
Fig. 3 (size≈10ωpi/c, moderate field depletion, significant
By- and transverse plasma bulk velocity variations, density
increase by a factor≈2) and can be categorized correspond-
ingly. The increased parallel ion temperature around the soli-
ton is a remnant of the initial peak inTi which disperses
with time and bears little relationship to the soliton. The sec-
ond solitary structure seen in Fig. 5 appears as quite different
event. It persists almost at the position of generation and ex-
hibits a much stronger magnetic field depletion. Variations
of the non-coplanar componentBy are absent, perturbations
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Fig. 5. Soliton formation in a collision-

less plasma (same � & , � U , and 	 as in

Fig. 3) as a result of a hybrid code sim-

ulation. The initial condition represents

the fluid soliton of Fig. 2(b) streched in

space by a factor of 9 . Shown are stack-

plots of Q , ] (top) and profiles of rele-

vant quantities at the time ^�� 9 � �e_ `cb&
(bottom).
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Fig. 5. Soliton formation in a collisionless plasma (sameβi , βe, and
θ as in Fig. 3) as a result of a hybrid code simulation. The initial
condition represents the fluid soliton of Fig. 2b streched in space
by a factor of 8. Shown are stackplots ofB, n (top) and profiles of
relevant quantities at the timet=800�−1

i
(bottom).

of the plasma bulk velocity are close to the thermal level, and
there is only a moderate density signal. A notable feature is
the development of a significant ion temperature anisotropy
Ti⊥/Ti‖>1 inside the soliton. The perpendicular temperature
Ti⊥ is increased by a factor of≈3 while the parallel temper-
atureTi‖ remains almost unaffected. Thus, the ions show
a distinct departure from their initial Maxwellian property in
the region of depleted field. This soliton represents an almost
pressure-balanced structure (PBS) in which the increased ion
temperatureTi⊥ rather than the density hump balances the
magnetic pressure deficit. This solitary structure is not pre-
dicted by Hall-MHD theory, thus we are confronted here with
a kinetic phenomenon.

The initial configuration whose space-time evolution is de-
picted in Fig. 6 is set up again by a broadened version of the
soliton in Fig. 2b, here realized by the choice of a higher ion-
β (βi=1 instead ofβi=0.25). It is seen from Fig. 6 that a
slow mode soliton is launched from this initial perturbation,
propagating to the right with a speed less than that of the
Alfven-type soliton in Fig. 5. It is neither accompanied by
a By-variation nor has it the character of a strictly pressure-
balanced structure. The peak inTi⊥ gives evidence of per-

Fig. 6. The same as Fig. 5; the ini-

tial condition represents again a ’broad-

ened’ version of the soliton in Fig. 2(b),

realized here by the choice �>� D
in-

stead of �2� �0� � �
. Stack plots of Q and

] (top) and profiles of relevant qantities

at the time ^�� ��� �e_ `Jb& (bottom).
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Fig. 6. The same as Fig. 5; the initial condition represents again a
‘broadened’ version of the soliton in Fig. 2b, realized here by the
choiceβ=1 instead ofβ=0.25. Stack plots ofB andn (top) and
profiles of relevant qantities at the timet=500�−1

i
(bottom).

pendicular ion heating inside the soliton, i.e., it appears as
a moving version of the PBS soliton in Fig. 5. Note, how-
ever, that the amplitude decays with time, likely caused by
the motion relative to the background plasma, which disqual-
ifies this soliton as a long-lived structure. The perturbations
in By anduy adjacent to the soliton location, seen in the bot-
tom panels of Fig. 6, represent two right-propagating inter-
mediate wave pulses launched in addition to the soliton.

3.4 Soliton generation by mass loading

The third example, in which ions are locally injected into
the simulation box, is illustrated in Fig. 7. Injection takes
place aroundx=0 within the period 0<t<200�−1

i at a rate
of ≈10 particles/time step with a velocity distribution consis-
tent with the initial particle distribution. From the stack plots
of B andn it is seen, that, after initial transient processes, a
non-propagating, large-amplitude solitary structure evolves
with similar properties as that in Fig. 5. Size and depth of
the magnetic depression as well as the spatial variation of
density and temperatures in the final time are quite similar.
We point to the variation of the non-coplanar componentuy

of the plasma bulk velocity, which is clearly related to the



296 K. Baumg̈artel et al.: Kinetic slow mode-type solitons

Fig. 7. Generation of a non–

propagating magnetically rarefactive

solitary structure by particle injection

into a uniform Maxwellian plasma

(same �V& , �-U , and 	 as in Fig. 3).

Around \g� �
ions are continuously in-

jected at a rate @ D��
particles/time step

for a time priod
� < ^ < ��� �e_ `Jb& with

a velocity distribution consistent with

the initial ion distribution. Stack plots

of Q and ] (top) and profiles of relevant

quantities (bottom) at the end of the run

( ^d� D�� � �e_ `Jb& ).
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Fig. 7. Generation of a non-propagating magnetically rarefactive
solitary structure by particle injection into a uniform Maxwellian
plasma (sameβi , βe, andθ as in Fig. 3). Aroundx=0 ions are
continuously injected at a rate≈10 particles/time step for a time
priod 0<t<200�−1

i
with a velocity distribution consistent with the

initial ion distribution. Stack plots ofB andn (top) and profiles of
relevant quantities (bottom) at the end of the run (t=1000�−1

i
).

soliton. It indicates the presence of a current in y-direction,
necessary to maintain thex-variation of Bz in a pressure-
balanced structure. Again, perpendicular ion heating occurs
within the depleted field region. Since the simulation has
started in this case with uniform, isotropic ion temperature
across the box, evidence is given that the formation of the
soliton is inherently coupled with perpendicular ion heating.
The mechanism responsible for this heating has not yet been
explained.

3.5 Soliton generation by an external current

In the fourth case, the plasma is transiently excited by an ex-
ternal double-sheet current along the y-direction, located at
the center of the simulation box. The x-variation of the cur-
rent is prescribed as derivative of a Gaussian profile. After
a time period of 100�−1

i the current is switched off and the
subsequent evolution proceeds undriven. This example is il-
lustrated in Fig. 8. From the stack plots it is seen that an
almost non-propagating soliton evolves after transient pro-

Fig. 8. Soliton formation subse-

quent to a transient, localized plasma

perturbation by an external double–

sheet like current. The x–variation of

the external current is
� RB)�� ]�� ��� �

� � � \%)�
���\B" ��W\ 3 )�
 3 � with � �
� �0� � ��
 � D�� 
�)�H I�& . The current is

at work until ^ � ���e_ `cb& . Stack plots

of Q and ] (top) and profiles of relevant

quantities (bottom) at the end of the run

( ^8� ��� �e_ `Jb& ). Same �-& , �-U , and 	 as

in Fig. 3.
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Fig. 8. Soliton formation subsequent to a transient, lo-
calized plasma perturbation by an external double-sheet
like current. The x-variation of the external current is
Jy/en0vA=a

√
2x/H exp(−x2/H2) with a=−0.2, H=10c/ωpi .

The current is at work untilt=50�−1
i

. Stack plots ofB andn (top)
and profiles of relevant quantities (bottom) at the end of the run
(t=500�−1

i
). Sameβi , βe, andθ as in Fig. 3.

cesses, the properties of which are almost the same as in the
previous cases. Linearly polarized intermediate wave pulses
are also launched to both sides of the source, as seen from
theBy anduy profiles. They appear to be associated with in-
creases in the parallel ion temperature. In an additional run,
the plasma was exposed to the same current with opposite
directions, which tends to create a magnetic hump instead of
a dip. The magnetic compression, however, rapidly relaxed
after switching off the current, indicating that it does not rep-
resent a stable structure.

4 Discussion and conclusions

We have examined the evolution of magnetically rarefactive,
large-amplitude, slow mode solitons propagating oblique
to the ambient magnetic field (θ=80◦) in a collisionless
plasma of moderate ion-β (βi=0.25) via 1-D hybrid code
simulations. The study is partly motivated by the goal to
test the fluid-based theoretical model for the explanation of
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solitary magnetic depressions, observed by the Cluster satel-
lites (Stasiewicz et al., 2003; Stasiewicz, 2004), against ki-
netic theory. The simulations give evidence that magnetically
rarefactive solitary structures of quite different properties
may exist in a collisionless plasma, and that they may be gen-
erated under different circumstances. The spectrum includes
Alfvenic solitons, similar to those predicted by the Hall-
MHD theory as well as non-propagating, pressure-balanced,
solitary structures without counterpart in fluid theory. Char-
acteristic feature of the latter are a large-amplitude magnetic
depression, accompanied with a moderate density enhance-
ment, a variation of the non-coplanar plasma bulk velocity
componentuy and an enhanced perpendicular ion tempera-
ture, causing a significant ion temperature anisotropy in the
depleted field region. The mechanism which energizes ions
perpendicular to the magnetic field inside of PBS-type soli-
tons remains to be explained. The variation of the plasma
bulk velocity componentuy indicates the presence of a cur-
rent which is necessary to maintain thex-variation ofBz≈B.
A moving version of this soliton type is subject to damp-
ing in amplitude. The tendency of a collisionless plasma to
form almost non-propagating regions of depleted magnetic
field is clearly a kinetic effect. It becomes as more dominant,
as larger the ion-β is, and may explain the frequent occur-
rence of ‘magnetic holes’ in high-β plasmas (Baumg̈artel et
al., 2003). The fact that a soliton possessing the polarization
of the slow magnetosonic wave appears as robust structure
in the simulations is seemingly in contradiction to the expec-
tions one might have from linear kinetic wave theory, which
predicts strong collisionless damping for the slow magnetoa-
coustic wave. One should be aware, however, of the essen-
tial non-propagating nature of this soliton, which suppresses
wave-particle interaction and thus enables the establishment
of a stable structure. This suggestion is supported by the ob-
servation of damping in cases of finite propagation velocity
of this type of solitons in the simulations.

Solitary slow mode structures in aβi=0.25 plasma ap-
pear in the simulations generally with a size of 8–10c/ωpi ,
exceeding the fluid predicted size for maximum amplitude
(≈4c/ωpi in Fig. 2b) by a factor of 2.

As far as the comparison of the simulation results with the
observations is concerned, the situation is as follows. The
larger size of kinetic solitons of all types fits well into the ob-
servations. Alfvenic solitons likely can be ruled out as candi-
dates because of their less pronounced field depression. On
the other hand, standig or almost non-propagating PBS-type
solitons are not associated with a sufficiently strong density
signal. Events which combine strong field depressions and
strong density enhancement have been seen in the simula-
tions only as transient structures. Since measurements of ion
quantities such as plasma bulk velocity and ion temperature
inside the magnetic depressions are not available, the most
striking kinetic prediction, the ion temperature anisotropy
within the soliton, cannot be confirmed by the observations
reported in S. The same is true with respect to the bulk veloc-
ity variations which could give information on the physical
nature of the events. There are, however, indications of per-

pendicular ion heating in previous reports on large-amplitude
magnetic depressions of quite different spatial scales (Win-
terhalter et al., 1994; Fränz et al., 2000; Tsurutani et al.,
2002)). There is one remaining point which might contribute
to clarify the character of the observed solitary structures on
the basis of the magnetic field data, an inspection of theBy

variation across the events. It could give indications whether
PBS-like or Alfvenic solitary structures have been observed.

In order to test the influence of a moderate anisotropy of
the equilibrium plasma on the soliton formation, some of
the runs have been repeated with a Bi-Maxwellian ion vel-
city distribution below the threshold of the Mirror instability
(Ti0⊥/Ti0‖=1.4) loaded initially into the simulation box. No
significant changes have been seen in the space-time evolu-
tion; the solitary structures appeared almost unaffected by
the anisotropy.

One may list the basic findings with respect to strongly
oblique propagating, kinetic, solitons of the slow mode
branch as follows: (1) Only the Alfvenic soliton of the
Hall-MHD theory survives in kinetic theory; (2) a colli-
sionless plasma admits non-propagating, pressure-balanced,
solitons with large magnetic depressions, moderate density
signals and a strongly enhanced perpendicular ion tempera-
ture within the structure; (3) the size of kinetic solitons in a
plasma withβi=0.25 is generally around 10 ion skin lengths;
(6) a moderate ion temperature anisotropyTi0⊥/Ti0‖>1 be-
low the threshold of the Mirror instability has little influence
on the formation and the properties of solitons.

In summary, kinetic effects have been shown to contribute
significantly to the appearance of oblique, slow mode-type
solitons in aβi=0.25 plasma. Our results lead us to argue
that caution is required when Hall-MHD theory is applied
to explain nonlinear phenomena of slow mode character in
collisionless plasmas even for moderate beta.

Appendix

The one-dimensional hybrid simulations employ a system
with the simulation axis alongx and the undisturbed mag-
netic field B in the x-z-plane (angleθ relative to the x-
axis). Simulations are typically performed using simula-
tion boxes with a number of cells such that the ion skin
length c/ωpi is resolved more than twice (typical cell size
∼0.4c/ωpi), 200–400 protons per cell, and a time step of
0.05�−1

i (ωpi proton plasma frequency,�i proton gyrofre-
quency) and have been typically carried out until 1000�−1

i .
The background plasma is isotropic with a Maxwellian pro-
ton distribution (βi=0.25) and an adiabatic, massless, colder
electron fluid (βe=0.025). A few runs have been started with
an anisotropic (Bi-Maxwellian) proton distribution function.
‘Free’ boundary conditions are used in the sense that parti-
cles are continuously injected at both boundaries of the simu-
lation box from a buffer zone filled with ions having a veloc-
ity distribution consistent with the initial particle distribution,
to balance particles escaping from the box.
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After submitting the manuscript an additional inspection
of the Cluster magnetic field data discussed in S revealed that
variations of the non-coplanar magnetic field component are
almost absent during the events S1, S2, S3 in Fig. 2 of S
(data courtesy K. Stasiewicz). This supports the suggestion
that the events under discussion likely represent PBS-type
kinetic solitons rather than conventional Hall-MHD solitons.
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