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INTRODUCTION

The governing equations are given by

3N =V(u, U1V =nVV))+ceny —cgn(Ny =Ny ) 1)
6tp:V(,up(UTVp— pVV))"' can(Ntr _ntr)_cbntrp (2)
Oy = Ca(Ntr —Ny )+ CoNir P—CcNy +Cy n(Ntr - ntr) 3)
&AV =q(n+n, - p-C) (4)

Here n denotes the density of electrons in the conduction band, whereas p is
the density of holes in the valence band, with p, n being opposite charges. The

position density of occupied traps is given by n, ; and by C,,C,,C.,Cy we
denote the rate constants. The quantity U is the so-called thermal voltage. In the

following, we consider a semiconductor crystal with a constant (in space) number
density of traps N,, .

In the Poisson equation (4), V (x; t) is the electrostatic potential, &, the

permittivity ~ of the semiconductor, g the elementary charge, and C = C(x) the
doping profile. By adding equations (1),(2),(3), we obtain the continuity equation
o(p-n-ng)+Vv{3, +3,)=0 (5)

with current densities
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In :yn(UTVn—nVV) (6)

and

Jp=u,(UrVp—pvV) )
Note that for the current density we use the simplest possible model, the drift
diffusion ansatz, with constant mobilities £, £, . Moreover, as there is no flux,

there is no current density J,..The gap between the valence and the conduction

band (which is called the bandgap) is very large for semiconductors, which
means that lots of energy is needed to transfer electrons from the valence to the
conduction band. This process is referred to as the generation of electron-hole
pairs (or pair-generation process), i.e., an electron is created in the conduction
band and a hole in the valence band. The inverse process is termed recombination
of electron-hole pairs.

We now introduce a rescaling of n,p, and N, in order to render the
equations  (1)-(3)  dimensionless: n—Cn, p —>Ep : Ne = Ny s

C—CC,x—Lx, n—Cn, /Un,p_>;/un,pl naEn,Jn'paMJn'p, and

C is a typical value for C. Moreover, we rescale time t — to make sure

tr
R C R
that all constants are of order 1, and set ¢, =c4C ny,cy =¢4—,C, =¢,C py,
Tn

C
and C, = — .Given the scaling assumption & :% «1, we finally obtain

T

on=vJ, +R, (8)

op=-VJ, +R, 9)

g0iny =R, =R, (10)
VVW=n+en, —p-C (11)

where
I =1, (Vn=nvV) (12)
and

J,=—p,(Vp-pVV) . (13)

By R, and Rp we denote the recombination-generation rates for n and p,
respectively:

Ry == (o0 ~nli-n, ) (14)

n
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1
Rp :T_(pO(l_ ntr)_ pntr) (15)
P
Note that 0<n, <1 should hold from physical point of view. Moreover,

both n and p are nonnegative.

MAIN RESULT
We consider initial-boundary value problems with initial conditions
n(x,0)=n; (x), p(x.0)= Py (x).1 (x,0)= "y 4 (x) (16)
and with mixed Dirichlet-Neumann boundary conditions on 6Q , i.e., let
n(x,t)=np (x), p(x,t)= pp (X),V(x,t)=Vp (x),x € 8Qp < 0Q (17)
and
@f—p:ﬂ:o,aQN =0Q\0Qp (18)
ov ov ov

where v is the outward unit normal vector along 0Q, .1t is allowed to impose only
homogenous Neumann boundary conditions on all of 0Q, i.e. we set 0Qy =@, and
the following Theorem will hold.

Theorem Let n,,p, eL”(Q) (and non-negative), 0<n,, <1 and let
C e L”(Q) . Then, the solution of (8)-(11) satisfies n, p e L ((0,00), L (@) HY(Q))
and 0<n, <1.

tr —

Proof: We will use the result from [5], which was obtained for homogenous
Neumann boundary conditions. We can show by a straightforward computation

d j{(n—nD)q +<p—pD>q}dX:

dtd| qu, au,

_ a-1 _ a-1
4{—(” ZD) (V3, + Ry —oynp )+ (2P0 ) :’D) (—VJp+Rp—atpD)}dx
n p

: _(q _1).'{(“ - nD)HV(n _nD)i_n_(p - Pp )HV(D - pD)i_p}dx

+01J’(nq + pq)dx+Cl
=—(q —1)'[(n—nD)q‘2V(n—nD)Vndx +
@-2)[(p=po)"?V(p— po Ve

+(@-1)tn-np )" n¥(n—n5)~(p— po ) ? pV(p - P JIVVelx
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+C1J.(nq + pq)dx+Cl
=+l +13+1,
where the term 1;from (19) can be rewritten as follows:

I3 = I[(n—nD)q‘lV(n—nD)—(p— Po )V (p— pp IVVdx+

+ [l =np "> V(n=np np ¥V ) =[P~ po ) V(p - pp (PHVV X

(19)

=L Jitr-no) ~(p= po lin— p--an, ~Cx

—ﬁ (n—np ) (Vo VV +np (n— p+en, —C)dx

1 _
+ﬂ (p-pp ) 1(VF’DVV + pp(n—p+en, —C)dx.
We have used partial integration, and (11) to obtain the last expression. By applying

Holder inequality with coefficients q’, r; s and using the fact that il+£=1, we
g q

obtain the following estimate
1
152 [0 (= po ¥ -5 ~(p - po

+C 4G (1% + p* o Cafp + V. -+ e

AV = p,|VV||s <C|lo|[VV] s <[VV],y2a Where p=n+en, —p-C.
For g >2and even, one obtains for |,

l, = —I(n —np ) Avn[fdx + J.(n —np )2 VnyVndx (20)
By rewriting the integrand in the second integral from (20) as

(n—ng)"?Vnyvn :(n—nD)%VnV(n—nD)L;anD (21)

and applying the Cauchy-Schwarz inequality, we have the following estimate for (20):
I, < —I(n —np )"V dx + \/I(n —np )% |vnl? de'(n —np )2V [ dx

< j (n—np Y2 vn[ax + [V 2 Jn - np (22)

For |,, the same reasoning (with N.n replaced by P.py , respectively) yields an

analogous estimate.
Collecting all the estimates, we finally obtain:

d I{(n—na)q L (p=pp)’ }dx:

datd| qu, A,
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1 _ _
<2 (0= no 7 dx +fn | ZJn ol
1 _ _
5 (0= o) [vp[" k4o oo — po 1s”
1
—a_[[(n - nD)q —(P - pD)q]|Vn|2(n —Np — (p - pD))dX

#Cy+Cs [ 19+ p7x+ ol + {7
1d
q dt

n+ p||LcI (23)

LI'
In=noll +1p= poll P Il [In-nofFex-[polf. [l - pol“ex
+Call+ % + Cllf% + Collpols

<C.2{n=no|f% +Inol% + - pol% +[poll ] (24)

Corollary Given the assumptions of Theorem, consider equations  (8)-
(112) with homogenous Neumann boundary conditions. Then

n, pe L ((0,) L* (@) HY ().
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