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Porous ceramics are widely used as filters for molten 
metal and hot gases, membranes for chemical processes, 

thermal insulation, catalyst supports and chemical sensors, 
due to their unique three-dimensional skeleton structure, high 
porosity, low density, high thermal stability and resistance to 
chemical attack [1-3]. Alumina matrix ceramic foams with the 
special properties of chemical inertness and high-temperature 
stability are mainly used in filtering molten metal. There 
are several ways of producing ceramic foams [4]. A common 
method used to produce ceramic foams, known as ‘replication 
process,’ involves the impregnation of a polymer sponge with 
a thixotropic ceramic slurry [5, 6]. One of the drawbacks of this 
method is the tendency to leave a hollow strut after pyrolysis. 
The presence of hollow strut defect is critically influential to 
the mechanical properties. So a simple and efficient method 
is urgently needed to improve the density of cell strut and to 
achieve higher strength.

In the present research, centrifugal slip casting the ceramic 
slurry into the interstitial spaces of pre-arrayed epispastic 
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polystyrene (EPS) template was used to produce Al2O3-ZrO2 
ceramic foams. The general procedure is as follows: forming 
a close-packed template with EPS spheres, and filling the 
interstitial spaces with ceramic slurries by centrifugal slip 
casting, then removing the mold, drying and sintering at special 
temperatures to obtain a porous inverse replica. The centrifugal 
slip casting can avoid holes and cracks resulted from the 
pyrolysis of organic sponges, so the sintered products have 
dense cell struts and good mechanical properties. It is known 
that the ultimate compressive strength of ceramic foam filter is 
very important, and can affect the service life of the products. In 
centrifugal slip casting process, the ultimate compressive strength 
of Al2O3-ZrO2 ceramic foams is closely associated with the 
process parameters such as the load applied on the EPS template 
(F), centrifugal acceleration (v) and sintering temperature (T). 
Therefore, by controlling process parameters, the ultimate 
compressive strength (σ) can be adjusted to match the practical 
application requirement. In previous research, the properties of 
materials are usually investigated by the experimental methods 
in which one parameter is changed and the others are fixed, and 
then the relatively better result is selected. But, not only does 
this conventional method ignore the mutual effects of different 
process parameters but also waste time and energy. Consequently, 
a new method is required to establish the relationship between the 
process parameters and product properties. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26953278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


287

Research & Development
August 2011

Artificial neural networks have been widely used in many 
science and engineering fields due to their remarkable 
information processing characteristics, such as non-linearity, 
simplicity, robustness, fault and failure tolerance, self learning 
and ability to extract useful information from samples [7-9]. 
Otherwise, it is not necessary to specify mathematical 
relationships between the input and output variables [10]. In 
addition, the back propagation (BP) neural network is one of 
the most commonly used artificial neural networks.

To the best of our knowledge, there has been no report for 
the prediction of the ultimate compressive strength of Al2O3-
ZrO2 ceramic foam filter prepared by centrifugal slip casting. 
In this paper, a BP neural network model was built and used 
to observe the relationship between process parameters and 
ultimate compressive properties of Al2O3-ZrO2 ceramic foam 
filter based on the experimental data. The accuracy of the 
model was confirmed by comparing the BP model prediction 
and the experimental results. According to the registered 
BP model, the ultimate compressive strength of Al2O3-ZrO2 
ceramic foam filter with different parameters can be predicted, 
which contributes to the choice of better process parameters to 
satisfy the actual application requirement. 

1 Experimental procedure
Al2O3 powder with 99.99% purity and an average particle 
size of 0.2 μm and ZrO2 powder (TZ-3Y) with 99.5% purity 
and a median diameter of 0.15 μm were used as the starting 
materials. EPS spheres (hollow and with low density and good 
compressibility) sieved through a 12-mesh screen were used 
to array the template. The process for fabricating the alumina 
matrix ceramic foam is as follows. First, EPS spheres were 
slowly put into the cylindrical mold to definite height. Then, 
load was applied at the top of the EPS template to adjust its 
porosity. Finally, the whole mold was heated to 120℃ for 
30 min to improve the linking strength between the spheres 
and to preserve their deformation. Two kinds of powders 
were mixed in a special proportion (Al2O3-15vol.%ZrO2), 
and then dispersed in distilled water with 1wt.% dispersant 
and pH 10 by ball milling for 24 h. Aqueous suspensions 
with different solid contents varying from 30vol.% to 
50vol.% were prepared. The prepared slurries were poured 
into the interstitial spaces of the EPS template, followed 
by a centrifugal process at different accelerations. After 
centrifugation, the specimens were removed from the mold 
and dried for 24 h at room temperature. Then, the dried 
specimens were sintered at 1,550℃ for 2 h in air. Ultimate 
compressive strength was measured using a universal testing 
machine (CMT5105) with a loading rate of 0.5 mm·min-1 on 
the specimens in size of 20 mm × 20 mm.

2 BP neural network model

2.1 Establishment of BP model
The results from the above experiment are used as the samples 
for BP neural network model as described below. In principle, 

it has been proven that a BP neural network with one hidden 
layer is for most applications because it can approach to any 
complicated decision-making boundary, while the one with 
many hidden layers makes the network too complicated, 
causing lower convergence and larger errors. Therefore, a three-
layer BP model with one hidden layer is employed in this study. 
It is easy to determine the number of neurons in the input layer 
and output layer in the model. In present study, three inputs 
including the load applied on the EPS template (F), centrifugal 
acceleration (v) and sintering temperature (T) are denoted as a1, 
a2 and a3, and the ultimate compressive strength (σ), the only 
output is denoted as c1. However, due to no definite rule, it is 
difficult to choose the appropriate number of neurons in the 
hidden layer. Using too many neurons impedes generalization 
and increases training time. But using too few neurons impairs 
the neural network and prevents the correctly mapping of inputs 
and outputs. In this paper, the number of neuron in the hidden 
layer is determined to be seven by empirical formula [8]. So the 
network structure is 3-7-1 (as shown in Fig. 1). 

The back propagation (BP) algorithm is as follows:
    

 (i=1, 2,…7)         (1)

    (j=1)              (2)

                      (3)

where, ah is the neuron in the input layer, bi is the neuron in 
the hidden layer, and ci is the neuron in the output. whi and wij 
are weights between the input layer and the hidden layer, and 
the hidden layer and the output layer, respectively. f(x) is the 
activation function. To train a neural network is to adjust the 
weights so as to model and estimate a complicated non-linear 
object. The learning error Ep for a sample p is

    
 (M =1)     (4)

where, dpj and cpj are the desired and the calculated output for 
jth output, respectively. M is the number of neurons in output 
of the network. The average error for the whole system, EP, is 
obtained by 

    
 (M=1)        (5)

Fig. 1: 3-7-1 BP neural network structure
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where, P is the total number of instances. The weights of the 
network in BP algorithm are expressed as follows [11]:

 (6)

  (7)

where, t is time, α  is the momentum coefficient, η  is the learning 
rate, δ j and δ i are the learning signals as described below:

                (8)

                (9)

Where, dj and cj are the desired and the calculated output of j 
neuron,  cj' is the activation function derivative of output layer,   
bj' is the activation function derivative of hidden layer. The 48 
sets of patterns were obtained by the above experiments. 32 
sets of them were used to train the network and the other 16 
sets were used to test the network. The maximum, minimum 
and mean values of training data are shown in Table 1. In order 
to better train the neural network, the proper initial weights 
are chosen to avoid the local minimums of the BP network. 
Neural Network Toolbox 2.0 of Matlab Software Package 
was used to initiate the weights. When the initial η  and α  are 
different, the cyclical times to reach the error goal, Er , are also 
different. In this work, the initial Er, η  and α  are 0.01, 0.95 and 
0.1, respectively. According to the running result of Matlab 
Software, the training goal (Er<0.01) was reached after 273 
iterations. Then a convenient training model was obtained and 
used to evaluate the artificial neural networks processes.

Table 1: Max, min and mean values of training data

 No.  F (N)      v (g)          T (℃)             σ  (MPa)
Min.   7.3      2,860          1,550  4.51
Max.  19.8      1,610          1,450  0.32
Mean  17.2      2,191          1,550  2.55

Table 2: Predicted results of gradient descent BP model

        Process parameters               σ  (MPa)
                 F (N) v (g) T (℃) EXP PRE      Error (%)
    1 7.3 1,610 1,550 3.82 3.846 0.68

    2 7.3 2,191 1,500 1.85 1.865 0.81

    3 7.3 2,860 1,600 4.17 4.152 0.43

    4 12.3 1,118 1,450 0.53 0.538 1.51

    5 12.3 2,191 1,550 3.38 3.372 0.24

    6 12.3 2,860 1,600 3.56 3.546 0.39

    7 17.2 1,118 1,550 1.48 1.493 0.88

    8 17.2 1,610 1,550 1.86 1.841 1.02

    9 17.2 2,191 1,550 2.55 2.573 0.90

   10 17.2 2,860 1,450 0.64 0.632 1.25

   11 17.2 2,860 1,500 1.35 1.357 0.15

   12 17.2 2,860 1,550 2.86 2.835 0.87

   13 17.2 2,860 1,600 2.62 2.604 0.61

   14 19.8 1,118 1,500 0.72 0.708 1.67

   15 19.8 1,610 1,450 0.43 0.441 2.56

   16 19.8 2,860 1,600 1.94 1.935 0.26

No.

Fig. 3: Effect of centrifugal acceleration (v) on  
ultimate compressive strength (σ ) (F is 
17.2 N and T is 1,550℃)

Fig. 2: Effect of load applied on EPS template (F) 
on ultimate compressive strength (σ ) (v is 
2,860 g and T is 1,600℃)

Note:  EXP=Experimental; PRE=Predicted

2.2 Predicted results of BP network
The comparison between experimental data and the predicted 
results from the BP model are shown in Table 2. The relative 
error of σ  is within 3%, and its maximum absolute error is 
0.026 MPa which meets the error bars (±0.1 MPa) in the 
experiment. According to Table 2, the predicted results agree 
with the measured results within reasonable error. The BP 
neural network model established in this paper can effectively 
consider the influential factors of the ultimate compressive 
strength of Al2O3-ZrO2 ceramic foams prepared by centrifugal 
slip casting, such as applied load on the EPS template, 
centrifugal acceleration and sintering temperature. Therefore, 
it is feasible and effective to predict the ultimate compressive 
strength of Al2O3-ZrO2 ceramic foams. If other mechanical 
properties are chosen as predicted targets, new BP models can 
be used to study other mechanical behavior of Al2O3-ZrO2 
ceramic foams.

2.3 Discussion
Based on the prediction of the above BP model, the effect 
of process parameters including the load applied on the 
EPS template (F), centrifugal acceleration (v), and sintering 

temperature (T) on the ultimate compressive strength (σ ) are 
shown in Figs. 2–4, respectively. It can be seen from Fig.2 that 
the ultimate compressive strength decreases with the increase 
of the EPS template. This is mainly due to the deformable 
nature of the EPS spheres. These spheres are compressed 
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into denser packing at a higher load, resulting in a higher 
porosity in the final foam product. Higher porosity induces 
the reduction of effect area to support the load, and therefore, 
leading to the reduction of ultimate compressive strength. 
As can be seen in Fig.3, with the increase of centrifugal 
acceleration, the ultimate compressive strength increases. The 
reason is that at a higher centrifugal acceleration, the Al2O3 
and ZrO2 particle packing is denser, and the sintered products 
have higher density, resulting in the increase of the ultimate 
compressive strength. With increasing sintering temperature 
(T), the ultimate compressive strength first increases and 
then decreases (Fig.4), and the ultimate compressive strength 
value peaks at 1,550℃. This is mainly because that with the 
increase of sintering temperature, the irregular particles of cell 
struts in Al2O3-ZrO2 foam filters grow up and turn into large 
grains. These large grains are closely bonded together and 
have more contact area, inducing a decrease in the porosity 
and an increase in the ultimate compressive strength. When 
the samples sintered at 1,600℃, fewer grains preferentially 
grow into very large size compared with other grains, which 
is caused by overfiring. This overfiring usually causes a little 
decrease in strength.

According to the aforementioned BP model, the optimal 
ultimate compressive strength can be predicted to meet practical 
requirement. So the model is critical for the quality control of 
the Al2O3-ZrO2 ceramic foam filter and can be widely used in 
centrifugal slip casting process.

3 Conclusion
The non-linear relationship between process parameters 
including applied force on the EPS template (F), centrifugal 

acceleration (v), sintering temperature (T) and ultimate 
compressive strength (σ ) is built by BP artificial neural 
network model based on the experimental results of centrifugal 
slip casting. The results showed that the BP neural network 
model can very well predict the ultimate compressive strength 
of Al2O3-ZrO2 ceramic foam filter. The prediction results show 
that the ultimate compressive strength decreases with the 
increase of applied force, and increases with the increase of 
centrifugal acceleration. With increasing sintering temperature, 
the ultimate compressive strength first increases and then 
decreases a little in the given range. Hence, BP neural network 
model is a very useful tool to optimize process parameters, 
control the ultimate compressive properties of sintered 
products and satisfy the practical demand. Compared with 
regression analysis, BP model is more effective, and can be 
widely used in centrifugal slip casting study.
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