
Yugoslav Journal of Operations Research 
           14 (2004), Number 1, 83-97 

THREE DIMENSIONAL FIXED CHARGE BI-CRITERION 
INDEFINITE QUADRATIC TRANSPORTATION 

PROBLEM* 

S.R. ARORA 
Department of Mathematics, Hans Raj College, University of Delhi 

Delhi-110007, India.  
srarora@yahoo.com 

Archana KHURANA 
Department of Mathematics, University of Delhi, Delhi-110007, India 

archana2106@rediffmail.com, archana@du.ac.in  

Received: October 2002 / Accepted: August 2003 

Abstract: The three-dimensional fixed charge transportation problem is an extension of 
the classical three-dimensional transportation problem in which a fixed cost is incurred 
for every origin. In the present paper three-dimensional fixed charge bi-criterion 
indefinite quadratic transportation problem, giving the same priority to cost as well as 
time, is studied. An algorithm to find the efficient cost-time trade off pairs in a three 
dimensional fixed charge bi-criterion indefinite quadratic transportation problem is 
developed. The algorithm is illustrated with the help of a numerical example. 

Keywords: Three dimensional quadratic transportation problem, cost-time trade-off pairs, fixed 
charge, bi-criterion indefinite quadratic transportation problem 

1. INTRODUCTION 

In the classical transportation problem the cost of transportation is directly 
proportional to the number of units of the commodity transported. But in real world 
situations when a commodity is transported, a fixed cost is incurred in the objective 
function. The fixed cost may represent the cost of renting a vehicle, landing fees in an 
airport, set up costs for machines in a manufacturing environment etc.  
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The fixed charge transportation problem was originally formulated by 
G.B.Dantzig and W. Hirsch [9] in 1954. Then in 1968 K.G.Murty [11] solved the fixed 
charge problem by ranking the extreme points. After that several procedures for solving 
fixed charge transportation problems were developed. 

Sometimes there may exist emergency situations such as fire services, 
ambulance services, police services etc. when the time of transportation is of greater 
importance than the cost of transportation. Several methods [5, 12] for minimizing the 
time of transportation are also developed. 

 In 1976 Bhatia [4] et.al. provided the time-cost trade-off pairs in a linear 
transportation problem. Also in 1994 Basu et. al.[2] developed an algorithm for the 
optimum time-cost trade-off in a fixed charge linear transportation problem giving same 
priority to cost and time. 

 The transportation problem considered in the classical transportation problem is 
generally a two-dimensional linear transportation problem. Haley [6] in 1962 described 
the solution of a linear multi-index transportation problem where there are three indices. 
The method for solution presented by Haley is an extension of MODI method. In 1994, 
Basu et al. [3] provided an algorithm for finding the optimum solution of the solid fixed 
charge linear transportation problem.  

In this paper three dimensional fixed charge bi-criterion indefinite quadratic 
transportation problem, giving the same priority to cost and time, is studied. An 
algorithm to identify the efficient cost-time trade-off pairs for the problem is developed. 
 

2. PROBLEM FORMULATION 

Suppose 1,2,...,i m=  are the origins 
1,2,...,j n=  are the destinations 

and 1, 2,...,k p=  are the various types of commodities to be transported in a three 
dimensional transportation problem. 

Let  
ijkx =  the amount of kth type of commodity transported form the ith origin to the jth 

destination 
ijkc =  the variable cost per unit amount of the kth type of commodity transported from 

the ith origin to the jth destination which is independent of the amount of the 
commodity transported, so long as 0ijkx >  

ijkd =  the per unit depreciation cost (wear and tear or damaged cost) of the kth type of 
commodity transported from the ith origin to the jth destination, which is 
independent of the amount of commodity transported, so long as 0ijkx > . 

jkA =  the total quantity of kth type of the commodity received by jth destination from all 
the sources 

kiB =  the total quantity of the kth type of the commodity available at the ith origin to be 
supplied to all destinations 
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ijE =  the total quantity of all types of commodities to be supplied from ith origin to the 
jth destination. 

 
Then the three dimensional transportation problem is defined as 

1 1 1
min

pm n

ijk ijk
i j k

Z c x
= = =

= ∑ ∑ ∑  (P0) 

subject to        

1

m

ijk jk
i

x A
=

=∑ ,  1, 2,..., , 1,2,...,j n k p= =  

1

n

ijk ki
j

x B
=

=∑ ,  1,2,..., , 1, 2,...,k p i m= =  

1

p

ijk ij
k

x E
=

=∑ ,  1,2,..., , 1,2,...,i m j n= =  

0ijkx ≥ ,  1, 2,..., , 1, 2,..., , 1,2,...,i m j n k p= = =  

Here, there are m origins, n destinations and p types of commodities to be 
transported. 

Also,  

1 1

n m

jk ki
j i

A B
= =

=∑ ∑ , 1,2,...,k p=  (i) 

1 1

p n

ki ij
k j

B E
= =

=∑ ∑ , 1,2,...,i m=  (ii) 

1 1

pm

ij jk
i k

E A
= =

=∑ ∑ , 1, 2,...,j n=  (ii) 

1 1 1 1 1 1

p pn m m n

jk ki ij
j k k i i j

A B E
= = = = = =

= =∑ ∑ ∑ ∑ ∑∑  (iv)  

(i) implies kth type of commodity received by all destinations = kth type of commodity 
supplied from all origins. 

(ii) implies different types of commodities supplied by the ith source = amount of 
commodities  received by all destinations from the ith source 

(iii) implies amount of commodities supplied from all sources to jth destination = 
different types of commodities  received by the jth destination. 

(iv) implies amount of commodities received by all destinations of different types of 
commodities = amount of commodities supplied from all origins to all destinations = 
amount of different types of commodities  supplied from all origins. 
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Note: (i) to (iv) indicates that the transportation problem (P0) considered is a balanced 
transportation problem. 

 

Now let, ikF =  the fixed cost associated with origin i and the kth type of 
commodity. We define ikF  according to the amount supplied as 

1
, 1,2,..., , 1,2,...,

n

ik ijk ijk
j

F F i m k pδ
=

= = =∑  

where 
1  if  0,

0  if  0,
ijk

ijk
ijk

x

x
δ

>=  =
,    1, 2,..., , 1, 2,..., , 1, 2,...,i m j n k p= = =  

 
Now, consider the three dimensional fixed charge bi-criterion indefinite 

quadratic transportation problem as 
 

11 1 1 1 1 1 1 1 1
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In the problem (P1), we need to minimize the transportation cost and 
depreciation cost simultaneously of the kth type of the product to be transported from the 
ith origin to jth destination. Also we need to minimize the total cost (variable cost + fixed 
cost) and the total time of transportation. Therefore we have considered the objective 
function of the form as in problem (P1). 

3. THEORETICAL DEVELOPMENT: 

To solve the problem (P1) we separate it into two problems (P'1) and (P"1) as 

1 1 1 1 1 1 1 1
min

p p pm n m n m

ijk ijk ijk ijk ik
i j k i j k i k

Z c x d x F
= = = = = = = =

    = +         
∑∑∑ ∑∑∑ ∑∑  subject to (1) (P'1) 

1
1
1

min max[ / 0]ijk ijki m
j n
k p

T t x
≤ ≤
≤ ≤
≤ ≤

 
 

= > 
 
 

 subject to (1) (P"1) 

To obtain the set of efficient cost-time trade off pairs, we first solve (P'1) and 
read the time with respect to the minimum cost Z where time T is given by the problem 
(P"1). 

At the first iteration, let *
1Z  be the minimum total cost of the problem (P'1) and 

*
1T  be the optimal time of the problem (P"1) with respect to *

1Z , then any schedule which 

is completed earlier than *
1T  would cost more than *

1Z . So * *
1 1( , )Z T  is called the time-

cost trade off pair at the first iteration. 
After modifying the costs with respect to the time obtained, a new optimal cost 

is obtained and time is read with respect to the new optimal cost. This procedure is called 
re-optimization procedure. Let after qth iteration, the solution be infeasible. Thus we get 
the following complete set of time – cost trade off pairs, 

* *
1 1( , )Z T , * *

2 2( , )Z T , * *
3 3( , )Z T ,…, * *( , )q qZ T  

where   
*
1Z < *

2Z < *
3Z <… *

qZ<  

and   
*

1T > *
2T > *

3T > … *
qT> . 

The pairs so defined are pareto-optimal solutions of the given problem. 
Then we identify the minimum cost *

1Z  and minimum time *
qT  among the above 

trade-off pairs. The pair ( *
1Z , *

qT ) with minimum cost and minimum time is termed as the 
ideal solution which can not be achieved in practical situations. 
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Consider a three dimensional quadratic transportation problem as  

1 1 1 1 1 1
min

p pm n m n

ijk ijk ijk ijk
i j k i j k

Z c x d x
= = = = = =

  
=     
  
∑∑∑ ∑∑∑  (P2) 

subject to 

1

m

ijk jk
i

x A
=

=∑ ,  1, 2,..., , 1, 2,...,j n k p= =  

1

n

ijk ki
j

x B
=

=∑ ,  1, 2,..., , 1, 2,...,k p i m= =  

1

p

ijk ij
k

x E
=

=∑ ,  1, 2,..., , 1, 2,...,i m j n= =  

and  0ijkx ≥ ,  1, 2,..., , 1, 2,..., , 1, 2,...,i m j n k p= = =  
 

Theorem 1. Let { }ijkX x=  be a basic feasible solution of problem (P2) with basis matrix 
B. Then it will be an optimal basic feasible solution if  

0,ijkR ≥  ∀ cells ( , , )i j k B∉  

= 0,  ∀ cells ( , , )i j k B∈  

where 

1 2( )( ) ( ) ( )ijk ijk ijk ijk ijk ijk ijk ijk ijk ijkR z d z c Z z d Z z cθ ′ ′= − − − − − −  

jk ki ij ijku v w z+ + = ,  ∀ cells ( , , )i j k B∉   

jk ki ij ijku v w z′ ′ ′ ′+ + = ,  ∀ cells ( , , )i j k B∉   

Also 

jk ki ij ijku v w c+ + = ,  ∀ cells ( , , )i j k B∈    

jk ki ij ijku v w d′ ′ ′+ + = ,  ∀ cells ( , , )i j k B∈   (2) 

1Z  be the value of ijk ijk
i j k

c x∑∑∑  at the current basic feasible solution corresponding 

to basis matrix B. 
2Z  be the value of ijk ijk

i j k
d x∑∑∑  at the current basic feasible solution corresponding 

to basis matrix B. 
ijkθ  is the level at which a non-basic cell ( , , )i j k  enters the basis replacing some basic 

cell of  B. 
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Note: , , , , ,jk ki ij jk ki iju v w u v w′ ′ ′  are determined by using equations (2) and taking 
1m n p+ + −  of the jku ’s or kiv ’s or ijw ’s and jku′ ’s or kiv′ ’s or ijw′ ’s as zero. 

 
Proof:  Let 0Z  be the objective function value of the problem (P2). 

Let 0
1 2Z Z Z=  

Let Ẑ  be the value of the objective function at the current basic feasible 
solution ˆ { }ijkX x=  corresponding to the basis B obtained on entering the cell ( , , )i j k  

into the basis. Then 1 2
ˆ [ ( )][ ( )]ijk ijk ijk ijk ijk ijkZ Z c z Z d zθ θ ′= + − + −  

Now,  
0

1 2 1 2

2
1 2 1 2 1 2

2
1 2

ˆ [ ( )][ ( )]

( ) ( ) ( )( )

( ) ( ) ( )( )

[

ijk ijk ijk ijk ijk ijk

ijk ijk ijk ijk ijk ijk ijk ijk ijk ijk ijk

ijk ijk ijk ijk ijk ijk ijk ijk ijk ijk ijk

ijk

Z Z Z c z Z d z Z Z

Z Z Z d z Z c z c z d z Z Z

Z d z Z c z c z d z

θ θ

θ θ θ

θ θ θ

θ

′− = + − + − −

′ ′= + − + − + − − −

′ ′= − + − + − −

= 1 2( ) ( ) ( )( )]ijk ijk ijk ijk ijk ijk ijk ijk ijkZ d z Z c z c z d zθ′ ′− + − + − −

 

This basic feasible solution will give an improved value of Z  if 0Ẑ Z< . i.e., if 
0ˆ 0Z Z− <  i.e., if  1 2[ ( ) ( ) ( ) ( )] 0ijk ijk ijk ijk ijk ijk ijk ijk ijk ijkZ d z Z c z c z d zθ θ′ ′− + − + − < − <  

since 0ijkθ ≥   

 ∴  1 2[ ( ) ( ) ( )( )] 0ijk ijk ijk ijk ijk ijk ijk ijk ijkZ d z Z c z c z d zθ′ ′− + − + − − <  (3) 

⇒ One can move from one basic feasible solution to another basic feasible solution on 
entering the cell ( , , )i j k  into the basis for which condition (3) is satisfied. 

It will be an optimal basic feasible solution if 

1 2( )( ) ( ) ( ) 0ijk ijk ijk ijk ijk ijk ijk ijk ijkz d z c Z z d Z z cθ ′ ′− − − − − − ≥  

or  0ijkR ≥   ∀ cells ( , , )i j k B∉  

where  1 2( )( ) ( ) ( )ijk ijk ijk ijk ijk ijk ijk ijk ijk ijkR z d z c Z z d Z z cθ ′ ′= − − − − − −  
Also, it can easily be seen that 0ijkR =  ∀ cells ( , , )i j k B∈  

 
ALGORITHM: 

Step 1: Find the initial basic feasible solution of the problem (P'1). 
Step 2: Calculate the fixed cost of the current basic feasible solution and denote this by 

1F (current), where 1F (current) = 
1 1

pm

ik
i k

F
= =
∑∑  

Step 3: Calculate 1
ijkR  ∀ cells ( , , )i j k B∉ , B is the current basis. 

where  1
ijkR  = 1 2( )( ) ( ) ( )ijk ijk ijk ijk ijk ijk ijk ijk ijkz d z c Z z d Z z cθ ′ ′− − − − − −  
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and   jk ki ij ijku v w z+ + =   ∀ cells ( , , )i j k B∉   

jk ki ij ijku v w z′ ′ ′ ′+ + =   ∀ cells ( , , )i j k B∉  

Step 4: Find 1
ijkA  = 1

ijkR × 1
ijkE  

where 1
ijkA  is the change in cost that occurs on introducing a non-basic cell ( , , )i j k  with 

value 1
ijkE  (∀ ( , , )i j k B∉ ) into the basis. 

Step 5: Find 1
ijkF (Difference) = 1

ijkF (NB) – 1F (current) where 1
ijkF (NB) is the total fixed 

cost involved on introducing the variable ijkx  with values 1( )ijkE (∀ ( , , )i j k B∉ ) into the 
current basis to form a new basis. 
Step 6: Calculate 1

ijk∆  = 1
ijkF (Difference) + 1

ijkA    (∀ ( , , )i j k B∉ ) 

Step 7: If all 1
ijk∆ ≥ 0 then go to step 8, otherwise find 1 1min{ / 0, ( ,  ,  ) }ijk ijk i j k B∆ ∆ < ∉ . 

Let its minimum be 1
pqr∆ . Then cell ( , , )p q r  enters the basis. Go to step 2.  

Step 8: Let *
1Z  be the optimal cost of (P'1) and *

1X  be the optimal solution of (P'1) 

corresponding to *
1Z . 

Step 9: Find *
1 max{ / 0}ijk ijkT t x= >  

Step 10: Define 
*

11
*

1

if
,

if
ijk

ijk
ijk ijk

M t T
c

c t T

 ≥=
<

 where M is a sufficiently large positive number. 

Step 11: Find a basic feasible solution of the problem (P'1) with respect to the new 
variable costs 1

ijkc . Go to step 2 and repeat the process. 
Step 12: Let after the qth iteration, the solution is infeasible. Then identify the complete 
set of efficient cost time trade off pairs. 

 
 

4. NUMERICAL ILLUSTRATION 

Consider a three dimensional fixed charge bi-criterion transportation problem. 

3 3 3 3 3 3 3 3

1 31 1 1 1 1 1 1 1 1 3
1 3

min , max[ / 0]ijk ijk ijk ijk ik ijk ijkii j k i j k i k j
k

c x d x F t x
≤ ≤= = = = = = = = ≤ ≤
≤ ≤

 
   

+ >     
   
 

∑∑∑ ∑∑∑ ∑∑  (P) 

subject to 
3

1
ijk jk

i
x A

=

=∑  

3

1
ijk ki

j
x B

=

=∑  
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3

1
ijk ij

k
x E

=

=∑   

0ijkx ≥  

where 
3 3 3 3 3 3

1 1 1 1 1 1
jk ki ij

j k k i i j
A B E

= = = = = =

= =∑∑ ∑∑ ∑∑  

The data of variable cost ijkc  and time ijkt  is given Table 1 and Table 1' respectively. 
 

Table 1. 
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E31  = 

 

21 

7 

       1 

  

 

 

E32  = 
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The fixed costs are 
 
F111= 10, F121=30,  F131=20  
F112=20,  F122=20,  F132=20 
F113=30,  F123=20,  F133=10 
F211=10,  F221=20,  F231=20 
F212=10,  F222=10,  F232=30 
F213=40,  F223=10,  F233=10 
F311=10,  F321=40,  F331=20 
F312=20,  F322=10,  F332=30 
F313=20,  F323=10,  F333=10 
 
 

Table 1'. 
                           j=1                               j=2                                 j=3 

3  8  7  
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5  8   
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Using the North-West Corner Rule, we find the initial basic feasible solution of 

problem (P) as given in Table 2. 
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Table 2. 
 

           j =1                              j = 2                    j = 3                                    F1(Basic)     
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Here, 1 2633, 551Z Z= =     
 
Table 3. 
 (i,j,k) (1,1,3) (1,2,1) (1,3,1) (1,3,2) (2,2,1) (3,1,1) (3,2,3) (3,3,3) 

1
ijkA = 1 1

ijk ijkR E×  8703 1 
= -8703 

7668 4
=30672 

No 
loop 

2549 3
=7647 

5907 1
=5907 

-721 3
= -2163

No 
loop 

No 
loop 

1
ijkF (Diff.)  0 10  -10 10 -40   
1
ijk∆ = 1

ijkA + 1
ijkF (Diff.) -8703 30682  7637 5917 -2203   

 
Here, 1 1min{ / 0, ( , , ) } min{ 8703, 2203} 8703ijk ijk i j k B∆ ∆ < ∉ = − − = −  
∴ cell (1,1,3) enters the basis. We find the new solution. 
 
Repeat the process. The optimal basic feasible solution is given in Table 4. 
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Table 4. 
             j =1                          j =2                                  j = 3                                                    F4(Basic)  
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Here, 1 2624, 533Z Z= =     
 
Table 5. 
 (i,j,k) (1,2,1) (1,2,3) (1,3,1) (2,1,3) (2,2,1) (2,3,2) (3,2,3) (3,3,3) 

4
ijkA = 4 4

ijk ijkR E×  5373 1 
=5373 

No 
loop 

885 1
=885 

No 
loop 

0 711 2=1422 No 
loop 

1694 2 
=3388 

4
ijkF (Diff.) 10  -20  0 20  -10 
4
ijk∆ = 4

ijkA + 4
ijkF (Diff.) 5374  865  0 1442  3378 

 
Since 4 0ijk∆ ≥ , ∀ ( , , )i j k B∉  ∴ we stop. 

 
The optimal value of *

1 624 533 320 332912Z Z= = × + =  and the corresponding 

time *
1 8T = . The first cost-time trade off pair is (332912, 8).  

Define  
*

11
*

1

, 8

, 8.
ijk

ijk
ijk ijk

M t T
c

c t T

 ≥ == 
< =

 

and form the new three dimensional quadratic transportation problem. On solving this 
problem the next trade off pair is * *

2 2( , )Z T = (336940, 7). 

Proceeding like this, we get the third cost-time trade-off pair as * *
3 3( , )Z T = (349143, 6). 

After that the problem defined at time *
3T  becomes infeasible.  

Hence the time-cost trade-off pairs are (332912, 8), (346940, 7) and (349143, 6). 
 
Conclusion 1. For finding efficient cost-time trade off pairs in a three-dimensional 
indefinite quadratic transportation problem (A) First we minimize total cost (variable cost 
+ fixed cost) and then minimize time with respect to minimum cost obtained and form 
the first cost-time trade-off pair. 
(B) Next after modifying cost with respect to the time obtained in the last result we again 
minimize cost, read the corresponding time and form the next cost-time trade-off pair.  
(C) Therefore we keep on increasing the cost and reading the time on each step and find 
the efficient cost-time trade off pairs. (B) is repeated until the problem becomes 
infeasible. 
 
Remark. 1. An alternative approach to solve problem (P1) is to first minimize the time 
function and then read the corresponding cost (variable + fixed) from the solution which 
gives the minimum time. Thereafter, we keep on increasing the time steadily and reading 
the cost at each step. We continue till the solution becomes infeasible. 
2. Problem (P'1) cannot be solved by the method developed for linear transportation 
problem as the variable ijkδ  takes the value 0 or 1. So we first find the basic feasible 
solution of the problem (P2) and then calculate the corresponding fixed charge. 
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