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Abstract. The 2003 Gibbs thermodynamic potential func-
tion represents a very accurate, compact, consistent and com-
prehensive formulation of equilibrium properties of seawater.
It is expressed in the International Temperature Scale ITS-90
and is fully consistent with the current scientific pure water
standard, IAPWS-95. Source code examples in FORTRAN,
C++ and Visual Basic are presented for the numerical imple-
mentation of the potential function and its partial derivatives,
as well as for potential temperature. A collection of thermo-
dynamic formulas and relations is given for possible applica-
tions in oceanography, from density and chemical potential
over entropy and potential density to mixing heat and en-
tropy production. For colligative properties like vapour pres-
sure, freezing points, and for a Gibbs potential of sea ice, the
equations relating the Gibbs function of seawater to those of
vapour and ice are presented.

1 Introduction

Thermodynamic potential functions (also called fundamental
equations of state) offer a very compact and consistent way
of representing equilibrium properties of a given substance,
both theoretically and numerically (Alberty, 2001). This was
very successfully demonstrated by subsequent standard for-
mulations for water and steam (Wagner and Pruß, 2002). For
seawater, this method was first studied by Fofonoff (1962)
and later applied numerically in three subsequently improved
versions by Feistel (1993), Feistel and Hagen (1995), and
Feistel (2003), expressing free enthalpy (also called Gibbs
energy) as a function of pressure, temperature and practical
salinity. Their mathematical structures are polynomial-like
and have remained identical throughout these versions with
only slight modifications of their sets of coefficients. The
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structure was chosen for its simplicity in analytical partial
derivatives and its numerical implementation, as discussed
in Feistel (1993).

This paper provides code examples for the numerical com-
putation in FORTRAN, C++ and Visual Basic 6, and de-
scribes their algorithms for the latter case. This code is nei-
ther very compact, nor very fast, nor definitely error-free; it is
just intended as functioning example and guide for the devel-
opment of individual implementations into custom program
environments. Users are free to use, modify and distribute
the code at their own responsibility.

The recent Gibbs potential formulation of seawater ther-
modynamics has a number of advantages compared to the
classical “EOS80”, the 1980 Equation of State (Fofonoff and
Millard, 1983), as explained in detail by Feistel (2003). One
important reason is that it is fully consistent with the current
international scientific standard formulation of liquid and
gaseous pure water, IAPWS-95 (Wagner and Pruß, 2002),
and with a new comprehensive description of ice (Feistel and
Wagner, 2005). It is valid for pressures from the triple point
to 100 MPa (10 000 dbar), temperatures from−2◦C to 40◦C,
for practical salinities up to 42 psu and up to 50 psu at normal
pressure.

For faster computation, as e.g. required in circulation
models, modified equations of state derived from the 1995
and 2003 Gibbs potential functions have recently been con-
structed by McDougall et al. (2003) and Jackett et al. (2005),
available from the numerical supplement of this paper.

A significant advantage compared to the usual EOS80 for-
mulation of seawater properties is the new availability of
quantities like energy, enthalpy, entropy, or chemical poten-
tial. We present in Sect. 3 a collection of important ther-
modynamic and oceanographic relations with brief explana-
tions, for which the new potential function can be applied.
Such formulas are often only found scattered over various ar-
ticles and textbooks. In Sect. 4, the Gibbs function of seawa-
ter is used in conjunction with numerically available thermo-
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10 R. Feistel: Numerical implementation and oceanographic application

dynamic formulations for water vapour and water ice, con-
sistent with the current one (Tillner-Roth, 1998; Wagner and
Pruß, 2002; Feistel, 2003; Feistel and Wagner, 2005; Feis-
tel et al., 2005). This way colligative properties like vapour
pressure or freezing points can be computed, as well as vari-
ous properties of sea ice.

2 Gibbs potential and its derivatives

Specific free enthalpy (also called Gibbs function, Gibbs en-
ergy, Gibbs free energy, or free energy in the literature) of
seawater,g(S, t, p), is assumed to be a polynomial-like func-
tion of the independent variables practical salinity,S=x2

·SU ,
temperature,t=y · tU , and applied pressure,p=z·pU , as,

g(S, t, p)

gU

=

(g100 + g110y) x2 ln x +

∑
j,k

(
g0jk +

∑
i>1

gijkx
i

)
yjzk (1)

The unit specific free enthalpy isgU=1 J kg−1. The refer-
ence values are defined arbitrarily asSU=40 psu for salinity
(PSS-78) (Lewis and Perkin, 1981; Unesco, 1981),tU=40◦C
for temperature (ITS-90) (Blanke, 1989; Preston-Thomas,
1990), andpU=100 MPa=10 000 dbar for pressure. The di-
mensionless variablesx, y, z for salinity, temperature and
pressure are not to be confused with spatial coordinates. We
follow Fofonoff’s (1992) proposal here and write for clarity
“psu” as the unit expressing practical salinity, even though
this notion is formally not recommended (Siedler, 1998).
We shall use capital symbolsT =T0+t for absolute tempera-
tures, with Celsius zero pointT0=273.15 K, andP=P0+p

for absolute pressures, with normal atmospheric pressure
P0=0.101325 MPa, in the following. The polynomial coef-
ficientsgijk are listed in Table 1. The specific dependence on
salinity results from Planck’s theory of ideal solutions and
the Debye-Ḧuckel theory of electrolytes (Landau and Lif-
schitz, 1966; Falkenhagen et al., 1971), providing a thermo-
dynamically correct low-salinity limit of the formula.

Any Gibbs function of seawater contains four freely ad-
justable constants (Fofonoff, 1962), not available from mea-
surements, which can be specified by suitable definitions
of reference states. For the actual potential function, in-
ternal energy and entropy are set to zero at the pure water
triple point (S=0 psu,T =273.16 K,P=611.657 Pa), and en-
thalpy and entropy are set to zero at the standard ocean state
(S=35 psu,T =273.15 K,P=101325 Pa). This definition is
consistent with the IAPWS-95 formulation for liquid water
and vapour (Wagner and Pruß, 2002), and with the latest
Gibbs potential of ice (Feistel and Wagner, 2005; Feistel et
al., 2005). It differs, however, from the reference states used
in earlier versions of the Gibbs function of seawater (Feistel,
1993; Feistel and Hagen, 1995).

There are three first derivatives ofg with respect to its in-
dependent variablesp, t , andS.

Density,ρ, and specific volume,v:

1

ρ
= v =

(
∂g

∂p

)
S,t

(2)

with
(

∂g
∂p

)
S,t

=
gU

pU

∑
j,k>0

(
g0jk +

∑
i>1

gijkx
i

)
· k · yjzk−1.

Specific entropy,σ :

σ = −

(
∂g

∂t

)
S,p

(3)

with
(

∂g
∂t

)
S,p

=

gU

tU

[
g110x2 ln x+

∑
j>0,k

(
g0jk+

∑
i>1

gijkx
i

)
· j · yj−1zk

]
.

Relative chemical potential,µ:

µ =

(
∂g

∂S

)
t,p

(4)

with
(

∂g
∂S

)
t,p

=

gU

2sU

[
(g100+g110y) (2 lnx+1) +

∑
i>1,j,k

gijk · i · xi−2yjzk

]
.

Several thermodynamic coefficients require second deriva-
tives ofg.

Isothermal compressibility,K:

K = −
1

v

(
∂v

∂p

)
S,t

= −

(
∂2g/∂p2

)
S,t

(∂g/∂p)S,t

(5)

with
(

∂2g

∂p2

)
S,t

=

gU

p2
U

∑
j,k>1

(
g0jk+

∑
i>1

gijkx
i

)
· k (k−1) · yjzk−2.

Isobaric thermal expansion coefficient,α:

α =
1

v

(
∂v

∂t

)
S,p

=

(
∂2g/∂t∂p

)
S

(∂g/∂p)S,t

(6)

with
(

∂2g
∂p∂t

)
S

=

gU

pU tU

∑
j>0,k>0

(
g0jk +

∑
i>1

gijkx
i

)
· j · k · yj−1zk−1.

Isobaric specific heat capacity,cP :

cP = T

(
∂σ

∂t

)
S,p

=

(
∂h

∂t

)
S,p

= −T

(
∂2g

∂t2

)
S,p

(7)

with
(

∂2g

∂t2

)
S,p

=

gU

t2
U

∑
j>1,k

(
g0jk+

∑
i>1

gijkx
i

)
· j (j−1) · yj−2zk.

h is specific enthalpy, as defined below in Eq. (10).
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Table 1. Coefficientsgijk of specific free enthalpyg(S, t, p), Eq. (1). 

 

i j k gijk i j k gijk i j k gijk 
 0   0   0   101.342743139672   0  5  4  6.48190668077221  2  4  2   74.726141138756  
 0   0   1   100015.695367145   0  6  0 -18.9843846514172  2  4  3  -36.4872919001588 
 0   0   2  -2544.5765420363   0  6  1  63.5113936641785  2  5  0  -17.43743842213  
 0   0   3   284.517778446287   0  6  2 -22.2897317140459  3  0  0  -2432.0947227047  
 0   0   4  -33.3146754253611   0  6  3  8.17060541818112  3  0  1   199.459603073901 
 0   0   5   4.20263108803084   0  7  0  3.05081646487967  3  0  2  -52.2940909281335 
 0   0   6  -0.546428511471039   0  7  1 -9.63108119393062  3  0  3   68.0444942726459 
 0   1   0   5.90578348518236   1  0  0  5813.28667992895  3  0  4  -3.41251932441282 
 0   1   1  -270.983805184062   1  1  0  851.295871122672  3  1  0  -493.512590658728 
 0   1   2   776.153611613101   2  0  0  1376.28030233939  3  1  1  -175.292041186547 
 0   1   3  -196.51255088122   2  0  1 -3310.49154044839  3  1  2   83.1923927801819 
 0   1   4   28.9796526294175   2  0  2  384.794152978599  3  1  3  -29.483064349429  
 0   1   5  -2.13290083518327   2  0  3 -96.5324320107458  3  2  0  -158.720177628421 
 0   2   0  -12357.785933039   2  0  4  15.8408172766824  3  2  1   383.058066002476 
 0   2   1   1455.0364540468   2  0  5 -2.62480156590992  3  2  2  -54.1917262517112 
 0   2   2  -756.558385769359   2  1  0  140.576997717291  3  2  3   25.6398487389914 
 0   2   3   273.479662323528   2  1  1  729.116529735046  3  3  0   67.5232147262047 
 0   2   4  -55.5604063817218   2  1  2 -343.956902961561  3  3  1  -460.319931801257 
 0   2   5   4.34420671917197   2  1  3  124.687671116248  3  4  0  -16.8901274896506 
 0   3   0   736.741204151612   2  1  4 -31.656964386073   3  4  1   234.565187611355 
 0   3   1  -672.50778314507   2  1  5  7.04658803315449  4  0  0   2630.93863474177 
 0   3   2   499.360390819152   2  2  0  929.460016974089  4  0  1  -54.7919133532887 
 0   3   3  -239.545330654412   2  2  1 -860.764303783977  4  0  2  -4.08193978912261 
 0   3   4   48.8012518593872   2  2  2  337.409530269367  4  0  3  -30.1755111971161 
 0   3   5  -1.66307106208905   2  2  3 -178.314556207638  4  1  0   845.15825213234  
 0   4   0  -148.185936433658   2  2  4  44.2040358308   4  1  1  -22.6683558512829 
 0   4   1   397.968445406972   2  2  5 -7.92001547211682  5  0  0  -2559.89065469719 
 0   4   2  -301.815380621876   2  3  0 -260.427286048143  5  0  1   36.0284195611086 
 0   4   3   152.196371733841   2  3  1  694.244814133268  5  1  0  -810.552561548477 
 0   4   4  -26.3748377232802   2  3  2 -204.889641964903  6  0  0   1695.91780114244 
 0   5   0   58.0259125842571   2  3  3  113.561697840594  6  1  0   506.103588839417 
 0   5   1  -194.618310617595   2  3  4 -11.1282734326413  7  0  0  -466.680815621115 
 0   5   2   120.520654902025   2  4  0  97.1562727658403  7  1  0  -129.049444012372 
 0   5   3  -55.2723052340152   2  4  1 -297.728741987187     
 
 
 Isothermal haline contraction coefficient,β:

β = −
1

v

(
∂v

∂S

)
t,p

= −

(
∂2g/∂p∂S

)
t

(∂g/∂p)S,t

(8)

with
(

∂2g
∂p∂S

)
t
=

gU

2pU sU

∑
i>1,j,k>0

gijk · i · k · xi−2yjzk−1.

The Gibbs potential and its partial derivatives as given by
Eqs. (1)–(8) are available in the sample code by a function
call of GSTP03(nS, nT, nP, S, Tabs, Pabs). Input parame-
ters nS, nP and nT are the orders of partial derivatives to be
carried out with respect toS, T andP . Input parameters S,
Tabs, Pabs are the arguments for salinityS in psu, for abso-
lute temperatureT in K, and for absolute pressureP in Pa.
Only lowest salinity derivatives are supported by the code,
nS≤2 for S>0 and nS≤1 for S≥0. HigherS-derivatives
are hardly required in practical applications. A prior call of
the procedure COEFFS03 is mandatory to initialise the array
of coefficientsgijk before calling GSTP03 the first time.

The function GSTP03 is a wrapper for the function
Gxyz(nx, ny, nz, x, y, z) which represents the right-hand side
of Eq. (1) without the leading logarithm term. Input param-
eters nx, ny and nz are the orders of derivatives with respect
to the dimensionless variables x, y and z. A call of the pro-

cedure COEFFS03 is required to initialise the array of coef-
ficientsgijk before calling Gxyz the first time.

When the code is compiled and started, a procedure
F03demo(psu, degC, dbar) is executed automatically. It
creates a sample output with the input values psu=35,
degC=20, dbar=2000. The corresponding piece of code in
VB looks like,

Sub F03demo(ByVal Spsu As Double,
ByVal t degC As Double,
ByVal p dbar As Double)

Dim S As Double, T As Double, P As Double

Call COEFFS03

S = Spsu ′psu−> psu
T = t degC + 273.15 ′degC−> K
P = p dbar * 10000# + 101325# ′dBar−> Pa

Debug.Print “S=”, Spsu; “psu”
Debug.Print “T=”, tdegC; “◦C”
Debug.Print “P=”, pdbar; “dbar”
Debug.Print “”
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12 R. Feistel: Numerical implementation and oceanographic application

Debug.Print “free enthalpy”, GSTP03(0, 0, 0, S, T, P);
“J/kg”
Debug.Print “chem. pot.”, GSTP03(1, 0, 0, S, T, P);
“J/kg psu”
Debug.Print “entropy”, -GSTP03(0, 1, 0, S, T, P); “J/kgK”
Debug.Print “density”, 1#/GSTP03(0, 0, 1, S, T, P);
“kg/mˆ3”
Debug.Print “heat capacity”, -T * GSTP03(0, 2, 0, S, T,

P); “J/kgK”
Debug.Print “Ch. pot. H2O”, GSTP03(0, 0, 0, S, T, P)-

S*GSTP03(1, 0, 0, S, T, P); “J/kg”
Debug.Print “therm. exp.”, GSTP03(0, 1, 1, S, T,

P)/GSTP03(0, 0, 1, S, T, P); “1/K”
Debug.Print “compressib.”, -GSTP03(0, 0, 2, S, T,

P)/GSTP03(0, 0, 1, S, T, P); “1/Pa”
Debug.Print “lapse rate”, -GSTP03(0, 1, 1, S, T,

P)/GSTP03(0, 2, 0, S, T, P); “K/Pa”
Debug.Print “pot. temp.”, PotTemp(Spsu, tdegC,

p dbar); “◦C”

End Sub

Only 8-byte floating points should be used (“Double”),
indicated here by “#” in VB.
The produced data should look like the following check
value printout:

S=35 psu
T=20◦C
P=2000 dbar

free enthalpy 16583.1806714797 J/kg
chem. pot. 60.0099366692805 J/kg psu
entropy 276.780886190056 J/kgK
density 1033.32930433584 kg/mˆ3
heat capacity 3951.77837149032 J/kgK
Ch. pot. H2O 14482.8328880549 J/kg
therm. exp. 2.78522499678412E-04 1/K
compressib. 4.06129773355324E-10 1/Pa
lapse rate 1.99948825300137E-08 K/Pa
pot. temp. 19.617987328589◦C

The reader may modify the input values as desired in
the startup routine. In the case of Visual Basic, this proce-
dure is FormLoad, and the output goes to the immediate
(Debug) window of the VB developer environment.

The FORTRAN and C++ program versions were obtained
as later translations of the original VB code and have a quite
analoguous subroutine structure und functionality.

The numerical supplement further includes a MATLAB
implementation by J. H. Reissmann of the Gibbs function
and quantities derived from it, as described in the accompa-
nying Ocean Science Discussion.

3 Related oceanographic quantities

Many additional properties of seawater can be computed by
combinations of the derivatives given in the former section.
A first group is that of thermodynamic functions available
from g by mathematical so-called Legendre transforms (Al-
berty, 2001).

Specific free energy (also called Helmholtz energy or
Helmholtz free energy),f :

f = g − Pv = g − P ·

(
∂g

∂p

)
S,t

(9)

Specific enthalpy,h:

h = g + T σ = g − T ·

(
∂g

∂t

)
S,p

(10)

Specific internal energy,e:

e = g + T σ − Pv = g − T ·

(
∂g

∂t

)
S,p

− P ·

(
∂g

∂p

)
S,t

(11)

Chemical potential of water in seawater,µW :

µW
= g − Sµ = g − S ·

(
∂g

∂S

)
t,p

(12)

A second group is that of adiabatic quantities, describing
isentropic processes, i.e. without heat exchange.

Adiabatic lapse rate,0:

0 =

(
∂t

∂p

)
S,σ

= −

(
∂2g/∂t∂p

)
S(

∂2g/∂t2
)
S,p

=
αT v

cP

(13)

Adiabatic compressibility,κ, and sound speed,U :

κ = −
1

v

(
∂v

∂p

)
S,σ

=(
∂2g/∂t∂p

)2
S

−
(
∂2g/∂t2

)
S,p

(
∂2g/∂p2

)
S,t

(∂g/∂p)S,t

(
∂2g/∂t2

)
S,p

(14)

κ =
v

U2
= K −

α2T v

cP

= K − α0

Adiabatic haline contraction coefficient,βσ :

βσ = −
1

v

(
∂v

∂S

)
σ,p

=(
∂2g/∂S∂t

)
p

(
∂2g/∂t∂p

)
S

−
(
∂2g/∂t2

)
S,p

(
∂2g/∂S∂p

)
t

(∂g/∂p)S,t

(
∂2g/∂t2

)
S,p

(15)
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Closely related to the adiabatic quantities are the so-called
“potential” ones, which can be directly computed from en-
tropy (Bradshaw, 1978; Feistel, 1993; Feistel and Hagen,
1994; McDougall et al. 2003; McDougall and Feistel, 2003).
They are obtained by formally replacing in-situ temperature
t and in-situ pressurep by potential temperatureθand ref-
erence pressurepr . They describe the property a water par-
cel would take if moved from in-situ pressurep to reference
pressurepr without exchange of matter and heat. By defi-
nition of θ , specific entropy is equal to “potential” specific
entropy.

Potential temperature,θ (S, t, p, pr), is implicitly given
by

σ (S, t, p) = σ (S, θ, pr) . (16)

This equation can be solved numerically by Newton itera-
tion and avoids Runge-Kutta integration (Fofonoff, 1985).
An example for the algorithm is provided in the accompa-
nying code by the function PotTemp(Spsu, tdegC, pdBar,
prefdBar), which uses the input parametersS, t , p, pr and
returns potential temperatureθ in ◦C as solution of Eq. (16).
Once potential temperatureθ (S, t, p, pr) is known, other
related “potential” quantities can be computed straight for-
ward.

Potential density,ρθ , is defined as

ρθ (S, t, p, pr) = ρ (S, θ, pr) . (17)

For a given profile at geographic position (x, y), the verti-
cal derivative of potential density provides the Brunt-Väis̈alä
frequency,N , describing vertical stability of the water col-
umn (z pointing in opposite direction of gravity acceleration,
grav)

N2
= −

grav

ρ

(
∂ρθ

∂z

)
x,y

= −
grav

ρ

(
∂ρ

∂z

)
x,y

−
grav2

U2
(18)

Potential enthalpy,hθ ,

hθ (S, t, p, pr) = h (S, θ, pr) (19)

is supposed to benefit from the combination of conservative
behaviour of potential temperature during adiabatic excur-
sions, Eq. (16), and conservation of enthalpy during isobaric
mixing, Eq. (29). For a more detailed discussion of poten-
tial enthalpy, see McDougall (2003), McDougall and Feistel
(2003).

The hydrostatic equilibrium pressure stratification in an
external gravity field with acceleration grav in oppositez-
direction is given by the solution of the differential equation

1

ρ

∂p

∂z
= −grav (20)

If grav is a constant, and the vertical profilesS(p) of salinity
and t (p) of temperature are known e.g. from a CTD cast,

the solution of Eq. (20) is usually obtained by separation of
variables and numerical integration overp, as,

p∫
p0

v {S (p) , t (p) , p} dp = −grav· (z − z0) . (21)

In numerical models with fixed spatial grids, however,S(z)

and t (z) may be known andp(z) wanted (Dewar et al.,
1998). Then, the variablesp andz of the nonlinear differen-
tial Eq. (20) for p(z) can no longer be analytically separated,
and standard numerical procedures must be employed for its
solution, like Runge-Kutta, or successive iteration. The latter
one then reads for the iteration step (i+1),

pi+1 (z) = −grav

z∫
z0

ρ {S (z) , t (z) , pi (z)} dz , (22)

starting from some trivial initial pressure profile, say,
p0 (z) = −ρ0 · grav· (z − z0). Error estimates of such pro-
cedures are essentially numerical rather than physical ques-
tions. But, in case of Eq. (22), the first iterate can often
be considered an already sufficient approximation due to the
small compressibility of seawater. Taking as usual the size
of the next iteration step as an estimate for the residual error,
1p (z), we have

1p (z) ≈p2−p1≈

−grav

z∫
z0

(
∂ρ

∂p

)
S,t

[
p1
(
z′
)
−p0

(
z′
)]

dz′ . (23)

The compressibility term depends only weakly on depth
and can be taken in front of the integral for the estimate.
For standard seawater, its value is(∂ρ/∂p)S,t ≈ 0.476 ×

10−6 s2/m2.
For important special cases, however, Eq. (20) can be

solved analytically in compact form, namely if vertical strati-
fication is ruled by proper thermodynamic conditions instead
of arbitrary ones coined by its particular oceanographic his-
tory. If both temperaturetand salinityS are constant over the
water column, as in thermodynamic equilibrium, we can use
Eq. (2) and obtain upon integration

g {S, t, p (z)} − g {S, t, p0} = −grav· (z − z0) (24)

i.e. free enthalpyg is a linear function of depth.
If, however, salinityS and entropyσ (or potential temper-

ature) are constant over the water column, as e.g. in the cases
of winter convection or wind mixing, we can use the relation
v = (∂h/∂p)S,σ to find

h {S, σ, p (z)} − h {S, σ, p0} = −grav· (z − z0) . (25)

In this case, enthalpyh grows linear with depth, Eq. (10).
These equations implicitly define pressure as function of
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depth,p(z), and can be solved numerically by Newton itera-
tion at any givenz without integrating over the entire column
as in case of Eq. (21). As an alternative method to Eq. (21),
for more realistic oceanic situations, Eqs. (24) or (25) may
serve as first approximations which can be improved by per-
turbation calculations with respect to the profile’s vertical
property fluctuations.

The total energy per mass of a water parcel moving with
advection speedu is specific internal energye, Eq. (11), plus
kinetic plus potential energy in the gravity field:

etot = e + u2/2 + grav· z (26)

If dissipative processes are neglected, energy conservation in
the ocean is expressed locally by the continuity equation (τ

is used for time here)

∂

∂τ
(ρ etot ) + div

{
ρ u

(
h + u2/2 + grav· z

)}
= 0 (27)

In a stationary ocean, using mass conservation as
div(ρu) =0, this equation reduces to

u∇b = 0 (28)

i.e. the Bernoulli functionb ≡ h+u2/2+grav · z=etot+pv

is always conserved along the advection trajectories in time-
independent flows (Landau and Lifschitz, 1974; Gill, 1982;
Feistel, 1993; Saunders, 1995).

In the practically interestingf -plane approximation of
geostrophic currents, this equation is expressed as

∂p

∂x
·
∂b

∂y
−

∂p

∂y
·
∂b

∂x
=

∂ (p, b)

∂ (x, y)
= 0 (29)

This vanishing Jacobian implies that the Bernoullli func-
tion b is a function of pressure alone on any given depth
horizon z, i.e. b(x, y, z)=b(p, z). In other words, in this
geostrophic special caseb is conserved along the horizontal
isobars, which of course are identical with the trajectories.

If a given parcel of seawater is initially inhomogeneous in
salinity and/or temperature, and during the progressing mix-
ing process it remains at constant pressurep and without ex-
change of heat or salt with its surroundings, then its total
enthalpy is conserved (Fofonoff, 1962, 1992). Denoting by
brackets〈...〉 the average over the parcel’s mass elements, we
thus find, comparing the inhomogeneous initial with the final
homogeneous state,

h (〈S〉 , 〈t〉 + 1t, p) = 〈h (S, t, p)〉 (30)

This equation permits the numerical calculation of excess
temperature1t upon isobaric mixing, e.g. by Newton iter-
ation. The corresponding excess of specific volume,1v, is
then given by

v (〈S〉 , 〈t〉 + 1t, p) + 1v = 〈v (S, t, p)〉 . (31)

If heat is assumed to be exchanged as necessary to keep the
parcel’s average temperature constant, we can get released
mixing heat1h from

h (〈S〉 , 〈t〉 , p) + 1h = 〈h (S, t, p)〉 . (32)

This formula is commonly applied to mixing processes with
isothermal initial state,t= 〈t〉. The values of1t and1h do
not have definite signs for seawater mixing, i.e. either cooling
or warming can occur depending on the values ofS, t , p.

Internal energy is conserved due to the First Law if the
mixing process is conducted isochorically (isopycnically),
and without exchange of heat and salt. The corresponding
balance

e (〈S〉 , 〈t〉 + 1t, p + 1p) = 〈e (S, t, p)〉 (33)

together with supposed constant specific volume

v (〈S〉 , 〈t〉 + 1t, p + 1p) = 〈v (S, t, p)〉 (34)

represent the two equations required to determine the
changes caused in both pressure and temperature,1p and
1t . From these, nonnegative entropy production1σ of the
isopycnal mixing process can be computed, obeying the Sec-
ond Law,

1σ = σ (〈S〉 , 〈t〉 + 1t, p + 1p) − 〈σ (S, t, p)〉 ≥ 0. (35)

For easier thermodynamic treatment, isopycnal mixing is for-
mally thought here to be a two-step process, first mixing at
constant volume without exchange of heat and work, and
then compression for pressure adjustment without exchange
of heat. The increased entropy value (Eq.35) remains unal-
tered in the second step when the mixed parcel is displaced
adiabatically to its neutral buoyancy position, i.e. another
depth level where its new density and pressure equals that of
the ambient water column (cabbeling).

4 Phase equilibria

Equilibria between seawater and other aqueous phases are
controlled by equal chemical potentials of water in both. It is
important to use for these computations only formulae with
mutually consistent reference points, which for the IAPWS-
95 pure water standard is zero entropy and zero internal en-
ergy of liquid water at the triple point (Wagner and Pruß,
2002). The same reference point is valid for the 2003 seawa-
ter formulation, but not for the earlier ones.

Osmotic pressure of seawater,π (S, t, p) is the excess
pressure of seawater in equilibrium with pure water behind
a membrane impenetrable for salt. It is implicitly given by

µW (S, t, p + π) = µW (0, t, p) (36)

Vapour pressure,pV (S, t, p), above seawater under pressure
p, is implicitly given by

µW (S, t, p) = µV apour (t, pV ) ≡ gV apour (t, pV ) (37)
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Additionally to the chemical potential of water in seawa-
ter, µW , Eq. (12), the chemical potential of water vapour,
µV apour

= gV apour , is required here. It is available from the
IAPWS-95 formulation for the fluid water phases (Wagner
and Pruß, 2002).

Freezing point temperature of seawater,tf (S, p), is im-
plicitly given by

µW
(
S, tf , p

)
= µIce

(
tf , p

)
≡ gIce

(
tf , p

)
. (38)

The chemical potential of ice,µIce
= gIce, is required here

additionally. A low-pressure Gibbs potential of ice is given
by Feistel (2003), and a high-pressure formulation by Tillner-
Roth (1998). However, the new and significantly improved
high-pressure version by Feistel and Wagner (2005) is rec-
ommended for use here instead, which is available as source
code from a later issue of this journal (Feistel et al., 2005).

Sea ice is considered a mixture of ice and seawater, which
is usually called brine then, at thermodynamic equilibrium.
Its Gibbs potential function,gSI , is given as a function of
temperaturet , pressurep, and bulk salinitys by,

gSI (s, t, p) = w · g (S, t, p) + (1 − w) · gIce (T , P ) (39)

(Feistel and Hagen, 1998). The salt of sea ice is entirely con-
tained in the liquid brine phase, so bulk salinitys is related
to brine salinityS by the mass fractionw of brine,s=w · S.
Brine salinity, and therefore the mass ratio of the liquid and
solid fractions, follows from the equilibrium condition that
the chemical potentials of water in brine,µW , and of ice,
µIce, must be equal,

µIce (T , P ) ≡ gIce (T , P ) =

µW (S, t, p) = g (S, t, p) − S ·

(
∂g

∂S

)
t,p

. (40)

Depending on the pair of independent variables chosen, this
equation implicitly defines either brine salinitySB(t , p) of
sea ice, or its melting pressurePm(S, t), or freezing temper-
ature of seawatertf (S, p). Assuming brine salinity to be
known this way, we can express Eq. (39) in the form

gSI (s, t, p) = gIce (T , P ) + s · µB (t, p) , (41)

where the relative chemical potential of brine,µB
=

(
∂g
∂S

)
t,p

has to be taken at brine salinityS=SB(t , p). Thus, the Gibbs
function of sea ice is linear in bulk salinity with coefficients
being functions of pressure and temperature, describing both
its separate components, ice and brine.

Thermodynamic properties of sea ice can be obtained
from Eq. (41) by partial derivatives in the usual way,

e.g. specific entropyσ SI
=−

(
∂gSI

∂t

)
s,p

, specific enthalpy

hSI
=gSI

+T σ SI , or specific volumevSI
=

(
∂gSI

∂p

)
s,t

. While

density, enthalpy or entropy are strictly additive in the con-
tributions of ice and brine, coefficients like heat capacity

or compressibility include significant additional parts due to
phase equilibrium shifts, like latent heat, dilution heat, or
haline contraction, which make the properties of sea ice so
distinct from those of either ice or seawater alone. Vapour
pressure over sea ice equals the one over pure ice at same
temperature and pressure, as follows from Eq. (41). Thermo-
dynamic functions for sea ice obtained by the Gibbs function
formalism are discussed in more detail by Feistel and Hagen
(1998).
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