159

L. MORÁVKOVÁ and Z. SEDLÁKOVÁ: Excess Molar Volume of Binary Systems, Kem. Ind. 62 (5-6) 159-170 (2013)

# Excess Molar Volume of Binary Systems Containing Mesitylene KUI - 11/2013 Received August 14, 2012 Accepted February 21, 2013

# L. Morávková and Z. Sedláková\*

Institute of Chemical Process Fundamentals of the Academy of Sciences of the Czech Republic, v. v. i., CZ165 02 Prague 6 – Suchdol, Czech Republic

This paper presents a review of density measurements for binary systems containing 1,3,5-trimethylbenzene (mesitylene) with a variety of organic compounds at atmospheric pressure. Literature data of the binary systems were divided into nine basic groups by the type of contained organic compound with mesitylene. The excess molar volumes calculated from the experimental density values have been compared with literature data. Densities were measured by a few experimental methods, namely using a pycnometer, a dilatometer or a commercial apparatus. The overview of the experimental data and shape of the excess molar volume curve versus mole fraction is presented in this paper. The excess molar volumes were correlated by Redlich–Kister equation. The standard deviations for fitting of excess molar volume versus mole fraction are compared. Found literature data cover a huge temperature range from (288.15 to 343.15) K.

Key words: Mesitylene, 1,3,5-trimethylbenzene, comparison, density, excess molar volume

### Introduction

The investigation of the physico-chemical behaviour of liquid systems, which includes also measurement of density and related excess properties, provides important and useful information focused on intermolecular interactions in liquids and their mixtures. Such volumetric data are significant both for formulating models and theories of solutions and testing the reliability of the existing methods for prediction of the system behaviour. It is obvious that compiling experimental data is valuable for industrial objectives as well as for theoretical and applied thermodynamics.

The aromatic compounds are used e.g. for extractions from refinery products in the petrochemical industry. For this reason, the systematic investigation of physical properties of pure liquids and liquid mixtures containing aromatic compounds and their dependence on composition and temperature as basic data is essential. Mesitylene is an important aromatic compound, because it plays a significant role in formation of urban ozone. Moreover, mesitylene can be used in the soot model development for practical application to complex blended liquid fuels. On the other hand, mesitylene is not only studied as an air pollutant but mesitylene can also be used as a solvent for nitration of biological samples and other syntheses for this compound has been used during the liquid—liquid equilibrium studying.

This review represents a comparative study of excess molar volumes  $(V_m^E)$  at atmospheric pressure of binary systems containing aromatic compounds, namely mesitylene.

\*Corresponding author: Ing. Zuzana Sedláková, Ph.D. e-mail: sedlakova@icpf.cas.cz

Significant concern about density measurements of binary mixtures containing mesitylene started in the seventies<sup>7,8</sup> and has continued to the present day.<sup>9–11</sup>

# **Experimental methods**

The published  $V_{\rm m}^{\rm E}$  data of binary systems containing mesitylene<sup>7–43</sup> have been determined using four experimental techniques (see Table 1) either for density measurements or directly for excess molar volume determination.

The first and the oldest experimental methods use a pycnometer; this method is described in ten papers. The most precise measurement using this method is reported by Subach et al.7 The pycnometer used had a volume 53 cm³ and reproducibility of density measurements agreed within  $\pm 0.5 \cdot 10^{-4}$  g cm<sup>-3</sup> and from an analysis of experimental uncertainties it can be concluded that the excess volume of mixing is determined with accuracy  $\pm 0.009$  cm³ mol<sup>-1</sup>. However, the high precision is in contrast with the statement of other authors as will be discussed later. The worst experimental data are reported by Absood et al., 8 where a little pycnometer with volume of only 16 cm<sup>3</sup> was used. The calculated excess molar volumes are in most cases lower than 0.20 cm<sup>3</sup> mol<sup>-1</sup>. However, it is obvious that  $V_{\rm m}^{\rm E} - x$  curve is not smooth. Moreover, two experimental points are remote from the other data and the values of excess molar volumes are significantly higher, i.e. 1.11 cm<sup>3</sup> mol<sup>-1</sup> and 0.60 cm<sup>3</sup> mol<sup>-1</sup>.

Dilatometry is the second experimental method, used in two papers. <sup>12,13</sup> Data published by *Nath* et al. <sup>12</sup> are slightly smoother than data published by *Willis* et al. <sup>13</sup> However, Nath et al. reported the second best accuracy of  $V_{\rm m}^{\rm E}$  measurement as  $\pm 0.002$  cm<sup>3</sup> mol<sup>-1</sup>.

The third experimental method for studying binary systems containing mesitylene uses vibrating flow densimeter by *Suri et al.*<sup>14</sup> The accuracy of this method is reported as  $\pm 0.005$  cm<sup>3</sup> mol<sup>-1</sup>.

The last experimental technique for density measurement uses commercial apparatuses such as density meter (abbreviated DMA) or density and sound velocity meter (abbreviated DSA). This method is nowadays used in most of the published papers. The precision of measurement is higher than with techniques described above. The differences between  $V_{\rm m}^{\rm E}$  will be discussed in detail below (the largest differences between published data were found for mesitylene + alcohol systems).

# **Discussion**

The collected literature volumetric data<sup>7-43</sup> of binary systems containing mesitylene are compared with each other and can be divided into nine basic groups of organic compounds as summarized in Table 1 and as discussed here.

Only density data were found in some papers and excess molar volume,  $V_{\rm m}^{\rm E}$ , had to be calculated from literature data as the difference between real mixture volume,  $V_{\rm m}^{\rm real,mix}$ , and ideal mixture volume,  $V_{\rm m}^{\rm ideal,mix}$ . It is calculated using experimental densities,  $\rho_i$ , of individual compounds, 15

$$V_{\rm m}^{\rm E} = V_{\rm m}^{\rm real, mix} - V_{\rm m}^{\rm ideal, mix} = \left(\sum_{i=1}^{N} x_i M_i\right) / \rho - \sum_{i=1}^{N} (x_i M_i / \rho_i), (1)$$

where  $x_i$  is mole fraction,  $M_i$  is molar mass of components,  $\rho$  is density of mixture, and N is number of components in a mixture.

All excess molar volumes were correlated by the Redlich–Kister type equation as follows<sup>15</sup>

$$V_{\rm m}^{\rm E} = x_1 x_2 \sum_{k=0}^{n} A_k (x_1 - x_2)^k , \qquad (2)$$

where  $A_k$  are adjustable parameters. The number of parameters  $A_k$  (usually n=3 or 5) is determined by the least squares method (see Table 2 with standard deviations for the fitting by Redlich–Kister equation).

T a b l e 1 — Investigated binary systems containing mesitylene with organic compounds. Ref. denotes literature reference.

T a b l i c a 1 — Istraživanja binarnih sustava koji sadrže mezitilen s organskim spojevima. Ref. označava literaturnu referenciju.

| Compound<br>Spoj                                                                                                          | Published<br>data<br>Objavljeni<br>podaci | Experimental technique                                         | T/K                               | Shape of $V_m^E$ vs. x curve<br>Oblik krivulje $V_m^E - x$      | Ref. |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------|------|
| Alkanes and their derivatives<br>Alkani i derivati                                                                        |                                           |                                                                |                                   |                                                                 | '    |
| heptane<br>heptan                                                                                                         | $x, \rho, V_{\rm m}^{\rm E}$              | 10 cm <sup>3</sup> pycnometer<br>piknometar 10 cm <sup>3</sup> | 303.15 – 323.15                   | convex<br>konveksni                                             | 11   |
| octane<br>oktan                                                                                                           | $x, \rho, V_{\rm m}^{\rm E}$              | DMA 58                                                         | 298.15 – 328.15                   | S–shape, <sup>a</sup> concave<br>S-oblik, <sup>a</sup> konkavni | 15   |
| tetrachloromethane<br>tetraklormetan                                                                                      | $x, V_{\rm m}^{\rm E}$                    | 53 cm³ pycnometer<br>piknometar 53 cm³                         | 300.15, 313.15 S–shape<br>S-oblik |                                                                 | 7    |
| tetrachloromethane<br>tetraklormetan                                                                                      | $x, V_{\rm m}^{\rm E}$                    | DMA 4500                                                       | 298.15                            |                                                                 | 16   |
| Cycloalkanes<br>Cikloalkani                                                                                               |                                           |                                                                |                                   |                                                                 |      |
| cyclopentane, cyclohexane,<br>methylcyclohexane, cyclooctane<br>ciklopentan, cikloheksan,<br>metilcikloheksan, ciklooktan | $x, \rho, V_{m}^{E}$                      | DSA-48                                                         | 298.15, 313.15                    | concave<br>konkavni                                             | 9    |
| methylcyclohexane<br>metilcikloheksan                                                                                     | χ, ρ                                      | DMA 4500                                                       | 298.15 – 308.15                   | concave<br>konkavni                                             | 17   |
| Aromatics and their derivatives<br>Aromati i derivati                                                                     |                                           |                                                                |                                   |                                                                 |      |
| benzene<br>benzen                                                                                                         | $x, V_{\rm m}^{\rm E}$                    | 53 cm³ pycnometer<br>piknometar 53 cm³                         | 300.15, 313.15                    | S-shape<br>S-oblik                                              | 7    |
| benzene<br>benzen                                                                                                         | $x, \rho, V_{\rm m}^{\rm E}$              | DMA 58                                                         | 298.15 – 328.15                   | concave<br>konkavni                                             | 18   |

| Compound<br>Spoj                                                                                                                                                        | Published<br>data<br>Objavljeni<br>podaci | Experimental technique                                         | T/K             | Shape of $V_m^E$ vs. x curve<br>Oblik krivulje $V_m^E - x$ | Ref. |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|-----------------|------------------------------------------------------------|------|--|--|
| 1-chloronaphthalene<br>1-klornaftalen                                                                                                                                   | χ, ρ                                      | 15 cm <sup>3</sup> pycnometer<br>piknometar 15 cm <sup>3</sup> | 298.15 – 308.15 | convex<br>konveksni                                        |      |  |  |
| Alcohols<br>Alkoholi                                                                                                                                                    |                                           |                                                                |                 |                                                            |      |  |  |
| methanol, ethanol, propan-1-ol,<br>propan-2-ol<br>metanol, etanol, propan-1-ol, propan-2-ol                                                                             | x, V <sub>m</sub> <sup>E</sup>            | DMA 601                                                        | 298.15          | concave<br>konkavni                                        | 20   |  |  |
| ethanol, propan-1-ol, propan-2-ol,<br>butan-1-ol, pentan-1-ol,<br>3-methylbutan-1-ol<br>etanol, propan-1-ol, propan-2-ol,<br>butan-1-ol, pentan-1-ol, 3-metilbutan-1-ol | $x, \rho$                                 | DMA 4500                                                       | 298.15 – 308.15 | concave<br>konkavni                                        | 21   |  |  |
| butan-1-ol, 2-methylpropan-1-ol,<br>butan-2-ol, 2-methylpropan-2-ol<br>butan-1-ol, 2-metilpropan-1-ol,<br>butan-2-ol, 2-metilpropan-2-ol                                | $x, V_{\rm m}^{\rm E}$                    | DMA 4500                                                       | 298.15          | concave<br>konkavni                                        | 22   |  |  |
| decan-1-ol<br>dekan-1-ol                                                                                                                                                | $x, \rho$                                 | DSA 5000                                                       | 298.15, 308.15  | S-shape<br>S-oblik                                         | 10   |  |  |
| Ketones<br>Ketoni                                                                                                                                                       |                                           |                                                                |                 |                                                            |      |  |  |
| acetone<br>aceton                                                                                                                                                       | x, V <sub>m</sub> <sup>E</sup>            | dilatometry technique<br>dilatometrijski                       | 298.15, 308.15  | concave<br>konkavni                                        | 12   |  |  |
| acetophenone<br>acetofenon                                                                                                                                              | $x, \rho, V_{\rm m}^{\rm E}$              | DMA 58                                                         | 298.15, 328.15  | convex<br>konveksni                                        | 23   |  |  |
| cyclohexanone<br>cikloheksanon                                                                                                                                          | $x, \rho$                                 | 15 cm <sup>3</sup> pycnometer piknometar 15 cm <sup>3</sup>    | 298.15 – 308.15 | concave<br>konkavni                                        | 24   |  |  |
| Carboxylic acids and their derivatives<br>Karboksilne kiseline i derivati                                                                                               |                                           |                                                                |                 |                                                            |      |  |  |
| propionic acid<br>propanska kiselina                                                                                                                                    | $x, \rho, V_{\rm m}^{\rm E}$              | Anton Paar 60/602                                              | 313.15          | concave<br>konkavni                                        | 25   |  |  |
| ethyl acetate<br>etil-acetat                                                                                                                                            | $x, \rho, V_{\rm m}^{\rm E}$              | DMA 58                                                         | 298.15          | concave<br>konkavni                                        | 26   |  |  |
| propyl acetate, butyl acetate<br>propil-acetat, butil-acetat                                                                                                            | $x, \rho, V_{\rm m}^{\rm E}$              | DMA 4500                                                       | 298.15 – 313.15 | concave<br>konkavni                                        | 27   |  |  |
| isopropyl acetate, isobutyl acetate izopropil-acetat, izobutil-acetat                                                                                                   | $x, V_{\rm m}^{\rm E}$                    | DMA 4500                                                       | 298.15 – 313.15 | concave<br>konkavni                                        | 28   |  |  |
| vinyl acetate<br>vinyl-acetat                                                                                                                                           | $x, \rho, V_{\rm m}^{\rm E}$              | DMA 58                                                         | 298.15          | concave<br>konkavni                                        | 29   |  |  |
| methyl acetoacetate<br>metil-acetoacetat                                                                                                                                | $x, \rho$                                 | 10 cm³ pycnometer piknometar 10 cm³                            | 298.15 – 308.15 | concave<br>konkavni                                        | 30   |  |  |
| ethyl chloracetate<br>etil-kloracetat                                                                                                                                   | $x, \rho$                                 | 10 cm <sup>3</sup> pycnometer piknometar 10 cm <sup>3</sup>    | 298.15 – 308.15 | concave<br>konkavni                                        | 31   |  |  |
| methyl acrylate<br>metil-akrilat                                                                                                                                        | $x, \rho, V_{\rm m}^{\rm E}$              | 10 cm <sup>3</sup> pycnometer piknometar 10 cm <sup>3</sup>    | 293.15 – 318.15 | concave<br>konkavni                                        | 32   |  |  |
| γ-butyrolactone<br>γ-butirolakton                                                                                                                                       | $x, \rho, V_{\rm m}^{\rm E}$              | DMA 4500                                                       | 288.15 – 308.15 | concave<br>konkavni                                        | 33   |  |  |

| Compound<br>Spoj                                                                                                                                            | Published<br>data<br>Objavljeni<br>podaci | Experimental technique<br>Eksperimentalna metoda   | T / K           | Shape of $V_{\rm m}^{\rm E}$ vs. x curve<br>Oblik krivulje $V_{\rm m}^{\rm E} - x$           | Ref. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------|------|
| Other oxygen compounds<br>Drugi spojevi s kisikom                                                                                                           |                                           |                                                    |                 |                                                                                              | '    |
| ethylene glycol monomethyl ether,<br>ethylene glycol dimethyl ether<br>etilen-glikol-monometil-eter,<br>etilen-glikol-dimetil-eter                          | x, V <sub>m</sub> <sup>E</sup>            | DMA 4500                                           | 298.15, 313.15  | concave<br>konkavni                                                                          | 34   |
| dimethyl carbonate, diethyl carbonate<br>dimetil-karbonat, dietil-karbonat                                                                                  | $x, V_{m}^{E}$                            | DMA 4500                                           | 298.15, 313.15  | concave<br>konkavni                                                                          | 35   |
| anisole<br>anisol                                                                                                                                           | $x, \rho, V_{m}^{E}$                      | DMA 4500                                           | 288.15 – 303.15 | concave<br>konkavni                                                                          | 36   |
| 1,1-diethoxyethane, <sup>b</sup><br>2,2-dimethoxypropane <sup>c</sup><br>1,1-dietoksietan, <sup>b</sup> 2,2-dimetoksipropan <sup>c</sup>                    | x, V <sub>m</sub> <sup>E</sup>            | DMA 4500                                           | 298.15 – 313.15 | convex, <sup>b</sup> concave <sup>c</sup><br>konveksni, <sup>b</sup> , konkavni <sup>c</sup> | 37   |
| 1,4-dioxane<br>1,4-dioksan                                                                                                                                  | $x, \rho, V_{\rm m}^{\rm E}$              | 10 cm³ pycnometer<br>piknometar 10 cm³             | 288.15 – 318.15 | concave<br>konkavni                                                                          | 38   |
| tetrahydrofurane<br>tetrahidrofuran                                                                                                                         | $x, V_{\rm m}^{\rm E}$                    | DMA 4500                                           | 298.15          | concave<br>konkavni                                                                          | 16   |
| Nitrogen compounds<br>Spojevi s dušikom                                                                                                                     |                                           |                                                    |                 |                                                                                              |      |
| triethylamine<br>trietilamin                                                                                                                                | $x$ , $V_{\rm m}^{\rm E}$                 | flow densimeter protočni denzimetar                | 313.15          | convex<br>konveksni                                                                          | 14   |
| acetonitrile<br>acetonitril                                                                                                                                 | $x, \rho$                                 | 16 cm³ pycnometer piknometar 16 cm³                | 303.15          | concave<br>konkavni                                                                          | 8    |
| benzonitrile<br>benzonitril                                                                                                                                 | $x, \rho, V_{\rm m}^{\rm E}$              | densimeter 02D, 03DCss<br>denzimetar 02D, 03DCss   | 298.15, 308.15  | convex<br>konveksni                                                                          | 39   |
| N,N-dimethylformamide, <sup>b</sup><br>hexamethylphosphortriamide <sup>c</sup><br>N,N-dimetilformamid, <sup>b</sup><br>heksametil-fosfotriamid <sup>c</sup> | x, V <sub>m</sub> <sup>E</sup>            | continuous dilatometer<br>kontinuirani dilatometar | 298.15          | convex, <sup>b</sup> concave <sup>c</sup><br>conveksni, <sup>b</sup> konkavni <sup>c</sup>   | 13   |
| N,N-dimethylformamide<br>N,N-dimetilformamid                                                                                                                | $x, V_{\rm m}^{\rm E}$                    | densimeter Sodev 02D<br>denzimetar Sodev 02D       | 298.15          | convex<br>konveksni                                                                          | 40   |
| nitromethane, nitroethane, 2-nitropropane<br>nitrometan, nitroetan, 2-nitropropan                                                                           | $x, \rho, V_{m}^{E}$                      | capillary pycnometer<br>kapilarni piknometar       | 293.15          | concave<br>konveksni                                                                         | 41   |
| 1,3-dimethyl-2-imidazolidinone<br>1,3-dimetil-2-imidazolidinon                                                                                              | $x, V_{m}^{E}$                            | DMA 601                                            | 298.15          | convex<br>konveksni                                                                          | 42   |
| N-acetylmorpholine<br>N-acetilmorfolin                                                                                                                      | χ, ρ                                      | DMA 60/602                                         | 293.15 – 343.15 | convex<br>konveksni                                                                          | 43   |
| Sulphur compounds<br>Spojevi sa sumporom                                                                                                                    |                                           |                                                    |                 |                                                                                              |      |
| dimethyl sulphoxide<br>dimetil-sulfoksid                                                                                                                    | χ, ρ                                      | 16 cm³ pycnometer<br>piknometar 16 cm³             | 303.15          | concave<br>konkavni                                                                          | 8    |
| dimethyl sulphoxide<br>dimetil-sulfoksid                                                                                                                    | $x, V_{m}^{E}$                            | DMA 4500                                           | 298.15          | concave<br>konkavni                                                                          | 16   |

a S-shaped excess molar volume curve at 298.15 K S-oblik krivulje ekscesnog molarnog obujma pri 298,15 K b Convex shape for excess molar volume curve Konveksna krivulja ekscesnog molarnog obujma c C Concave shape for excess molar volume curve

Konkavna krivulja ekscesnog molarnog obujma

T a b l e 2 — Standard deviations  $\sigma$  of the Redlich–Kister equation. Ref. denotes literature reference. T a b l i c a 2 — Standardna devijacija,  $\sigma$ , Redlich-Kisterove jednadžbe. Ref. označava literaturnu referenciju.

|                                                       | T / K |                         |          |        |                      |          |        |        |        |               |  |  |
|-------------------------------------------------------|-------|-------------------------|----------|--------|----------------------|----------|--------|--------|--------|---------------|--|--|
| Compound in the mixture with mesitylene               | Ref.  | 288.15 293.15 298.1     | 5 300 15 | 303 15 |                      |          | 318 15 | 323 15 | 328 15 | 333 15 343 15 |  |  |
| Spoj u smjesi s mezitilenom                           | inci. | 200.13   233.13   230.1 | 3 300.13 |        | σ/10 <sup>-2</sup> α | <u> </u> |        | 323.13 | 320.13 | 333.13        |  |  |
| Alkanes and their derivatives<br>Alkani i derivati    |       |                         |          |        |                      |          |        |        |        |               |  |  |
| heptane<br>heptan                                     | 11    |                         |          | 0.75   | 1.35                 | 1.35     | 1.54   | 1.35   |        |               |  |  |
| octane<br>oktan                                       | 15    | 0.10                    | )        |        | 0.14                 |          | 0.13   |        | 0.12   |               |  |  |
| tetrachloromethane<br>tetraklormetan                  | 7     |                         | 6.17     |        |                      | 6.17     |        |        |        |               |  |  |
| tetrachloromethane<br>tetraklormetan                  | 16    | 0.44                    | ļ        |        |                      |          |        |        |        |               |  |  |
| Cycloalkanes<br>Cikloalkani                           |       |                         |          |        |                      |          |        |        |        |               |  |  |
| cyclopentane<br>ciklopentan                           | 9     | 1.00                    | )        |        |                      | 0.60     |        |        |        |               |  |  |
| cyclohexane<br>cikloheksan                            | 9     | 1.20                    | )        |        |                      | 0.80     |        |        |        |               |  |  |
| methylcyclohexane<br>metilcikloheksan                 | 9     | 0.50                    | )        |        |                      | 0.70     |        |        |        |               |  |  |
| cyclooctane<br>ciklooktan                             | 9     | 0.50                    | )        |        |                      | 0.40     |        |        |        |               |  |  |
| methylcyclohexane<br>metilcikloheksan                 | 17    | 0.90                    | )        | 0.80   | 0.90                 |          |        |        |        |               |  |  |
| Aromatics and their derivatives<br>Aromati i derivati |       |                         |          |        |                      |          |        |        |        |               |  |  |
| benzene<br>benzen                                     | 7     |                         | 3.84     |        |                      | 2.14     |        |        |        |               |  |  |
| benzene<br>benzen                                     | 18    | 0.14                    | 1        |        | 0.12                 |          | 0.11   |        | 0.12   |               |  |  |
| 1-chloronaphthalene<br>1-klornaftalen                 | 19    | 2.30                    | )        | 2.90   | 8.70                 |          |        |        |        |               |  |  |
| Alcohols<br>Alkoholi                                  |       |                         |          |        |                      |          |        |        |        |               |  |  |
| methanol<br>metanol                                   | 20    | 0.35                    | j        |        |                      |          |        |        |        |               |  |  |
| ethanol<br>etanol                                     | 20    | 0.38                    | 3        |        |                      |          |        |        |        |               |  |  |
| propan-1-ol<br>propan-1-ol                            | 20    | 0.40                    | )        |        |                      |          |        |        |        |               |  |  |
| propan-2-ol<br>propan-2-ol                            | 21    | 0.50                    | )        |        |                      |          |        |        |        |               |  |  |
| ethanol<br>etanol                                     | 21    | 1.42                    | !        | 1.71   | 1.42                 |          |        |        |        |               |  |  |
| propan-1-ol<br>propan-1-ol                            | 21    | 3.50                    | )        | 3.61   | 3.55                 |          |        |        |        |               |  |  |
| propan-2-ol<br>propan-2-ol                            | 21    | 1.69                    | )        | 1.75   | 1.89                 |          |        |        |        |               |  |  |

| Compound in the mixture                                               |      |        |        |        |        |        | Τ/                     | K       |        |        |      |        |      |        |
|-----------------------------------------------------------------------|------|--------|--------|--------|--------|--------|------------------------|---------|--------|--------|------|--------|------|--------|
| with mesitylene                                                       | Ref. | 288.15 | 293.15 | 298.15 | 300.15 | 303.15 | 308.15                 | 313.15  | 318.15 | 323.15 | 328. | 15 333 | 3.15 | 343.15 |
| Spoj u smjesi s mezitilenom                                           |      |        |        |        |        | o      | r / 10 <sup>-2</sup> c | cm³ mol | -1     |        |      |        |      |        |
| butan-1-ol<br>butan-1-ol                                              | 21   |        |        | 5.89   |        | 5.54   | 5.39                   |         |        |        |      |        |      |        |
| pentan-1-ol<br>pentan-1-ol                                            | 21   |        |        | 7.17   |        | 16.48  | 15.38                  |         |        |        |      |        |      |        |
| 3-methylbutan-1-ol<br>3-metilbutan-1-ol                               | 21   |        |        | 6.85   |        | 6.87   | 7.86                   |         |        |        |      |        |      |        |
| butan-1-ol<br>butan-1-ol                                              | 22   |        |        | 0.15   |        |        |                        |         |        |        |      |        |      |        |
| 2-methylpropan-1-ol<br>2-metilpropan-1-ol                             | 22   |        |        | 0.33   |        |        |                        |         |        |        |      |        |      |        |
| butan-2-ol<br>butan-2-ol                                              | 22   |        |        | 0.33   |        |        |                        |         |        |        |      |        |      |        |
| 2-methylpropan-2-ol<br>2-metilpropan-2-ol                             | 22   |        |        | 0.34   |        |        |                        |         |        |        |      |        |      |        |
| decan-1-ol<br>dekan-1-ol                                              | 10   |        |        | 0.30   |        |        | 0.30                   |         |        |        |      |        |      |        |
| Ketones<br>Ketoni                                                     |      |        |        |        |        |        |                        |         |        |        |      |        |      |        |
| acetone<br>aceton                                                     | 12   |        |        | 0.51   |        |        | 0.27                   |         |        |        |      |        |      |        |
| acetophenone<br>acetofenon                                            | 23   |        |        | 0.08   |        |        |                        |         |        |        | 0.1  | 1      |      |        |
| cyclohexanone<br>cikloheksanon                                        | 24   |        |        | 0.40   |        | 0.80   | 0.90                   |         |        |        |      |        |      |        |
| Carboxylic acids and their derivat<br>Karboksilne kiseline i derivati | ives |        |        |        |        |        |                        |         |        |        |      |        |      |        |
| propionic acid<br>propanska kiselina                                  | 25   |        |        |        |        |        |                        | 0.12    |        |        |      |        |      |        |
| ethyl acetate<br>etil-acetat                                          | 26   |        |        | 0.67   |        |        |                        |         |        |        |      |        |      |        |
| propyl acetate<br>propil-acetat                                       | 27   |        |        | 0.13   |        | 0.41   | 0.22                   | 0.46    |        |        |      |        |      |        |
| butyl acetate<br>butil-acetat                                         | 27   |        |        | 0.17   |        | 0.13   | 0.06                   | 0.18    |        |        |      |        |      |        |
| isopropyl acetate<br>izopropil-acetat                                 | 28   |        |        | 0.14   |        |        | 0.11                   | 0.11    |        |        |      |        |      |        |
| isobutyl acetate<br>izobutil-acetat                                   | 28   |        |        | 0.09   |        |        | 0.18                   | 0.15    |        |        |      |        |      |        |
| vinyl acetate<br>vinyl-acetat                                         | 29   |        |        | 0.30   |        |        |                        |         |        |        |      |        |      |        |
| methyl acetoacetate<br>metil-acetoacetat                              | 30   |        |        | 1.40   |        | 1.30   | 2.10                   |         |        |        |      |        |      |        |
| ethyl chloracetate<br>etil-kloracetat                                 | 31   |        |        | 3.60   |        | 5.80   | 3.50                   |         |        |        |      |        |      |        |
| methyl acrylate<br>metil-akrilat                                      | 32   |        | 0.12   | 0.14   |        | 0.16   | 0.18                   | 0.16    | 0.15   |        |      |        |      |        |
| $\gamma$ -butyrolactone $\gamma$ -butirolakton                        | 33   | 0.10   | 0.20   | 0.30   |        | 0.10   | 0.40                   |         |        |        |      |        |      |        |

| Compound in the mixture                                        |      | T / K  288.15 293.15 298.15 300.15 303.15 308.15 313.15 318.15 323.15 328.15 333.15 343.15 |        |             |      |          |         |        |        |        |        |        |
|----------------------------------------------------------------|------|--------------------------------------------------------------------------------------------|--------|-------------|------|----------|---------|--------|--------|--------|--------|--------|
| with mesitylene Spoj u smjesi s mezitilenom                    | Ref. | 288.15                                                                                     | 293.15 | 298.15   30 |      |          |         | 318.15 | 323.15 | 328.15 | 333.15 | 343.15 |
| . , ,                                                          |      |                                                                                            |        |             | σ    | / 10-2 ( | cm³ mol | -1     |        |        |        |        |
| Other oxygen compounds<br>Drugi spojevi s kisikom              |      |                                                                                            |        |             |      |          |         |        |        |        |        |        |
| ethylene glycol monomethyl ether etilen-glikol-monometil-eter  | 34   |                                                                                            |        | 0.56        |      |          | 0.44    |        |        |        |        |        |
| ethylene glycol dimethyl ether<br>etilen-glikol-dimetil-eter   | 34   |                                                                                            |        | 0.28        |      |          | 0.17    |        |        |        |        |        |
| dimethyl carbonate<br>dimetil-karbonat                         | 35   |                                                                                            |        | 0.50        |      |          | 0.60    |        |        |        |        |        |
| diethyl carbonate<br>dietil-karbonat                           | 35   |                                                                                            |        | 0.20        |      |          | 0.40    |        |        |        |        |        |
| anisole<br>anisol                                              | 36   | 0.02                                                                                       | 0.07   | 0.05        | 0.08 |          |         |        |        |        |        |        |
| 1,1-diethoxyethane<br>1,1-dietoksietan                         | 37   |                                                                                            |        | 0.10        |      | 0.10     | 0.10    |        |        |        |        |        |
| 2,2-dimethoxypropane<br>2,2-dimetoksipropan                    | 37   |                                                                                            |        | 0.10        |      | 0.10     | 0.10    |        |        |        |        |        |
| 1,4-dioxane<br>1,4-dioksan                                     | 38   | 0.13                                                                                       | 0.13   | 0.14        | 0.16 | 0.18     | 0.18    | 0.19   |        |        |        |        |
| tetrahydrofurane<br>tetrahidrofuran                            | 16   |                                                                                            |        | 0.02        |      |          |         |        |        |        |        |        |
| Nitrogen compounds<br>Spojevi s dušikom                        |      |                                                                                            |        |             |      |          |         |        |        |        |        |        |
| triethylamine<br>trietilamin                                   | 14   |                                                                                            |        |             |      |          | 0.40    |        |        |        |        |        |
| acetonitrile<br>acetonitril                                    | 8    |                                                                                            |        |             | 2.40 |          |         |        |        |        |        |        |
| benzonitrile<br>benzonitril                                    | 39   |                                                                                            |        | 0.20        |      | 0.40     |         |        |        |        |        |        |
| <i>N,N</i> -dimethylformamide <i>N,N</i> -dimetilformamid      | 13   |                                                                                            |        | 0.40        |      |          |         |        |        |        |        |        |
| hexamethylphosphortriamide<br>heksametil-fosfotriamid          | 13   |                                                                                            |        | 0.70        |      |          |         |        |        |        |        |        |
| <i>N,N</i> -dimethylformamide <i>N,N</i> -dimetilformamid      | 40   |                                                                                            |        | 0.04        |      |          |         |        |        |        |        |        |
| nitromethane<br>nitrometan                                     | 41   |                                                                                            | 1.00   |             |      |          |         |        |        |        |        |        |
| nitroethane<br>nitroetan                                       | 41   |                                                                                            | 0.70   |             |      |          |         |        |        |        |        |        |
| 2-nitropropane<br>2-nitropropan                                | 41   |                                                                                            | 0.80   |             |      |          |         |        |        |        |        |        |
| 1,3-dimethyl-2-imidazolidinone<br>1,3-dimetil-2-imidazolidinon | 42   |                                                                                            |        | 1.20        |      |          |         |        |        |        |        |        |
| N-acetylmorpholine<br>N-acetilmorfolin                         | 43   |                                                                                            | 6.00   |             | 0.40 |          | 0.50    |        | 0.30   |        | 0.20   | 0.30   |
| Sulphur compounds<br>Spojevi sa sumporom                       |      |                                                                                            |        |             |      |          |         |        |        |        |        |        |
| dimethyl sulphoxide<br>dimetil-sulfoksid                       | 8    |                                                                                            |        |             | 2.00 |          |         |        |        |        |        |        |
| dimethyl sulphoxide<br>dimetil-sulfoksid                       | 16   |                                                                                            |        | 0.17        |      |          |         |        |        |        |        |        |

### Alkanes and their derivatives

Excess molar volumes of binary systems containing mesitylene with either heptane<sup>11</sup> or octane<sup>15</sup> slightly depend on temperature. The deviations from the ideal volumetric behaviour are asymmetric and positive for the binary system containing octane while negative deviations occur for the binary system containing heptane (see Fig. 1).  $V_m^E$ for the system containing tetrachloromethane is S-shaped<sup>7</sup> and decreases with temperature. In contrast to the data,<sup>7</sup> literature data<sup>16</sup> shows concave shape of excess molar volume versus concentration. The newer data16 are published 30 years after the previous one<sup>7</sup> and it could be concluded that the rapid progress in precise density measurement is evident from these differences. The highest precision of newer data is also obvious from Table 2 where lower deviations after fitting by Redlich-Kister equation were obtained.

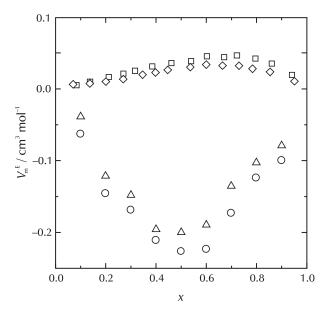



Fig. 1 — Excess molar volumes of binary systems (heptane + mesitylene)<sup>11</sup> and (octane + mesitylene);<sup>15</sup> x denotes mole fraction of either heptane or octane.

 $\triangle$  – heptane + mesitylene at 308 K;  $\bigcirc$  – heptane + mesitylene at 318 K;  $\square$  – octane + mesitylene at 308 K;  $\diamond$  – octane + mesitylene at 318 K.

S l i k a 1 – Ekscesni molarni obujmi binarnih sustava (heptan + mezitilen)<sup>11</sup> i (oktan + mezitilen); <sup>15</sup> x označava molni udjel heptana odnosno oktana.

 $\triangle$  – heptan + mezitilen pri 308 K;  $\bigcirc$  – heptan + mezitilen pri 318 K;  $\square$  – oktan + mezitilen pri 308 K;  $\diamond$  – oktan + mezitilen pri 318 K.

### Cycloalkanes

The volumetric data for binary system containing mesitylene with methylcyclohexane are reported by two authors;  $^{9,17}$  the data are very close to each other within experimental errors. *Gonzáles et al.*  $^9$  reported the comparison of binary systems containing mesitylene with cycloalkanes. It is interesting that  $V_{\rm m}^{\rm E}$  does not increase with the length of carbon chain. The highest  $V_{\rm m}^{\rm E}$  is for the binary system mesitylene with cyclohexane. Only a single substituent as methyl on cyclohexane causes a significant

 $V_{\rm m}^{\rm E}$  decrease. Very small influence of temperature is observed. The increase of  $V_{\rm m}^{\rm E}$  with temperature is found in systems containing cyclopentane or cyclohexane while the decrease is reported for binary systems containing methylcyclohexane or cyclooctane.

The lowest standard deviation after the fitting by Redlich–Kister equation was obtained for cyclooctane<sup>9</sup> and the other standard deviations for systems containing mesitylene with a cycloalkane are comparable values.

# **Aromatics and their derivatives**

Only two compounds from the aromatic homologous series are found in the literature, namely benzene<sup>7,18</sup> and 1-chloronaphthalene.<sup>19</sup> However, the data for the benzene + mesitylene system are in conflict. The data measured by Subach et al.<sup>7</sup> yield S-shaped  $V_{\rm m}^{\rm E}$  vs. composition (x) curve with a small temperature influence on the curve, while the data published by Morávková et al. 18 are positive in the whole concentration region without obvious temperature effect on the volumetric properties. This great difference in volumetric data could be caused by the different method of density measurement. Authors<sup>7</sup> report density values with four decimal places, which was excellent precision in the past. However, nowadays requirements are to have density values determined more precisely, preferably with five decimal places.<sup>18</sup> The higher precision is also obvious from the lowest deviations after fitting by Redlich-Kister equation (see Table 2).

The second studied system is mesitylene with 1-chloro-naphtalene.<sup>19</sup> The  $V_{\rm m}^{\rm E}$  calculated from published density data is negative but scattered, and only slightly depends on temperature.

### **Alcohols**

Systems containing mesitylene with alcohols are reported by four authors.  $^{10,20-22}$  All  $V_{\rm m}^{\rm E}$  data are positive  $^{20-22}$  except for the binary system mesitylene with decan-1-ol.  $^{10}$  The positions of maxima on the  $V_{\rm m}^{\rm E}-x$  curve are approximately in the same part of the concentration region except for methanol;  $^{20}$  it is not surprising that the first member of a homologous series behaves atypically. The publication  $^{20}$  deals with methanol, ethanol, propan-1-ol or propan-2-ol systems, which show increasing  $V_{\rm m}^{\rm E}$  with the length of carbon chain. A very significant increase is reported for the propan-2-ol system.

Another paper<sup>21</sup> deals with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, pentan-1-ol or 3-methylbutan-1-ol but density data provide rather scattered  $V_{\rm m}^{\rm E}$  data. Despite the authors' claim that data on mesitylene with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, and 3-methyl-butan-1-ol were not published before, it is true only for the latter alcohol, the other were published elsewhere earlier. The maximum on  $V_{\rm m}^{\rm E} - x$  curve for the system mesitylene with propan-1-ol is higher by 1 cm³ mol<sup>-1</sup> in comparison with the other source<sup>21</sup> that is the least accurate data due to the highest deviation in Table 2. Moreover, the concentration dependence for the mesitylene + 3-methylbutan-1-ol system is not smooth although authors declare that density data were determined within  $\pm 10^{-5}$  g cm<sup>-3</sup> and that published data were sup-

posedly correlated by Redlich–Kister equation achieving good agreement with experimental data. A magnitude of scatter of experimental  $V_{\rm m}^{\rm E}$  from correlated values is an indicator of poor quality of data; the worst  $V_{\rm m}^{\rm E}$  value was as low as - 6.5 cm³ mol $^{-1}$  for the mesitylene + butan-1-ol system at 308.15 K which is difficult to believe because excess molar volumes rarely exceed 1 cm³ mol $^{-1}$ .7-43

The paper<sup>22</sup> reports data on systems containing butan-1-ol, 2-methylpropan-1-ol, butan-2-ol or 2-methylpropan-2-ol. The  $V_m^E$  are almost twice as high as for butan-1-ol or 2-methylpropan-1-ol in comparison with butan-2-ol or 2-methylpropan-2-ol.

### **Ketones**

Three systems with ketones are reported in the literature  $^{12,23,24}$  (see Figure 2). However, it is impossible to compare ketone systems mutually because they are not from the same homologous series. The binary systems containing mesitylene with aliphatic ketone  $^{12}$  and a ketone group on the cyclic alkane  $^{24}$  show positive deviation on  $V_{\rm m}^{\rm E}-x$  curve. Acetophenone  $^{23}$  interacts with mesitylene, which results in negative excess molar volume. Temperature does not play a significant role in all systems containing ketones.

The lowest deviation after fitting by Redlich–Kister equation is for the literature data<sup>23</sup> while the other literature data<sup>12,24</sup> are comparable.

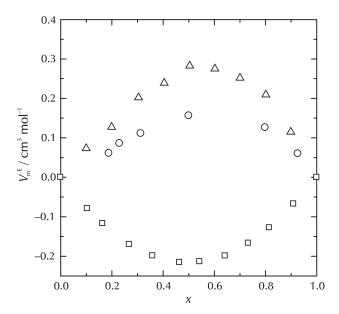



Fig. 2 — Excess molar volumes of binary systems (acetone + mesitylene), 12 (acetophenone + mesitylene), 23 and (cyclohexanone + mesitylene) 4 at 298 K; x denotes mole fraction of either acetone, acetophenone or cyclohexanone.

 $\bigcirc$  – acetone + mesitylene;  $\square$  – acetophenone + mesitylene;  $\triangle$  – cyclohexanone + mesitylene.

S l i k a 2 – Ekscesni molarni obujmi binarnih sustava (aceton + mezitilen), 12 (acetofenon + mezitilen)<sup>23</sup> i (cikloheksanon + mezitilen)<sup>24</sup>, pri 298 K; x označava molni udjel acetona, acetofenona odnosno cikloheksanona.

 $\bigcirc$  - aceton + mezitilen;  $\Box$  - acetofenon + mezitilen;  $\triangle$  - cikloheksanon + mezitilen.

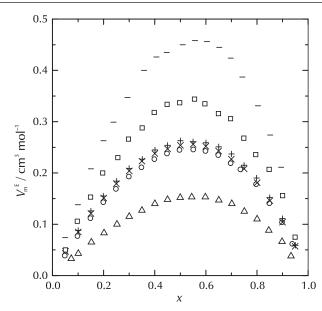



Fig. 3 — Excess molar volumes of binary systems (ethyl acetate + mesitylene), 26 (propyl acetate + mesitylene), 27 (butyl acetate + mesitylene), 28 (isopropyl acetate + mesitylene), 28 (isobutyl acetate + mesitylene), 28 (vinyl acetate + mesitylene), 29 at 298 K; x denotes mole fraction of acetate ester.

 $\Box$  – ethyl acetate + mesitylene;  $\bigcirc$  – propyl acetate + mesitylene;  $\triangle$  – butyl acetate + mesitylene; + – isopropyl acetate + mesitylene; × – isobutyl acetate + mesitylene; — – vinyl acetate + mesitylene.

Slika 3 – Ekscesni molarni obujmi binarnih sustava (etil-acetat/mezitilen), <sup>26</sup> (propil-acetat/mezitilen), <sup>27</sup> (butil-acetat/mezitilen), <sup>28</sup> (izoptuil-acetat/mezitilen) (vinil-acetat/mezitilen), <sup>29</sup> pri 298 K; x označava molni udjel acetat-nog estera.

 $\Box$  – etil-acetat + mezitilen;  $\bigcirc$  – propil-acetat + mezitilen;  $\triangle$  – butil-acetat + mezitilen; + – izopropil-acetat + mezitilen; × – izobutil-acetat + mezitilent; — – vinil-acetat + mezitilen.

### Carboxylic acids and their derivatives

All the found literature data on binary systems containing mesitylene with either fatty acids or their derivatives show positive deviations from the ideal volumetric behavior.  $^{25-33}$  It is possible to compare systems with acetates  $^{26-29}$  using compiled literature data (see Fig. 3). It is obvious that the  $V_{\rm m}^{\rm E}$  is decreasing in the homologous series from ethyl acetate to butyl acetate. The system with vinyl acetate exhibits the highest values. It is interesting that data for systems containing isopropyl acetate or isobutyl acetate are very close and similar to the system containing butyl acetate. In this group,  $V_{\rm m}^{\rm E}$  increases with temperature for all systems except for these two similar systems containing isopropyl or isobutyl acetate.

The highest deviation after fitting by Redlich–Kister equation is for the literature data<sup>31</sup> while the other literature data<sup>25–30,32,33</sup> are comparable.

# Other oxygen compounds

Volumetric data are reported in the literature in five papers.  $^{16,34-38}$  The greatest  $V_{\rm m}^{\rm E}$  was found for binary system containing dimethyl carbonate  $^{35}$  (approximately twice as high as for diethyl carbonate  $^{35}$ ). The smallest  $V_{\rm m}^{\rm E}$  is for the system containing tetrahydrofurane.  $^{16}$ 

Excess molar volumes increase with temperature for mesitylene systems with dimethyl carbonate, 35 diethyl carbonate, 35 and 1,4-dioxane while decrease for systems with anisole, 36 1,1-diethoxyethane, 37 and 2,2-dimethoxypropane. Those were temperature does not have a great influence on  $V_{\rm m}^{\rm E}$  in these systems. It is worth mentioning that the data are completely different for 1,1-diethoxyethane (convex curve) and 2,2-dimethoxypropane (concave curve).

The excess molar volume is approximately twice higher for the system containing ethylene glycol monomethyl ether<sup>34</sup> in comparison to the system containing ethylene glycol dimethyl ether.<sup>34</sup> The excess molar volume increase with temperature for the system with ethylene glycol monomethyl ether<sup>34</sup> while the excess molar volume are almost independent of temperature for the system containing ethylene glycol dimethyl ether.<sup>34</sup>

All found data were successfully correlated by Redlich–Kister equation. 16,34–38

### Nitrogen compounds

Nitrogen derivatives with mesitylene are studied in a number of publications.<sup>8,13,14,39–43</sup> Nevertheless,  $V_m^E$  data are very scattered around correlated curve for acetonitrile.8 Triethylamine system has the lowest  $V_m^E$  of all the nitrogen derivatives systems.<sup>14</sup> Excess molar volumes are increasing with temperature for benzonitrile<sup>39</sup> while they decrease for system with N-acetylmorpholine.43 Other volumetric data are published for one temperature only. The system with N,N-dimethylformamide was published by two authors<sup>13,40</sup> and data are in good mutual agreement. Pronounced deviations from ideal behaviour were found for systems with triethylamine,<sup>14</sup> benzonitrile,<sup>39</sup> nitromethane,<sup>41</sup> nitro-2-nitropropane,<sup>41</sup> 1,3-dimethyl-2-imidazoliethane.41 dinone,<sup>42</sup> and hexamethylphosphortriamide.<sup>13</sup> Nitrogen derivatives are the only one family where  $V_{\rm m}^{\rm E}$  are often negative due to associations in the liquid mixture.

The highest deviation after fitting by Redlich–Kister equation is for the literature data<sup>8</sup> and data<sup>43</sup> at 293.15 K while the others literature data<sup>13,14,39–42</sup> are comparable.

# **Sulphur compounds**

All published data are measured at one temperature only.<sup>8,16</sup> Dimethyl sulphoxide is reported by two authors<sup>8,16</sup> and the data published later<sup>16</sup> give smoother curve than older ones.<sup>8</sup> Excess molar volumes are positive in the whole concentration region. The fitting by Redlich–Kister equation of data<sup>16</sup> is significantly better than for data.<sup>8</sup>

# **Conclusions**

The excess molar volumes of binary systems containing mesitylene are available in the literature in many publications. The literature data are frequently in qualitative agreement, but they differ quantitatively. Moreover,  $V_{\rm m}^{\rm E}$  calculated from density data occasionally differ in comparison with the data from publications where only densities are reported. Accuracies of density values are usually published with five decimals. Then, the excess molar

volumes calculated from density data are reported with three decimals only. Concave shape (positive values) of  $V_{\rm m}^{\rm E}$  – x curve occurs more frequently than convex shape (negative values); concave shape of the curve indicates that the liquid system does not exhibit more organised structure in comparison to the pure compounds before mixing. Convex curves are typical only for nitrogen-containing compounds with mesitylene which is a consequence of associate formation in liquid mixtures.

The largest differences between published volumetric data are found for the mesitylene + alcohol systems. This is due to difficulties during measurements with highly hygroscopic alcohols. The increasing amount of water in an alcohol changes the density considerably and thus the excess molar volume. It is not possible to compare all collected data because measurements are rarely at the same temperature or there are no available data for at least three members of a homologous series.

### **ACKNOWLEDGEMENT**

The authors would like to thank the Institute of Chemical Process Fundamentals ASCR, v. v. i. for financing this research within the frames of the long-term institutional research policy under number RVO 67985858.

# List of symbols and abbreviations Popis simbola i kratica

 $A_{\nu}$  – parameter

parametar

M − molar mass, g mol<sup>-1</sup>

- molarna masa, g mol-1

N – number of components

- broj sastojaka smjese

number of parameters A

broj parametara A

V... E – excess molar volume, cm<sup>3</sup> mol<sup>-1</sup>

ekscesni molarni obujam, cm³ mol⁻¹

 $V_{\rm m}^{\rm ideal,mix}$  – ideal mixture molar volume, cm $^{\rm 3}$  mol $^{\rm -1}$ 

- molarni obujam idealne smjese, cm³ mol-1

 $V_{\rm m}^{\rm real,mix}$  – real mixture molar volume, cm $^{3}$  mol $^{-1}$ 

- molarni stvarni obujam smjese, cm3 mol-1

x – mole fraction, 1

- molni udjel, 1

*T* – temperature, K

temperatura, K

 $\rho$  — mixture density, g cm<sup>-3</sup>

gustoća smjese, g cm<sup>-3</sup>

 $ho_i$  — mixture component density, g cm $^{-3}$ 

gustoća sastojka smjese, g cm⁻³

σ – standard deviation of excess molar volume, cm³ mol⁻¹

standardna devijacija ekscesnog molarnog volumena,

cm³ mol-1

DMA – density meter

mjerač gustoće

DSA — density and sound velocity meter

mjerač gustoće i brzine zvuka

## References Literatura

- 1. L. Wang, J. B. Milford, W. P. L. Carter, Reactivity estimates for aromatic compounds. Part 1: Uncertainty in chamber-derived parameters, Atmos. Environ. 34 (2000) 4337–4348.
- 2. *J. B. Moss, I. M. Aksit,* Modelling soot formation in a laminar diffusion flame burning a surrogate kerosene fuel, Proc. Combust. Inst. **31** (2007) 3139–3146.
- 3. S. J. Jackson, M. Siervo, E. Persson, L. M. McKenna, L. J. C. Bluck, A novel derivative for the assessment of urinary and salivary nitrate using gas chromatography/mass spectrometry, Rapid Commun. Mass Spectrom. 22 (2008) 4158–4164.
- C. D. Shacklett, H. A. Smith, The Application of the Chloromethylation Reaction to the Syntheses of Certain Polymethylbenzenes, J. Amer. Chem. Soc. 73 (1951) 766–768.
- J. E. M. N. Klein, A. Perry, D. S. Pugh, R. J. K. Taylor, First C-H Activation Route to Oxindoles using Copper Catalysis, Org. Lett. 12 (2010) 3446–3449.
- E. R. Caley, A. Habboush, Determination of Composition of Solutions of Organic Liquids by Titration with Water. Application to Systems Composed of Aromatic Hydrocarbons and Lower Alcohols, Anal. Chem. 33 (1961) 1613–1616.
- 7. D. J. Subach, C. L. Kong, Thermodynamics of Solutions: Excess Volumes of Benzene, Carbon Tetrachloride, and Mesitylene Mixtures, J. Chem. Eng. Data **18**(4) (1973) 403–405.
- 8. A. H. Absood, M. S. Tutunji, K.-Y. Hsu, H. L. Clever, The Density and Enthalpy of Mixing of Solutions of Acetonitrile and of Dimethyl Sulfoxide with Several Aromatic Hydrocarbons, J. Chem. Eng. Data **21**(3) (1976) 304–308.
- 9. *B. González, E. J. González, N. Calvar, I. Domínguez, J. Canosa,* Density, Speed of Sound, and Refractive Index for Binary Mixtures Containing Cycloalkanes with o-Xylene, *m*-Xylene, *p*-Xylene, and Mesitylene at *T* = (298.15 and 313.15) K, J. Chem. Eng. Data **55** (2010) 2294–2305.
- 10. *S. C. Bhatia, R. Rani, R. Bhatia*, Viscosities, densities, speeds of sound and refractive indices of binary mixtures of o-xylene, *m*-xylene, *p*-xylene, ethylbenzene and mesitylene with 1-decanol at 298.15 and 308.15 K, J. Molec. Liq. **159** (2011) 132–141.
- 11. *M. A. Rahaman, M. S. I. Aziz, S. Akhtar,* Volumetric properties of some binary liquid systems: n-Heptane + Aromatic hydrocarbons between 303.15 and 323.15 K, J. Mol. Liq. **162** (2011) 26–32.
- 12. *J. Nath, A. P. Dixlt*, Excess Volumes for Binary Liquid Mixtures of Acetone with Benzene, Toluene, *p*-Xylene, Mesitylene, and Cyclohexane, J. Chem. Eng. Data **28** (1983) 190–191.
- T. L. Willis, C. A. Plank, Excess Volumes for the Systems Mesitylene + Dimethylformamide and Mesitylene + Hexamethylphosphortriamide at 298.15 K, J. Chem. Eng. Data 37 (1992) 228–229.
- S. K. Suri, Thermodynamic Properties of Solutions Containing an Aliphatic Amine.
   Excess Volumes of Binary Mixtures of Triethylamine with 12 Hydrocarbons at 313.15 K, J. Chem. Eng. Data 25 (1980) 390–393.
- 15. *L. Morávková, J. Linek*, Excess molar volumes of (octane + benzene, or toluene, or 1,3-xylene, or 1,3,5-trimethylbenzene) at temperatures between (298.15 and 328.15) K, J. Chem. Thermodyn. **40** (2008) 671–676.
- A. Pan, Q. Ke, G. Ouyang, X. Zhen, Y. Yang, Z. Huang, Excess Molar Volumes and Surface Tensions of Trimethylbenzene with Tetrahydrofuran Tetrachloromethane and Dimethyl Sulfoxide at 298.15 K, J. Chem. Eng. Data 49 (2004) 1839–1842.
- 17. *J. G. Baragi, M. I. Aralaguppi*, Excess and deviation properties for the binary mixtures of methylcyclohexane with benzene, toluene, *p*-xylene, mesitylene, and anisole at *T* = (298.15, 303.15, and 308.15) K, J. Chem. Thermodyn. **38** (2006) 1717–1724.

- 18. *L. Morávková, Z. Wagner, J. Linek*, (*P*, *V*, *T*, *x*) Measurements of the system benzene + 1,3,5-trimethylbenzene at temperatures from 298.15 to 328.15 K and at pressures up to 40 MPa, Fluid Phase Equilibr. **209** (2003) 81–94.
- 19. *T. M. Aminabhavi, K. Banerjee*, Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of 1-Chloronaphthalene with Benzene, Methylbenzene, 1,4-Dimethylbenzene, 1,3,5-Trimethylbenzene, and Methoxybenzene at (298.15, 303.15, and 308.15) K, J. Chem. Eng. Data **44** (1999) 547–552.
- T. M. Letcher, F. E. Z. Schoonbaert, K. A. Prasad, J. Mercer-Chalmers, V. R. Prasad, Excess enthalpies and volumes of mixing for mesitylene + alcohols at 298.15 K, Fluid Phase Equilibr. 61 (1990) 81–87.
- 21. V. Mutalik, L. S. Manjeshwar, M. Sairam, T. M. Aminabhavi, Excess molar volumes, deviations in viscosity and refractive index of the binary mixtures of mesitylene with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, pentan-1-ol, and 3-methylbutan-1-ol at 298.15, 303.15, and 308.15 K, J. Mol. Liq. 129 (2006) 147–154.
- 22. C. Pan, G. Ouyang, J. Lin, Y. Rao, X. Zhen, G. Lu, Z. Huang, Excess Molar Volumes and Surface Tensions of 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene with 1-Butanol, 2-Methyl-1-propanol, 2-Butanol, and 2-Methyl-2-propanol at 298.15 K, J. Chem. Eng. Data 49 (2004) 1744–1747.
- 23. *L. Morávková, J. Linek*, Excess molar volumes of (acetophenone + benzene, or toluene, or 1,3-xylene, or 1,3,5-trimethylbenzene) at temperatures (298.15 and 328.15) K, J. Chem. Thermodyn. **37** (2005) 814–819.
- 24. *M. I. Aralaguppi, C. V. Jadar, T. M. Aminabhavi,* Density, Refractive Index, Viscosity, and Speed of Sound in Binary Mixtures of Cyclohexanone with Benzene, Methylbenzene, 1,4-Dimethylbenzene, 1,3,5-Trimethylbenzene, and Methoxybenzene in the Temperature Interval (298.15 to 308.15) K, J. Chem. Eng. Data **44** (1999) 446–450.
- 25. *F. Comelli, R. Francesconi,* Excess Molar Enthalpies and Excess Molar Volumes of Propionic Acid + Octane, + Cyclohexane, + 1,3,5-Trimethylbenzene, + Oxane, or + 1,4-Dioxane at 313.15 K, J. Chem. Eng. Data **41** (1996) 101–104.
- J. M. Resa, C. González, S. Ortiz de Landaluce, J. Lanz, Densities, excess molar volumes, and refractive indices of ethyl acetate and aromatic hydrocarbon binary mixtures, J. Chem. Thermodyn. 34 (2002) 995–1004.
- 27. Y.-Y. Yang, J.-H. Deng, H.-L. Yang, X.-H. Zheng, G.-Q. Che, Z.-Q. Huang, Densities, surface tensions, and derived surface thermodynamics properties of (trimethylbenzene + propyl acetate, or butyl acetate) from *T* = 298.15 K to 313.15 K, J. Chem. Thermodyn. **39** (2007) 438–448.
- 28. Y. He, R. Jiang, F. Zhu, T. Luan, Z. Huang, G. Ouyang, Excess Molar Volumes and Surface Tensions of 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene with Isopropyl Acetate and Isobutyl Acetate at (298.15, 308.15, and 313.15) K, J. Chem. Eng. Data **53** (2008) 1186–1191.
- J. M. Resa, M. Iglesias, C. González, J. Lanz, J. A. Mtz. de llarduya, Excess volumes of binary mixtures of vinyl acetate and aromatic hydrocarbons, J. Chem. Thermodyn. 33 (2001) 723–732.
- 30. M. I. Aralaguppi, T. M. Aminabhavi, R. H. Balundgi, Excess molar volume, excess isoetropic compressibility and excess molar refraction of binary mixtures of methyl acetoacetate with benzene, toluene, *m*-xylene, mesitylene and anisole, Fluid Phase Equilib. **71** (1992) 99–112.
- J. N. Nayak, M. I. Aralaguppi, T. M. Aminabhavi, Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Ethyl Chloroacetate with Aromatic Liquids at 298.15, 303.15, and 308.15 K, J. Chem. Eng. Data 47 (2002) 964–969.

- 32. A. K. Nain, R. Sharma, A. Ali, S. Gopal, Densities and volumetric properties of methyl acrylate + benzene, or toluene, or o-xylene, or m-xylene, or p-xylene, or mesitylene binary mixtures at temperatures from 293.15 to 318.15 K, J. Mol. Liq. **144** (2009) 124–130.
- 33. S.-K. Yang, Excess volumes and densities of binary mixtures of γ-butyrolactone + 1,3,5-trimethylbenzene or 1,2,4-trimethylbenzene at several temperatures, J. Mol. Liq. 140 (2008) 45–47.
- 34. J. Deng, Y. Yang, P. Wang, G. Ouyang, Z. Huang, Excess Molar Volumes and Surface Tensions of Trimethylbenzene + Ethylene Glycol Ester at 298.15 K and 313.15 K, J. Chem. Eng. Data **51** (2006) 725–729.
- 35. J. Deng, Y. Yang, Y. He, G. Ouyang, Z. Huang, Densities and Surface Tensions of Trimethylbenzene + Dimethyl Carbonate or + Diethyl Carbonate at 298.15 K and 313.15 K, J. Chem. Eng. Data **51** (2006) 1464–1468.
- 36. *J. A. Al-Kandary, A. S. Al-Jimaz, A.-H. M. Abdul-Latif,* Excess molar volumes and refractive indices of (methoxybenzene + benzene, or toluene, or o-xylene, or *m*-xylene, or *p*-xylene, or mesitylene) binary mixtures between *T* = (288.15 to 303.15) K, J. Chem. Thermodyn. **38** (2006) 1351–1361.
- 37. Y. He, R. Jiang, Y. Yang, Z. Huang, G. Ouyang, Excess Molar Volumes and Surface Tensions of 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene with 1,1-Diethoxyethane and

- 2,2-Dimethoxypropane at (298.15, 308.15, and 313.15) K, J. Chem. Eng. Data **52** (2007) 884–888.
- 38. A. K. Nain, P. Chandra, J. D. Pandey, S. Gopal, Densities, Refractive Indices, and Excess Properties of Binary Mixtures of 1,4-Dioxane with Benzene, Toluene, o-Xylene, m-Xylene, p-Xylene, and Mesitylene at Temperatures from (288.15 to 318.15) K, J. Chem. Eng. Data 53 (2008) 2654–2665.
- 39. E. Calvo-Iglesias, R. Bravo, M. Pintos, A. Amigo, A. H. Roux, G. Roux-Desgranges, Thermodynamics of mixtures involving some (benzene derivatives + benzonitrile), J. Chem. Thermodyn. **39** (2007) 561–567.
- 40. *J.-P. E. Grolier, G. Roux-Desgranges, M. Berkane, E. Jiménez,* Heat capacity and densities of mixtures of very polar substances. 2. Mixture containing *N,N*-dimethylformamide, *J. Chem.* Thermodyn. **25** (1993) 41–51.
- 41. R. R. Yadava, V. Singht, Excess Volume of Mixing for Binary Mixtures of Some Nitroalkanes and Symmetrical Aromatic Hydrocarbons, J. Chem. Eng. Data 39 (1994) 705–707.
- 42. *T. M. Letcher, N. Deenadayalu*, Excess molar enthalpies and excess molar volumes of (1,3-dimethyl-2-imidazolidinone + an aromatic hydrocarbon) at  $T=298.15\,\text{K}$ , J. Chem. Thermodyn. **33**  $(2001)\,441\text{-}450$ .
- 43. *M. A. Abu-Daabes, A. M. Awwad, H. A. Al-Ani*, Densities and volumetric properties of (N-acetylmorpholine + aromatic hydrocarbon) binary mixtures from *T* = (293.15 to 343.15) K, J. Chem. Thermodyn. **41** (2009) 123–129.

# **SAŽETAK**

### Ekscesni molarni obujam binarnih sustava koji sadrže mezitilen

L. Morávková i Z. Sedláková\*

U ovom je radu dan pregled izmjerenih gustoća binarnih sustava koji sadrže 1,3,5-trimetilbenzen (mezitilen) s različitim organskim spojevima pri atmosferskom tlaku. Literaturni podaci o binarnim sustavima razvrstani su u devet osnovnih skupina prema vrsti organskog spoja u smjesi s mezitilenom. Ekscesni molarni obujmi izračunati su iz eksperimentalno određenih vrijednosti gustoće i uspoređeni s literaturnim podacima. Gustoće su izmjerene pomoću nekoliko eksperimentalnih metoda: piknometrom, dilatometrom ili nekom od komercijalnih aparatura. Prikazani su eksperimentalni podaci i oblik krivulje ekscesnog molarnog obujma u ovisnosti o molnom udjelu. Procijenjene vrijednosti ekscesnih molarnih obujama u ovisnosti o molnom udjelu korelirane su Redlich-Kisterovom jednadžbom, a prikladnost odabrane funkcije izražena je usporedbom standardnih devijacija. Literaturni podaci pokrivaju široko temperaturno područje (od 288,15 do 343,15 K).

Institute of Chemical Process Fundamentals of the Academy of Sciences of the Czech Republic, v. v. i., CZ-165 02 Prague 6 – Suchdol, Češka Republika Prispjelo 14. kolovoza 2012. Prihvaćeno 21. veljače 2013.