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Abstract

A computational tool for testing for a dose-related trend and/or a pairwise difference
in the incidence of an occult tumor via an age-adjusted bootstrap-based poly-k test and
the original poly-k test is presented in this paper. The poly-k test (Bailer and Portier
1988) is a survival-adjusted Cochran-Armitage test, which achieves robustness to effects
of differential mortality across dose groups. The original poly-k test is asymptotically
standard normal under the null hypothesis. However, the asymptotic normality is not
valid if there is a deviation from the tumor onset distribution that is assumed in this
test. Our age-adjusted bootstrap-based poly-k test assesses the significance of assumed
asymptotic normal tests and investigates an empirical distribution of the original poly-k
test statistic using an age-adjusted bootstrap method. A tumor of interest is an occult
tumor for which the time to onset is not directly observable. Since most of the animal
carcinogenicity studies are designed with a single terminal sacrifice, the present tool is
applicable to rodent tumorigenicity assays that have a single terminal sacrifice. The
present tool takes input information simply from a user screen and reports testing results
back to the screen through a user-interface. The computational tool is implemented in
C/C++ and is applied to analyze a real data set as an example. Our tool enables the FDA
and the pharmaceutical industry to implement a statistical analysis of tumorigenicity data
from animal bioassays via our age-adjusted bootstrap-based poly-k test and the original
poly-k test which has been adopted by the National Toxicology Program as its standard
statistical test.
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1. Introduction

Animal carcinogenicity bioassays are routinely used to evaluate the carcinogenic potential of
chemical substances to which humans are exposed. Standard long-term animal carcinogenicity
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studies of pharmaceuticals and food additives are usually conducted in both sexes of mice and
rats for the majority of those animals’ typical life spans. The Center for Drug Evaluation
and Research (CDER) in the US Food and Drug Administration (FDA) recommends that
drug sponsors conduct carcinogenicity studies at least 18 months in mice and 24 months in
rats (Office of the Federal Register 1985). Kodell, Lin, Thorn, and Chen (2000) studied the
effect of shortened duration on the statistical power of carcinogenicity studies, and the results
support the CDER recommendation. Each animal is assumed to begin with a tumor free state.
Animals are randomized into a control group (typically, animals that are exposed to a control
agent or observed without any exposure) or into 2 to 3 treatment groups that receive specified
levels of exposure until they either die or are sacrificed. Most of the animal carcinogenicity
studies are designed with a single terminal sacrifice. In a single terminal sacrifice, all surviving
animals are sacrificed and subjected to necropsy at the end of the experiment. During the
study, age at death and the information on the presence or absence of the tumor of interest
are collected for each animal. The primary goal of this type of experiment is to assess a dose-
related trend of test agent exposures on the incidence of an occult tumor for which the time
to tumor onset is not directly observable. Ahn and Kodell (1998) review various statistical
testing schemes for a dose-response relationship.

The logrank test of Mantel and Haenszel (1959) may be used for comparing hazards of death
from rapidly lethal tumors. To compare the prevalence of nonlethal tumors, the prevalence
test proposed by Hoel and Walburg (1972) may be used for incidental tumors. However, the
data obtained from a carcinogenicity experiment generally contain a combination of fatal and
incidental tumors. Peto, Pike, Day, Gray, Lee, Parish, Peto, Richards, and Wahrendorf (1980)
suggested combining the fatal and incidental tests, known as the cause-of-death (COD) test
or the Peto test, for comparing tumor onset distributions.

The Cochran-Armitage (CA) test (Cochran 1954; Armitage 1955, 1971) was introduced for
detecting a linear trend across dose groups in tumor incidence rates. This test does not require
COD information. It assumes under the null hypothesis that all animals are at equal risk of
developing the tumor among the dose groups over the duration of the study. A problem for
this test arises from the presence of treatment-induced mortality unrelated to the tumor of
interest. The CA test is sensitive to these changes in treatment lethality (Bailer and Portier
1988; Kodell, Chen, and Moore 1994; Moon, Ahn, and Kodell 2002, 2005; Moon, Ahn, Kodell,
and Lee 2003).

The poly-k test (Bailer and Portier 1988) is a survival-adjusted quantal-response procedure
that modifies the CA test to take dose-group differences in intercurrent mortality into account.
Bieler and Williams (1993) further modified the poly-3 test by an adjustment of the variance
estimation of the test statistic using the delta method (Woodruff 1971).

The statistical analysis of animal carcinogenicity data, including controversy surrounding
the Peto COD test, has been addressed recently in the government-regulated pharmaceutical
industry (Lee, Fry, Fairweather, Haseman, Kodell, Chen, Roth, Soper, and Morton 2002; STP
Peto Analysis Working Group 2001; US Food and Drug Administration 2001). An appropriate
alternative to the Peto-type test is the poly-3 test, which has been adopted by the National
Toxicology Program (NTP) as its official test for carcinogenicity. The poly-3 procedure does
not require COD data but does require an assumption about the shape of the Weibull-family
tumor onset distribution.

The optimal value of k in the poly-k test relies on the shape of the tumor incidence function.
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As Bailer and Portier mentioned, if the shape of the tumor incidence function is expected
to follow time to some power k, which is different from 3, then the poly-k test with k 6= 3
should have superior operating characteristics to the poly-3 test. Recently, Moon et al. (2003)
proposed a method for estimating k in the poly-k test. Later, Moon et al. (2005) developed
an age-adjusted bootstrap-based poly-k test instead of directly estimating k in the poly-k
test. The main idea of the age-adjusted bootstrap-based poly-k test developed by Moon et al.
(2005) was to replace zα from the normal 5 percent significance level with a bootstrap critical
value for the poly-k test via the proposed age-adjusted bootstrap method instead of directly
estimating k in the poly-k test. In this age-adjusted poly-k test, not only was the tumor
incidence rate under H0 preserved but also the competing risks survival rate was not altered.

The purpose of this paper is to present a user-friendly statistical tool for testing a dose-related
trend using the age-adjusted bootstrap-based poly-k test developed by Moon et al. (2005) and
the original poly-k test of Bailer and Portier (1988) with the modification developed by Bieler
and Williams (1993). Our software can be used to statistically analyze a dose-related trend
or to make a pairwise comparison of test agent versus control in rodent bioassays. Users can
analyze animal tumorigenicity data efficiently using our simple and user-friendly statistical
testing tool. A comprehensive list of inputs can be specified by the user through a simple
input text file. The poly-k test is described in Section 2. Our age-adjusted bootstrap-based
poly-k test is described in Section 3. A detailed description of the usage of the proposed tool
is demonstrated in Section 4 with a real example from an animal tumorigenicity experiment.
Concluding remarks are described in the last section.

2. The poly-k survival-adjusted trend test

The Cochran-Armitage (CA) test utilizes the tumor data pooled over the entire duration of
a study for each group. The tumor data can be summarized as follows:

Dose level
d1 d2 · · · dg Total

# with tumors y1 y2 · · · yg y
# without tumors N1 − y1 N2 − y2 · · · Ng − yg N − y

# subjects N1 N2 · · · Ng N

Under the null hypothesis, the expected number of animals with tumors in the i-th group is
Ei = yNi/N . The test statistic for a possible monotonic trend with dose is based on

X =
g∑

i=1

di(yi − Ei),

and the variance is estimated by

V =
y (N − y)
N (N − 1)

g∑
i=1

Ni
(
di − d̄

)2
, (1)

where d̄ =
∑g

i=1 Nidi/N . The CA test statistic is

ZCA = X/
√

V ,



4 A Computational Tool for an Age-adjusted Poly-k Test

where ZCA is asymptotically distributed as a standard normal variate under the null hypoth-
esis of equal tumor incidence rates among the groups. Despite the assumption of equal risk
of getting the tumor during the study, some treatments shorten overall survival so that de-
creased risks of tumor onset may occur. The CA test is known to be sensitive to increases
in treatment lethality. In such a case, the CA test often fails to control the probability of a
Type I error (Bailer and Portier 1988; Mancuso, Ahn, Chen, and Mancuso 2002; Moon et al.
2002, 2003, 2005).

Bailer and Portier (1988) proposed the poly-k test, which made an adjustment of the CA
test by using a fractional weighting scheme for animals according to information on tumor
presence/absence at the age of death. They define the number at risk for the i-th group as
the sum of Ni weights

ri =
Ni∑

h=1

wih, (2)

where wih is the time-at-risk weight for the h-th animal in the i-th group. That is, the number
of animals Ni in the CA test given in (1) is replaced with ri, and r =

∑
i ri is used in place

of N in (1). The risk weight wih is defined as

wih =

{
1 if the animal dies with the tumor of interest(

tih
tmax

)k
otherwise (3)

where tih (≤ tmax) is the actual death time of the animal, and tmax is the time to termination
of the experiment (e.g., terminal sacrifice time). This weighting scheme gives less weight to a
tumor-free animal that dies at tih < tmax.

Bieler and Williams (1993) suggested a further modification of the CA test using the delta
method and weighted least squares techniques to adjust the variance estimation of ratio
statistics. With the notation introduced earlier, define

p̂i =
yi

ri
and p̂ =

y∑
i ri

; ai = ri
2/Ni, vih = yih − p̂wih, and v̄i =

∑
h

vih/Ni,

where yih is the tumor indicator (1 for presence and 0 for absence) for the h-th animal in the
i-th group. The test statistic of Bieler and Williams is

ZBW =
∑

i aip̂idi − (
∑

i aidi) (
∑

i aip̂i) /
∑

i ai√
C

{∑
i aidi

2 − (
∑

i aidi)
2 /

∑
i ai

}
where C =

∑
i

∑
h(vih− v̄i)2/(N − g). This version of the poly-k test will be used throughout

this paper.

3. Age-adjusted bootstrap-based method

The poly-k statistic is asymptotically standard normal under the null hypothesis of equal
tumor incidence rates among the dose groups (Bieler and Williams 1993). This assumption is
valid only if the correct value of k is used in the poly-k test. In order to find a suitable k for
the poly-k test, Moon et al. (2003) proposed a method to estimate k for data with interval
sacrifices.
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Moon et al. (2005) recently developed the method of bootstrap resampling with an age-
adjusted scheme as an alternative approach to estimate k for the poly-k test. We estimate
the empirical distribution of the test statistic and the corresponding critical value of the poly-
3 test while taking into account the presence of competing risks. It is accomplished via a
modification of the permutation method of Farrar and Crump (1990) used in exact statistical
tests. An approximately valid permutation procedure on the same general footing as the
bootstrap method could also be developed. The goal of this study is to make the poly-3 test
robust to the various Weibull-family tumor onset distributions and various competing risks
survival rates in rodent bioassays with a single terminal sacrifice.

For a data set, B bootstrap samples will be generated as in Figure 1. With the notation X
and X∗ denoting the original sample (a data set) and the bootstrap sample respectively, the
bootstrap resampling can be carried out as described in Algorithm 1. X and X∗ are vectors
for each animal containing death times of animals and tumor status across the G dose groups.
A data set X is used to calculate the poly-3 statistic T (X).

Algorithm 1 Bootstrap Method

1. B bootstrap samples X∗1, X∗2, . . . , X∗B are generated from the pooled original sample
X. Each bootstrap sample contains n elements, uniformly generated by sampling with
replacement from the original data set X. The chosen animals are randomly assigned
to each of the G groups for conducting the test. Then, T (X∗1), T (X∗2), . . . , T (X∗B) are
obtained by calculating the value of the test statistic on each bootstrap sample.

2. The critical value ZB
α , a threshold for rejecting the null hypothesis of equal tumor inci-

dence rate at the significance level α, is estimated by the 100(1− α)th percentile of the
values T (X∗1), T (X∗2), . . . , T (X∗B).

3. If T (X) ≥ ZB
α , then the null hypothesis of equal tumor incidence rate across dose groups

is rejected.

The method described in Algorithm 1 is suitable for data with the same competing risks
survival rate (CRSR). However, we need to note that if the CRSR is different across dose
groups in the original data, the bootstrap samples from the pooled data may not reflect the
CRSR of each group, while preserving the null distribution of equal tumor incidence rates
across dose groups. In order to preserve the survival rates in each dose group, we need
to modify the above bootstrap method and develop an age-adjusted bootstrap-based scheme
(Figure 2). The age-adjusted bootstrap method developed by Moon et al. (2005) is illustrated
in Algorithm 2.

Algorithm 2 Age-adjusted Bootstrap Scheme

1. For the ith group, partition the total days of observation into I(i,m), i = 1, . . . , G;m =
1, . . . ,Mi, consecutive intervals according to death times of animals in that group. These
intervals need not correspond across groups, either in the number of intervals or in the
number of days assigned to particular intervals. We denote by A(I(i,m)) the set of
animals of the ith group whose death time is in the interval I(i,m). We pool the animals
that died or were sacrificed within the given interval, say I(i,m), across dose groups.
If this interval or interval I(i,m + 1) does not contain any animal that died in other
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Figure 1: Bootstrap Method

Figure 2: Age-adjusted Bootstrap Scheme
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groups, then these two intervals are merged. This merging process is continued until the
interval contains at least one animal from another group.

2. Intervalization for bootstrap is followed by pseudo-permutation of animals in each bootstrap-
interval. Suppose the mth interval of the ith group contains r animals, and the mth
interval contains R animals in total. For each bootstrap re-sample, we first pool the
animals within this interval and shuffle them to randomly select r animals without re-
placement for the ith group. Suppose there are x tumor-death animals among those r
animals. We then bootstrap r animals among the R animals in the mth interval. If the
number of tumor deaths exceeds x in the bootstrap of r animals, we randomly select ani-
mals that died without tumor in that interval to replace the excess tumor-death animals.
This step is required for bootstrap to preserve the mortality pattern in each group, while
satisfying the null distribution of equal tumor incidence rate across dose groups. The B
bootstrap samples, based on these strata, are generated as illustrated in Algorithm 1.

Figure 3 illustrates the method for generating the first few animals in each group. In Group 1,
the first two intervals in days are (0,185] and (185, 345]. In this group, animals (A–D) in
the first interval are shuffled at each time of bootstrap to determine the maximum allowable
number of tumor-death animals for the bth bootstrap sample, where b = 1, . . . , B. Typically,

Figure 3: Death times (in days) in a hypothetical animal carcinogenicity data set with four
groups (* indicates death with tumor; A – N indicates animal ID; Gx indicates the xth group).
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the number of bootstrap samples should be at least 1000 for bootstrap confidence interval
construction (Efron and Tibshirani 1993). We take B = 5000 bootstrap samples in this study.
Then, the first bootstrap animal is generated randomly from the four animals (A–D) that died
within interval (0,185]. If the maximum allowable tumor deaths for the bth bootstrap sample
is zero, but the bootstrap animal died with tumor, then the animal is discarded, and an animal
died without tumor among animals (A–D) is re-sampled. Otherwise, the bootstrap animal
is kept. On the other hand, if the maximum allowable tumor death for the bth bootstrap
sample is one, then the first bootstrap animal generated randomly from animals (A–D) is
kept regardless of the tumor status of the first bootstrap animal. The second animal is
generated randomly from the eight animals (E–L) in (185, 345] in the same fashion.

In Group 2, the first interval is chosen to be (0, 176] because there is no animal that died
in other groups in (150, 176]. In this group, the first two animals are randomly sampled
with replacement from the three animals (A–C) in (0, 176] up to but not more than the
maximum allowable number of tumor animals determined in the shuffle, and the third animal
is randomly generated from the eight animals (D–K) in (176, 343] in the same way. In Group 3,
the first two animals are generated randomly from the seven animals (A–G) in (0, 316] with
replacement, and the third animal is generated randomly from the seven animals (H–N) in
(316, 385] in the same fashion. In Group 4, the first two animals are randomly generated
from the five animals (A–E) in (0, 243] with replacement, and the next three animals are
randomly generated from the five animals (F–J) in (243, 341] with replacement as explained
above. The sixth animal is randomly generated from the four animals (K–M) in the same
way, and so forth.

4. Usage of the age-adjusted poly-k testing software

A statistical tool for testing a dose-related trend and pairwise difference of exposures of a
test agent on the incidence of an occult tumor via the age-adjusted bootstrap-based poly-k
test of Moon et al. (2005) and the poly-k test of Bieler and Williams (1993) is developed.
The computational tool is implemented in C/C++ and is freely available. Both, the source
code and an executable Windows binary ‘E7171.exe’, are available with this paper. We will
illustrate the usage of the age-adjusted poly-k testing tool on Windows PC using a data set
from the 2-year gavage study of furan.

Toxicology and carcinogenesis studies were conducted by administering furan (C4H4O), a
clear and colorless liquid, in corn oil by gavage to groups of F344/N rats and B6C3F1 mice
of each sex for two years (National Toxicology Program 1993). Furan was nominated by the
National Cancer Institute for evaluation of carcinogenic potential due to its large production
volume and use and because of the potential for widespread human exposure to a variety
of furan-containing compounds. Corn oil was chosen as the vehicle for these studies. As
an illustration, we focus on female F344/N rats for evaluation of carcinogenic potential on
incidences of cholangiocarcinoma or hepatocellular neoplasms of the liver. The test results
on the incidence of neoplasms from our proposed methods are compared to those from the
conventional poly-3 test (Bieler and Williams 1993) which has been adopted by NTP. Groups
of 50 rats of each sex were administered 2, 4 or 8 mg furan per kg body weight in corn oil by
gavage 5 days per week for 2 years.

A simple format of an input file from the two-year gavage study of furan is illustrated as
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follows:

50 0.0
470.0 2
528.0 2
537.0 2
...
728.0 4
728.0 4

50 2.0
364.0 2
436.0 2
478.0 2
...
728.0 4
728.0 4

It includes the total number of animals considered in the testing and the dose level for each
group. The total number of groups should be greater than or equal to two for testing, including
the control group. It is two for the pairwise test and greater than two for the trend test. In
this example, there are two dose groups for testing (i.e., one for the control group and another
for a dose group). A total of 100 animals are considered. Two dose levels are 0 mg furan per
kg body weight for the control group, 2 mg/kg furan for the dose group. The corresponding
data file ‘twogpexdata.txt’ is available with this paper.
Two-column data immediately follow these input parameters. The first column indicates
a death time (in days) for each animal. It should be between 0 and the terminal sacrifice
time, inclusive. Typically, animal carcinogenicity studies on occult tumors are conducted for
a duration of 104 weeks (728 days). The terminal sacrifice is scheduled at the end of the
study. The last column is an indicator of mode of death (MOD) for tumor/nontumor and
natural/sacrifice death (1 for natural death with tumor; 2 for natural death without tumor;
3 for sacrifice with tumor; 4 for sacrifice without tumor). For example, the 4th row of the
data set in the control group (537.0, 2) indicates that an animal in the control group died
naturally without tumor at day 537. It is easy to see that the scheduled time for terminal
sacrifice is at 104 weeks (728 days).
To run the age-adjusted poly-k testing tool in Microsoft Windows OS (XP), a user can simply
double-click the executable file ‘E7171.exe’ in a directory where the execution file is stored.
Although the package is written in Microsoft Visual C/C++ 6.0, a user is not required to have
the Microsoft Visual C/C++ program to run the software. When a user runs the executable
file ‘E7171.exe’, the program starts and shows Figure 4.
Before running a program, a user needs to load an input data file, and needs to specify an
output file by clicking ‘Save Output’. This saved output file may be printed if necessary. By
clicking ‘Load data’ button in Figure 5, a pop-up window will appear so that a user can go
to a directory where an input file is located. Upon loading an input data file, the number
of dose groups, total subjects, the number of subjects in each group and dose levels of each
group will appear in the window. In Figure 5, two buttons are highlighted in ‘Group’ buttons
because the input data file includes two dose groups. If a user clicks one of the highlighted
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Figure 4: The age-adjusted poly-k test: Before launching a data set for testing

Figure 5: The age-adjusted poly-k test: After launching a data set for testing



Journal of Statistical Software 11

button ‘1’ or ‘2’ in ‘Group’ button, death times and the mode of death for each subject will
appear under ‘Data’ section. To test the carcinogenicity activity of furan between two groups,
a user may click ‘Run’ button.

Figure 6 not only shows test results on the carcinogenicity activity of furan in female F344/N
rats based on increased incidences of cholangiocarcinoma and hepatocellular neoplasms of the
liver from the age-adjusted poly-k test, the poly-1 test, the poly-3 test and the poly-6 test,
but also shows the observed proportions and the poly-3 adjusted proportions in each dose
group. The two-group comparison of the vehicle control versus the 2 mg/kg dose group shows
different conclusions between the age-adjusted poly-k test and the poly-3 test. In contrast
with the result of the poly-3 test (p = 0.0716), our age-adjusted poly-k test shows significant
carcinogenic activity of furan (p = 0.0394) at the level of 0.05. NTP concluded that under
the conditions of these 2-year gavage studies, there was clear evidence of carcinogenic activity
of furan in female F344/N rats based on increased incidences of cholangiocarcinoma and
hepatocellular neoplasms of the liver. Results from our age-adjusted poly-k test applied to
any combination of experimental groups agree with the conclusions of NTP. For example,
Figure 7 shows the carcinogenicity activity of furan among three dose groups. It shows
consistent results among our age-adjusted poly-k test, the poly-1 test, the poly-3 test and
the poly-6 test. The corresponding data file ‘threegpexdata.txt’ is also available with this
paper.

5. Discussion

The importance of the poly-k test has been highlighted recently. In May 2001, FDA’s Center
for Drug Evaluation and Research (CDER) published in the Federal Register a guidance
document (US Food and Drug Administration 2001). In that document, CDER endorsed
the use of the Peto procedure for analyzing tumorigenicity data, although the poly-3 test was
mentioned as a possible alternative when cause-of-death (COD) data (equivalently, context-of-
observation data) are not available. The Society of Toxicologic Pathologists (STP) published
in its journal a commentary on CDER’s guidance that was critical of Peto’s procedure and
that largely endorsed the poly-3 procedure (STP Peto Analysis Working Group 2001). The
poly-3 procedure does not require COD data but does require a critical assumption about
the shape of the tumor onset distribution. Later, the Society withdrew its criticisms of the
CDER guidance document on the Peto approach, while still recognizing the appropriateness
of the poly-3 test in certain situations (STP Peto Analysis Working Group 2002).

It is clear that the statistical analysis of tumorigenicity data from animal bioassays remains
an important regulatory issue to FDA and the pharmaceutical industry. We have developed a
statistical tool using the age-adjusted poly-k test for animal carcinogenicity studies to detect
a dose-related trend and/or a pairwise difference in tumor incidence following exposure to a
putative carcinogen. It is applicable for studies on occult tumors for which the time to tumor
onset is not directly observable.

As examples, application of this tool was illustrated with NTP data sets of the 2-year gavage
study of furan. Use and comparison of our age-adjusted poly-k test and the poly-3 test of
Bieler and Williams was made in the application to a data set of female F344/N rats on
incidences of cholangiocarcinoma and hepatocellular neoplasms of the liver. Our software
provides a benefit to FDA and pharmaceutical industry by furnishing a user-friendly tool for



12 A Computational Tool for an Age-adjusted Poly-k Test

Figure 6: The age-adjusted poly-k test, the poly-1 test, the poly-3 test and the poly-6 test
on the carcinogenicity activity of furan between two groups

Figure 7: The age-adjusted poly-k test, the poly-1 test, the poly-3 test and the poly-6 test
on the carcinogenicity activity of furan among three groups
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statistical analysis of tumorigenicity data from animal bioassays via our age-adjusted poly-k
test and the poly-k test.
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