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Abstract. We examined the nonlinear effect of spatial het-
erogeneity in atmospheric conditions on the simulation of
surface fluxes in the mesoscale model, MM5 by testing their
scale-invariance from a tower footprint to regional scales.
The test domain was a homogeneous shortgrass prairie in the
central part of the Tibetan Plateau with an eddy-covariance
flux tower at the center. We found that the spatial variability
resulting from changing distribution of clouds and precipi-
tation in the model domain affected radiative forcing at the
ground surface, thereby altering the partitioning of surface
fluxes. Consequently, due to increasing spatial variability in
atmospheric conditions, the results of MM5 did not produce
convergent estimates of surface fluxes with increasing grid
sizes. Our finding demonstrates that an atmospheric model
can underestimate surface fluxes in regional scale not neces-
sarily due to intrinsic model inaccuracy (e.g., inaccurate pa-
rameterization) but due to scale-dependent nonlinear effect
of spatial variability in atmospheric conditions.

1 Introduction

Surface fluxes from the earth surface are playing a key role
in climate changes by modifying the circulation of the over-
lying atmosphere (e.g.,Avissar et al., 1989; Baldocchi et al.,
2001). Regional networks of direct surface flux measure-
ments have helped significantly to improve our understand-
ing of soil-vegetation-atmosphere (SVAT) interactions (e.g.,
Baldocchi et al., 2001). In particular, they have provided a
pivotal information in develping and evaluating SVAT mod-
els at plot scale (≤1 km2). So far, continuous estimation of
surface fluxes is not robust beyond plot scale (1–10 km2) and
our understanding of the SVAT interactions remains a major
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challenge in the regional scale (Dolman et al., 2006). At-
mospheric mesoscale models have been a powerful tool and
have a potential to monitor energy and mass exchanges in
regional scale although modeling results are yet to be vali-
dated (e.g.,Henderson-Sellers et al., 1993; Oncley and Dud-
hia, 1995; Chen and Dudhia, 2001a; Kerschgens and Heine-
mann, 2005; van der Molen and Dolman, 2007).

When we interpret the simulated SVAT processes in re-
gional scale, it is requisite to scale down the model results
because of the lack of the observation data to cover regional
scale. Also, we should note that most of atmospheric numeri-
cal models implicitly assume spatial homogeneity of surface
properties as well as atmospheric conditions such that they
calculate gridbox averaged surface fluxes using mean vari-
ables of surface properties and meteorological fields. Indeed,
spatial heterogeneity in surface properties (e.g., vegetation
types) (Sellers et al., 1995; Middelburg et al., 1999; Baldoc-
chi et al., 2005; Li et al., 2008) and in atmospheric conditions
(e.g., radiative fluxes) has been a critical issue in validating
numerical models and remote sensing (Bertoldi et al., 2008).

With respect to this impact of spatial heterogeneity on the
model evaluation, two aspects of scaling issue are worth not-
ing. One is related to a small size of tower footprint com-
pared to a typical grid size of a mesoscale model. Such a
difference can induce inadvertent model bias despite proper
subgrid parameterizations in the model (Oncley and Dudhia,
1995; Kim et al., 2006). Previous studies, however, validated
the models with grid sizes from 10 to 200 km against the in-
situ tower data of∼1 km footprint without clear assessment
of surface heterogeneity around a measurement location and
in the model domain (e.g.,Chen and Dudhia, 2001a; Brotzge,
2004; Pyles et al., 2003).

The other issue is the nonlinear effect due to spatial vari-
ability in surface properties and/or atmospheric conditions
expressed by Jensen’s inequality in mathematics (Fig.1)
(Sellers et al., 1992, 1995). Following the pioneering work
of Sellers et al.(1992), many models now consider at
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Fig. 1. Jensen’s inequality.F is a function ofx and <> is an
averaging operator.

surface fluxes, that of atmospheric conditions received little
attention. Similar to the effect of surface heterogeneity on the
simulated surface fluxes, spatial variability in meteorological75

fields for driving SVAT modules in a fully coupled mesoscale
model can also result in potential bias of the modeled surface
fluxes with different model grid size.

To properly assess surface fluxes at regional scales using
a fully coupled atmospheric model, we attempted to quantify80

nonlinear effect due to the spatial variability in atmospheric
conditions. Without consideration of this scaling issue, ex-
amination of the model performance on surface fluxes could
lead us to a hasty conclusion that a model output agrees well
with field observation or that the model has systematic bias85

in subgrid parameterization.
As far as we know, ’scale-invariance’ of surface fluxes in

relation to spatial variability in atmospheric conditions has
not been tested in fully coupled mesoscale models. Here, the
scale-invariance of surface fluxes implies that surface fluxes90

aggregated from a fine grid should be equal to those from a
coarse grid (Fig. 2). Therefore, such a test offers the infor-
mation to constrain the simulated surface fluxes. Based on
the assessment of the scale-dependency, we have evaluated
the SVAT processes in the model at a tower footprint scale95

using in-situ tower data.

2 Materials and Methods

2.1 Theoretical Background: Scale-Invariance of Surface
Fluxes

The concept of scale-invariance of surface fluxes was first100

proposed by Sellers et al. (1992). The test of scale-invariance
can give information to constrain surface fluxes in the model.
The issue of scale-invariance with respect to model perfor-
mance is the extent to which the calculated surface energy
balance (SEB) at coarse domain is influenced by the use of105

coarse-domain averaged surface boundary conditions (Fig.

Fig. 2. The concept of (dis)aggregation and scale-invariance of sur-
face fluxes in the model adapted from Sellers et al. (1992)

2) (see Sellers et al. (1992, 1997) for more detailed informa-
tion). If F is surface flux as a function ofxi (e.g. topography,
surface conductance, soil moisture), we can write

F = f(x1, x2, x3, ...) (1)110

Thus, complete values ofF over an entire domain are calcu-
lated from

⟨F ⟩ ≡ 1
A

∫∫
A

f(xi)da (2)

whereA is the area of domain and the brackets denote area
average over A. However, because of practical reason,F over115

an entire domain is calculated:

⟨F ⟩M ≡ f(⟨xi⟩) (3)

where⟨F ⟩M is an estimate of⟨F ⟩.
Ideally, surface fluxes aggregated from fine grid size

should be consistent with values from coarser grid size. Soil120

and vegetation have, however, nonlinear responses to the
atmosphere and consequently surface fluxes are not con-
served (i.e.,⟨F ⟩ ≠ ⟨F ⟩M ). Consequently, testing the scale-
invariance of surface fluxes to the degree of spatial variability
in atmospheric conditions can provide valuable information125

on the model evaluation.

2.2 Field observations

We used the data collected at the ANNI flux station near
Naqu, Tibet (31.37◦N; 91.90◦E, 4580 m above m.s.l.) from
August 26 to 31, 2002. The site was a flat and homogeneous130

shortgrass prairie (Fig. 3). The soil was predominantly sandy
silt loam and soil surface is sparsely covered with short grass
(canopy height of< 0.05 m and leaf area index of< 0.5) due
to grazing.

Fig. 1. Jensen’s inequality.F is a function ofx and <> is an
averaging operator.

least surface heterogeneity by combining different vegeta-
tion types within a grid (e.g.,Bonan et al., 2002). How-
ever, compared to popular interests in the impact of spatial
heterogeneity of surface properties (e.g., vegetation type) on
the simulated surface fluxes, that of atmospheric conditions
received little attention. Similar to the effect of surface het-
erogeneity on the simulated surface fluxes, spatial variability
in meteorological fields for driving SVAT modules in a fully
coupled mesoscale model can also result in potential bias of
the modeled surface fluxes with different model grid size.

To properly assess surface fluxes at regional scales using
a fully coupled atmospheric model, we attempted to quantify
nonlinear effect due to the spatial variability in atmospheric
conditions. Without consideration of this scaling issue, ex-
amination of the model performance on surface fluxes could
lead us to a hasty conclusion that a model output agrees well
with field observation or that the model has systematic bias
in subgrid parameterization.

As far as we know, “scale-invariance” of surface fluxes in
relation to spatial variability in atmospheric conditions has
not been tested in fully coupled mesoscale models. Here, the
scale-invariance of surface fluxes implies that surface fluxes
aggregated from a fine grid should be equal to those from a
coarse grid (Fig.2). Therefore, such a test offers the infor-
mation to constrain the simulated surface fluxes. Based on
the assessment of the scale-dependency, we have evaluated
the SVAT processes in the model at a tower footprint scale
using in-situ tower data.

Fig. 2. The concept of (dis)aggregation and scale-invariance of sur-
face fluxes in the model adapted fromSellers et al.(1992).

2 Materials and methods

2.1 Theoretical background: scale-invariance of surface
fluxes

The concept of scale-invariance of surface fluxes was first
proposed bySellers et al.(1992). The test of scale-invariance
can give information to constrain surface fluxes in the model.
The issue of scale-invariance with respect to model perfor-
mance is the extent to which the calculated surface energy
balance (SEB) at coarse domain is influenced by the use of
coarse-domain averaged surface boundary conditions (Fig.2)
(seeSellers et al.(1992, 1997) for more detailed informa-
tion). If F is surface flux as a function ofxi (e.g. topography,
surface conductance, soil moisture), we can write

F = f (x1, x2, x3, ...) (1)

Thus, complete values ofF over an entire domain are calcu-
lated from

〈F 〉 ≡
1

A

∫∫
A

f (xi)da (2)

whereA is the area of domain and the brackets denote area
average overA. However, because of practical reason,F

over an entire domain is calculated:

〈F 〉M ≡ f (〈xi〉) (3)

where〈F 〉M is an estimate of〈F 〉.
Ideally, surface fluxes aggregated from fine grid size

should be consistent with values from coarser grid size. Soil
and vegetation have, however, nonlinear responses to the
atmosphere and consequently surface fluxes are not con-
served (i.e.,〈F 〉 6= 〈F 〉M ). Consequently, testing the scale-
invariance of surface fluxes to the degree of spatial variability
in atmospheric conditions can provide valuable information
on the model evaluation.
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Fig. 3. Eddy-covariance system was installed at 20 m tower in the
ANNI flux station. The site was a flat and homogeneous shortgrass
prairie.

2.2 Field observations

We used the data collected at the ANNI flux station near
Naqu, Tibet (31.37◦ N; 91.90◦ E, 4580 m above m.s.l.) from
26 to 31 August 2002. The site was a flat and homogeneous
shortgrass prairie (Fig.3). The soil was predominantly sandy
silt loam and soil surface is sparsely covered with short grass
(canopy height of<0.05 m and leaf area index of<0.5) due
to grazing.

We used the eddy-covariance system mounted on a 20 m
tower to measure the turbulent fluxes of sensible heat (H) and
latent heat (LE). The system consisted of three-dimensional
sonic anemometer (CSAT3, Campbell Scientific Inc., US)
and infrared gas analyzer (LI7500, LiCor, US). Sampling
rate was 10 Hz and averaging time was 30 min. Other sup-
porting measurements included surface radiative fluxes, soil
moisture, soil temperature, and precipitation. During the
study period, energy balance was nearly closed and quality
assurance has been done based onLee et al.(2004). More
information on field observations at the ANNI flux station
can be found inHong et al.(2004), Hong and Kim(2008)
andhttp://ceop.net.

2.3 Meteorological conditions

During the simulation period, the site was under the high
pressure system centered on the eastern Tibet. The weather
charts show that the position and intensity of this high pres-
sure system had fluctuated daily and this system over the
Plateau scaled down from 28 August 2002. Subsequently,
the atmospheric surface pressure tended to decrease at the
flux station. The atmospheric conditions at the flux station
were similar to the weather chart reports and NCEP-NCAR
reanalysis data (hereafter NNRD) except rainfall. Based on

Fig. 4. The model domains. D01, D02 and D03 designate domain
1, domain 2, and domain 3, respectively.

the weather charts, it was overcast on 28 and 29 August but
there was no precipitation on the Plateau. However, 0.6 mm
rainfall was recorded for an hour at the flux station in late
evening of 28 August. After this rainfall, the mixing ratio in-
creased and then slowly decreased with time and the Bowen
ratio kept increasing from about 0.3 to 0.5 with decreasing
soil moisture.

2.4 Numerical experiment

In this study, for testing scale-invariance in the atmospheric
mesoscale model, we carried out the numerical simulation
using Penn State/NCAR mesoscale model, MM5 from 26 to
31 August 2002. Using a nesting option, the model was run
on a 60 km horizontal grid (domain 1) with subdomains of 20
and 1 km horizontal grid increments (domain 2 and domain
3, respectively) (Fig.4). To assess the scale dependence of
surface fluxes (Eq.3), the outputs from the domain 3 were ag-
gregated to 20 km grid scale. These aggregated outputs were
compared with the outputs from the domain 2 simulation.

The number of vertical layers was 35 and the model top
was located at 50 hPa. The initial and boundary condi-
tions were based on NNRD. Topography data were 30 s
tiled topography data from USGS (US Geological Survey)
and monthly vegetation fraction data were from AVHRR
(Advanced Very High Resolution Radiometer) (Gutman and
Ignatov, 1998). For land use and soil classification, 25-
category USGS vegetation data and STATSGO (State Soil
Geographic) 17-category soil data were utilized. The Kain-
Fritsch cumulus parameterization scheme (Kain and Fritsch,
1993) and Reisner2 microphysics scheme were used (Reis-
ner et al., 1998) in this study. But cumulus parameteriza-
tion was turned off in domain 3 because 1 km horizontal grid
spacing in domain 3 is assumed to be small enough to re-
solve the cumulus convection. We used MRF PBL scheme
and RRTM radiation scheme (Hong and Pan, 1996; Mlawer
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Fig. 5. Characteristic dimensions of the source area of FSAM: max-
imum source location (xm), near end (a), far end (e), and maximum
lateral half-width (d) of the source area.

et al., 1997). For land surface processes, Noah land sur-
face model (LSM) (Koren et al., 1999) was used in this
study. More information can be found on the MM5 website
(http://www.mmm.ucar.edu/mm5/).

The measurement height was 20 m for tower observation
but model outputs were from 2 m for temperature and humid-
ity and 10 m for wind speed. For proper comparisons, the
observation data were recalculated using Monin-Obukhov
theory (Kaimal and Finnigan, 1994). The boundary layer
processes used in this model are based on Monin-Obukhov
(MO) similarity and assume that source/sink distribution is
same among different scalars (i.e., temperature and water).
Recently,McNaughton and Brunet(2002) suggested that sur-
face fluxes can deviate from the prediction of MO similarity.
This issue was observationally investigated byHong et al.
(2004) andChoi et al.(2004) but such a deviation does not
impact on our conclusion in this study.

2.5 Footprint analysis

Turbulent flux and scalar concentration measurements are in-
fluenced by the underlying surface below the sensors and rep-
resent a weighted average of upwind conditions. A measured
quantity,η, is given to the integrated sum of source strength
distribution (Qn) at location r and footprint (or source weight
distribution),f (Schmid, 1997):

η(r) =

∫
R

Qn(r + r ′) · f (r , r ′) · dr ′ (4)

The footprint (f ) determines the relative weight of individ-
ual point sources. To obtain the spatial context affecting the
measured quantities, the source area of levelP is given as:

P =
φP

φtot
=

∫∫
�P

f (x′, y′, zm)dx′dy′∫
+∞

−∞

∫
+∞

−∞
f (x′, y′, zm)dx′dy′

(5)

where the source area (�P ) is the surface area bounded by a
footprint isoplethf (x, y, zm), such thatP is the fraction of
the total integrated footprint function (φtot) andφp is the in-
tegral of the footprint over�P (Schmid, 1997). The underly-
ing surface area of influence of sensors continuously changes
with measurement height, atmospheric stability, wind direc-
tion, and turbulence structure.

In this study, we calculated a tower footprint using flux-
source area model (FSAM) bySchmid(1997). The outputs
of FSAM are the characteristic dimensions of the footprint
such as maximum source location (xm), near end (a), far end
(e) and maximum lateral half-width (d) of the source area
(Fig. 5). During the simulation period, slightly unstable con-
ditions occurred more frequently and data were evenly dis-
tributed for the wind directions except northeasterly. During
the daytime, averageeandd were about 400 m and 40 m. On
the other hand, in the nighttime, averagee andd increased
up to about 7 km and 4 km, respectively.

3 Results and discussion

3.1 Test of scale-invariance of surface fluxes

Figure6 presents time series of sensible (H ) and latent heat
fluxes (LE) from the tower observation, reanalysis data and
the model.H andLE from domain 3 (1 km grid size) repro-
duced the observed patterns and their magnitudes compared
relatively well to those from domain 1 (20 km grid size) (Ta-
ble 1). However, the overestimation of cloud and precipi-
tation amount in the model caused the poor model perfor-
mance, and yet the inappropriately simulated pattern in do-
main 1 produced a relatively good performance in rainy days.
Here, we note that the surface fluxes at domain 1 and 3 were
comparable in the beginning of the simulation and then di-
verged with time. This emphasizes that the model outputs
can have inconsistent patterns with different grid sizes com-
pared to the observation.

This discrepancy of the outputs from different grids was
proportional to the domain averaged standard deviation of
surface fluxes in the model (Table2). The domain aver-
aged standard deviation increased as the numerical integra-
tion progressed, indicating the enhanced spatial variability
with time. Two-dimensional Fourier transform also corrobo-
rates that the spatial variabilities of surface fluxes increased
in the model as the numerical integration progressed (Fig.8).
We speculate that this is the result of homogeneous initial and
boundary conditions disaggregated down from the coarse do-
main. In the early period of the simulation, initial and bound-
ary conditions for domain 3 were obtained from domain 2 by
linear interpolation and thus had relatively homogenous field.
As the numerical integration progressed, the model even-
tually made its own heterogeneity of meteorological fields
and surface fluxes. It also suggests that a spin-up process is
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Fig. 6. Comparison of diurnal variation of sensible (H ) and latent
heat fluxes (LE). D1 and D3 are outputs from domain 1 (60 km
resolution) and domain 3 (1 km resolution), respectively. NNRD
is the outputs from NCEP-NCAR reanalysis data (2.5◦

×2.5◦) near
the tower.

required at least for one day so that the model adapts itself
from the smooth boundary conditions.

Our analysis shows that this increased spatial variability of
H andLE is directly related to spatial distribution of clouds
and precipitation in the model. The amount of cloud and
precipitation directly affects the downward radiation at the
surface, which in turn limits the available energy for other
surface fluxes such asH andLE (Fig. 7). Until now it was
not certain that such an increased heterogeneity reflects the
real environment because we only had the data to cover about
1 km domain. However, the domain 3 outputs well captured
the observed patterns and magnitudes of surface fluxes and
this increased heterogeneity eventually resulted in the failure
of the scale-invariance of surface fluxes in the larger domain
(Table3).

A plausible explanation of this failure can be explained by
the surface radiatve forcing due to the spatial variability in
clouds and rainfall in the model. Surface fluxes respond to
radiative forcing as the cosine function (Sellers et al., 1997).
In case of spatial variability of radiative forcing caused by
moderate terrain,Sellers et al.(1997) showed that this non-
linear effect can be negligible. However, in our study, sur-
face radiation spatially spread over wide ranges because of
the enhanced spatial variability in clouds and precipitation,
and consequently the nonlinearity was not negligible. Under

Table 1. Index of agreementd of the simulated surface fluxes

(≡1−

[∑
(Mi−Oi)

2/
∑

(|Mi |+|Oi |)
2
]
, 0≤d≤1). HereMi and

Oi are the simulated and observed values respectively.d is 1 for a
perfect model (Willmott, 1982).

clear days rainy days

domain3 LE 0.92 0.53
H 0.89 0.66

domain1 LE 0.86 0.85
H 0.88 0.49

Table 2. Standard deviation ofLE (σLE) and H (σH ) from the
domain 3 averaged mean values at 05:00 UTC.

σLE (Wm−2) σH (Wm−2)

26 August 42 31
27 August 67 73
28 August 52 95
29 August 43 108
30 August 55 117

this condition, we can no longer approximate the response
of SEB to such varying radiation with a linear function and
thus the scale-invariance is not satisfied. Also, unlikeSellers
et al.(1997), spatial variability of soil water contents did not
decrease as the study area dried out because of the local scale
precipitation in the domain and the patchiness ofLE (Fig. 7).
Under these conditions, the model does not provide conver-
gent estimate of surface fluxes in coarse grid simulation.

3.2 Model validation using a tower observation

Overall, the domain 3 simulation credibly reproduced the
magnitudes and patterns of surface fluxes on clear days (Ta-
ble 1). The model, however, did not properly simulate pre-
cipitation and clouds even in domain 3 (Table1; Fig. 9). On
28 August, there were afternoon rainfalls in both the obser-
vation and the model and the model captured well the im-
mediate reduction of the downward shortwave radiation due
to this rainfall. However, the total amount of precipitation
on 28 August was different from the observed precipitation.
Furthermore, the duration of the rainfall in the model was
longer (∼5 h) than that of the observation (∼1 h) and larger
amount of clouds continued for longer period in the model.
On 27, 29, and 30 August, there were small amount of rain-
falls in the model (<2.5 mm/30 min) but these rainfalls were
not observed at the flux station. Such bias of precipitation
in the model substantially reduced the downward radiative
fluxes and other surface fluxes through the reduction of avail-
able energy (Table1; Fig. 6).

www.nonlin-processes-geophys.net/15/965/2008/ Nonlin. Processes Geophys., 15, 965–975, 2008
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Table 3. Comparison ofLE, H, downward shortwave radiation (Rsdn) and soil water content in domain 2 (20 km grid size) and in domain 1
after aggregating to 20 km spatial scale around a flux tower at 05:00 UTC. Value in a parenthesis is a standard error from the spatial average.
D2, D3, and Obs are the data from domain2, domain3, and observation, respectively.

H (Wm−2) LE (Wm−2)

D2 D3 Obs D2 D3 Obs

26 August 285 (±5) 282 (±11) 174 311(±5) 312(±12) 488
30 August 60 (±5) 158 (±11) 177 105(±5) 156(±12) 354

Rsdn (Wm−2) soil water content (m3m−3)

D2 D3 Obs D2 D3 Obs

26 August 1071 (±2) 1042 (±3) 1049 0.326(±0.000) 0.322(±0.003) 0.398
30 August 347 (±2) 424 (±94) 1126 0.318(±0.002) 0.308(±0.004) 0.302

The rainfall in domain 3 (1 km resolution) around the
tower was the grid resolvable rainfall, but not the grid re-
solvable rainfall in domain 2 (20 km resolution). It indicates
that the convective system was of the order of a few kilo-
meters in the model. On the other hand both convective and
non-convective rainfall existed together in domain 1 (60 km
resolution), suggesting that precipitation had different origin
and features with different grid sizes.

While previous studies have reported the overestimation of
downward shortwave radiation in mesoscale models, which
was attributed to the lack of aerosol parameterization in the
radiation schemes (e.g.,Betts et al., 1997; Chen and Dudhia,
2001b), the simulated downward shortwave radiation was
consistently larger except around noon on clear days. Our
result indicates that the optical depth in the model was shal-
lower at high solar zenith angle but thicker at low solar zenith
angle over the high elevation area like the study site (Fig.9).
Indeed,Reiter et al.(1987) reported that the atmosphere over
the study site was highly transmissive and there was an addi-
tional scattering source from cumulus clouds, thus overesti-
mating the diffusive radiation at high solar zenith angle.

Similarly, the model also overestimated the downward
longwave radiation, indicating that the modeled atmosphere
was warmer than the observation. In particular, such an over-
estimation was more pronounced when there was rainfall.
Chen and Dudhia(2001b) also reported a similar overestima-
tion of downward longwave radiation in the MM5 mesoscale
model. In the radiative transfer scheme used in this study,
the downward longwave radiation depends on the amount of
water vapor in the atmospheric column through the modifi-
cation of emissivity. Therefore, we speculate that such bias
of downward longwave radiation was the result of the over-
estimated clouds and water vapor in the model.

The simulated wind speeds were smaller than the observa-
tion in general (not shown here). On the contrary the model
overestimated friction velocity (u∗) except for the underes-
timation in the nighttime conditions due to the minimumu∗

assigned in Noah LSM. This manifests that roughness length
in the model was relatively large, thereby reducing wind
speed excessively. Also, this suggests that the minimum fric-
tion velocity in the Noah LSM should be modified. Inter-
estingly, the relative deviation of the simulatedu∗ from the
observedu∗ showed the scale-dependence on the tower foot-
print (Fig. 10). Tower footprints were>1 km in nighttime
and probably include more heterogeneous surface than well
mixed daytime turbulence conditions. Accordingly, such de-
pendence might be related to the scaling issue due to surface
heterogeneity or the model’s systematic bias between day
and night. To accurately address this scaling issue, the po-
tential bias of flux observations due to the footprint mismatch
should be quantified with satellite image analysis (Kim et al.,
2006).

Figure11 shows diurnal variations of surface temperature
and soil water content in the model with the observation.
Similar to the simulated downward shortwave radiation, the
model produced surface skin temperature (Ts) on clear days
comparable to to the observation butTs decreased rapidly
near sunset due to the inappropriate rainfall simulation. In
case of soil moisture, the model systematically underesti-
mated soil water content. The observed soil water content
decreased monotonically with time during the study period.
The soil water content in the model also decreased with time
but slightly increased due to the precipitation on 28 August.
The initial value of soil water content in the model deviated
from the observed values but this discrepancy was reduced
mainly due to the excessive rainfall in the model. It is also
worth noting that the model reproducedLE relatively well
despite the systematically smaller soil water contents than
the observation. This is likely through strong atmospheric
evaporative demands in the model. Indeed the simulated rel-
ative humidity was smaller than the observed value, and the
reduction of soil water content forLE was partially compen-
sated with the excessive rainfall in the model.

Nonlin. Processes Geophys., 15, 965–975, 2008 www.nonlin-processes-geophys.net/15/965/2008/
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Fig. 7. Evolution of simulated surface fluxes.(a), (c) and (e) are downward shortwave radiation,LE andH at 05:00 UTC, 26 August,
respectively:(b), (d) and(f) are downward shortwave radiation,LE andH at 05:00 UTC, 30 August respectively.
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Fig. 8. Base-10 logarithm of 2-dimensional power spectrum density
of LE andH at 05:00 UTC on 26 and 30 August.kx andky is a wave
number of longitudinal and latitudinal direction, respectively.

4 Summary and Conclusions

We investigated the scale-dependency of surface fluxes
due to spatial variability of atmospheric conditions in the
mesoscale model. To properly assess the scale-dependency
with different grid sizes, we performed a numerical simula-
tion from a tower footprint to regional scale using the atmo-
spheric mesoscale model.

Overall, the mesoscale model well captured the diurnal
variation of surface fluxes on clear days in the spatial scales
of the tower footprint. However, large scale atmospheric fea-
tures, which produced the conditions favorable to convective
systems in the coarse domain, induced the overestimation of
the amount of clouds and precipitation even in the fine res-
olution. Eventually the growth of those convective systems
led to the increase of spatial heterogeneity in surface radia-
tive forcing within the model domain. As the degree of spa-
tial heterogeneity in the meteorological fields grew up in the
model, surface fluxes from different grid sizes showed the
scale-dependency. Accordingly, the model did not provide
convergent estimates of surface fluxes to the aggregation and
disaggregation processes in different grid sizes.

Fig. 9. Comparison of the simulated (domain 3) and observed
downward longwave and shortwave radiation and precipitation.

Sellers et al.(1997) showed the insignificant impacts of
surface heterogeneity on surface fluxes in the off-line bio-
sphere model by assuming that atmospheric conditions were
relatively homogeneous. In our study, however, substantial
spatial variability in atmospheric conditions was generated
in the fully coupled mesoscale model, which ultimately led
to the failure of scale-invariance. Furthermore, our study
demonstrates that the surface heterogeneity in soil moisture
and temperature was imposed by larger scale constraints such
as the convective rain and radiative forcing in the model.
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Fig. 10.Ratio ofu∗ differences between the model and observation
with far end distance,e.

Our findings have an important implication when we eval-
uate surface fluxes in regional and continental scales using
the atmospheric model: 1) One should carefully apply the
modeling outputs from a coarse domain for inferring regional
scale surface fluxes because the modeled surface fluxes can
be underestimated due to the failure of scale-invariance as the
spatial heterogeneity grows up in the model; and 2) any dif-
ference between model outputs and the observation data can
result from the failure of scale-invariance. That is, the model
bias will not necessarily result from the intrinsic model in-
accuracy when spatial variability in atmospheric conditions
prevails. Only when the scale-invariance requirement is sat-
isfied, one can relate the model biases to the structural de-
ficiencies of model. In case of the scale-dependent sur-
face fluxes, we may need to add the scale-dependent area-
averaged forms of the parameterization for a proper assess-
ment of regional surface fluxes (Sellers et al., 1997). Other-
wise, we need to aggregate surface fluxes from the fine reso-
lution simulation of the tower footprint.
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