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Abstract. Magnetospheric dynamics is a complex multiscale
process whose statistical features can be successfully re-
produced using high-dimensional numerical transport mod-
els exhibiting the phenomenon of self-organized criticality
(SOC). Along this line of research, a 2-dimensional driven
current sheet (DCS) model has recently been developed that
incorporates an idealized current-driven instability with a re-
sistive MHD plasma system (Klimas et al., 2004a, b). The
dynamics of the DCS model is dominated by the scale-free
diffusive energy transport characterized by a set of broad-
band power-law distribution functions similar to those gov-
erning the evolution of multiscale precipitation regions of en-
ergetic particles in the nighttime sector of aurora (Uritsky et
al., 2002b). The scale-free DCS behavior is supported by
localized current-driven instabilities that can communicate
in an avalanche fashion over arbitrarily long distances thus
producing current sheet waves (CSW). In this paper, we de-
rive the analytical expression for CSW speed as a function
of plasma parameters controlling local anomalous resistiv-
ity dynamics. The obtained relation indicates that the CSW
propagation requires sufficiently high initial current densi-
ties, and predicts a deceleration of CSWs moving from inner
plasma sheet regions toward its northern and southern bound-
aries. We also show that the shape of time-averaged current
density profile in the DCS model is in agreement with steady-
state spatial configuration of critical avalanching models as
described by the singular diffusion theory of the SOC. Over
shorter time scales, SOC dynamics is associated with rather
complex spatial patterns and, in particular, can produce bi-
furcated current sheets often seen in multi-satellite observa-
tions.
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1 Introduction

Earth’s magnetosphere is a driven spatially extended nonlin-
ear system whose response to solar wind drive encompasses
exceptionally broad ranges of temporal and energy scales.
Statistical features of this response are described by robust
power-law relations characteristic of critical self-organized
avalanching systems (Consolini, 1997; Uritsky et al., 2002b,
2003). It has been suggested (Chapman et al., 1998; Uritsky
and Pudovkin, 1998; Klimas et al., 2000) that the avalanch-
ing system of the magnetosphere resides in the magneto-
tail plasma sheet and is associated with collective behavior
of multiple sporadic localized reconnections (Chang, 1999)
which are known to appear during all phases of the magne-
tospheric substorm development (Angelopoulos et al., 1992;
Sergeev et al., 1999; Nakamura et al., 2001; Sergeev, 2004).

In order to understand physical principles of scale-free
plasma sheet behavior, a 2-dimensional driven current sheet
(DCS) model has been developed that incorporates an ideal-
ized current-driven instability with a resistive MHD system
(Klimas et al., 2004a, b). The DCS model is a continuum
representation of gradient-controlled discrete transport mod-
els exhibiting the phenomenon of self-organized criticality
(Bak et al., 1988; Lu, 1995; Klimas et al., 2000). An im-
portant characteristic of the DCM model is strong coupling
between MHD and kinetic phenomena at respectively large
and small scales of current sheet dynamics. This coupling
involves a simplified mechanism of current-driven instabil-
ity that, through its excitation and quenching, leads to the
consequent growth and decay of the anomalous resistivityη

represented by the diffusion coefficientD=c2η/4π . By anal-
ogy with discrete avalanche models, this idealized instability
is assumed hysteretic so that its threshold for quenching is
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slightly below its threshold for excitation:

Q(|J |) =

{
Dmin, |J | < βJc

Dmax, |J | > Jc
(1)

∂D (x, z, t)

∂t
=

Q(|J |) − D

τ

Here J≡Jy is the y-component of the current density de-
scribing plasma sheet dynamics in thex z plane,Jc – critical
current density,β<1 andτ – some constant parameters. At
each spatial location, the quantityQ can take one of two val-
ues,Dmax or Dmin�Dmax, depending onJ , and does not
change within the interval[βJc, Jc].

The hysteretic behavior of the anomalous resistivity is ex-
pected to appear in various physical scenarios of current-
driven instability. In particular, it may accompany a gener-
ation of the electromagnetic wave field in the vicinity and
above the ion gyrofrequency that can provide the anoma-
lous resistivity necessary to initiate the magnetic reconnec-
tion (Yoon and Lui, 1996). As numerical simulations on
the DCS model show, the hysteresis has several important
consequences. At smallest spatial scales of the order of grid
spacing, it influences nonlinear interactions of adjacent cur-
rent sheet elements leading to their low-dimensional chaotic
behavior characterized by fractional correlation dimension
(Uritsky et al., 2002a). At largest scales, it produces global
loading-unloading dynamics (Klimas et al., 2004a) reminis-
cent of the substorm cycle of Earth’s magnetosphere. In the
intermediate range of spatial scales, the DCS dynamics is
dominated by scale-free diffusive energy transport character-
ized by a set of broadband power-law distribution functions
(Klimas et al., 2004b) similar to those observed in the be-
havior of multiscale magnetospheric perturbations (Uritsky
et al., 2002b).

The scale-free current sheet turbulence implies that in-
dividual current filaments can communicate over arbitrar-
ily long distances within the available range of scales im-
posed by grid spacing and boundary conditions. The under-
lying mechanism of such communications manifesting them-
selves in current sheet waves (CSW) revealed numerically in
DCS simulations (Klimas et al., 2004b) is strongly nonlin-
ear. CSWs are active solitary waves accompanied by self-
consistent propagation of unstable current sheet regions in
the form of moving spatially localized excitations. Until now,
however, this intriguing phenomenon has not been investi-
gated on a quantitative basis. The present paper is focused
on this issue which can be of interest for both theoretical
and experimental studies of plasma sheet dynamics. Based
on a coarse-grained representation of the magnetic diffusion
equation, we derive the expression for CSW speed as a func-
tion of hysteresis parameters. The derived relation indicates
that under certain conditions, current-driven instabilities can
propagate over considerable using the free energy accumu-
lated in DCS. We demonstrate that such propagation requires
sufficiently high initial current densities, and predict a decel-
eration of CSWs initiated in the vicinity of the neutral plane
and moving toward northern and southern magnetotail lobes.
We also show that the shape of time-averaged current density

profile in the DCS model is consistent with steady-state spa-
tial configuration of critical avalanching models as described
by the singular diffusion theory of self-organized criticality.
The results obtained are confirmed by numerical simulations
and provide new clues for experimental exploration of mul-
tiscale plasma sheet dynamics.

2 Results and discussion

The standard MHD description of spatiotemporal evolution
of the current density takes into account the diffusion of the
magnetic field lines due to the anomalous resistivity mech-
anism as well as the plasma convection (Priest and Forbes,
2000):

∂J

∂t
=

c2

4π

[
∇

2 (η (J ) J ) − ∇
2 1

c
(V × B)

]
(2)

It has been shown (Klimas et al., 2004b) that in order to re-
produce the broadband scale-free turbulent plasma dynam-
ics, the magnetic diffusion should be controlled by very thin
current sheets created due to highly nonlinear dependence
(Eq. 1) of the diffusion coefficient on local current values.
In numerical simulations on the DCS model, the thickness
of such transient current sheets appears to be of the order of
grid spacing. Our main task will be to deduce the propa-
gation speed of such current sheets as a function of plasma
parameters.

According to the previous simulation results, the
hysteresis-controlled current sheet waves propagate both in
bothx andz direction and are associated with spatial redis-
tribution of Jy component of the electric current. It has also
been found that the CSW speedvCS mainly depends on the
z coordinate. On average,vCS gradually decreases as the
excitations moves from the central planez=0 toward upper
and lower boundaries located atz=±L z, and tend to stop
at some small but nonzero distance from the boundaries. To
describe these effects, consider a response of the DCS model
to a localized perturbation described by the following initial
conditions:

D (x, z, t = 0) ≡ Dmin ' 0,

J (x, z, t = 0) > Jc

Q(x, z, t = 0) = Dmax

}
z ∈ (z0 − λ/2, z0 + λ/2)

J (x, z, t = 0) < β Jc

Q(x, z, t = 0) = Dmin

}
− in all other regions

(3)

Therefore, we assume that at timet=0, the values of the dif-
fusion coefficient throughout the system are close to zero,
and that the switching parameterQ is also negligibly small
everywhere except for a thin flat region centered atz=z0
where the current densityJ≡Jy has just exceeded the critical
valueJc. By dividing the plasma volume into equally spaced
thin layers parallel to the neutral DCS plane, and replacing
continuous spatial derivatives with finite differences, Eq. (2)
can be reduced to the coupled system of ordinary differential
equations

d Ji

dt
= (Di−1Ji−1 + Di+1Ji+1 − 2DiJi)

/
λ2,
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i = −L z/λ, ..., L z/λ , (4)

in which λ is the thickness of current sheet layers indexed
by i. Since the instability excitation is a sporadic local-
ized phenomenon predominantly controlled by the magnetic
diffusion (Klimas et al., 2000), we omitted the convective
term. Denote the active current layerz∈ (z0−λ/2, z0+λ/2)

with i=k and assign the valueJ0<β Jc to the initial current
density in the adjacent (k+1-th) current layer. For simplic-
ity, we shall also assume that the diffusion fluxes ink−1-
th andk-th layers are linearly related through the condition
Dk−1Jk−1≈ζ DkJk, with ζ∈(0, 1) being a coupling constant.
Using these assumptions, the system given by Eq. (4) can be
rewritten for the chosen initial configuration as{

d Jk

/
dt = (ζ − 2) DkJk

/
λ2,

d Jk+1
/
dt = DkJk

/
λ2.

(5)

The obtained equations provide a description of current
density redistribution between active (J>Jc) and quiet
(J<β Jc) current layers. During this interaction, the current
density of thek-th layer gradually decreases making the cur-
rent Jk+1 to increase (in the continuum limit, the opposite
tendencies inJk andJk+1 dynamics are due to the opposite
signs of second spatial derivatives in these current layers).

Equations (5) are only valid until the time instantt=t1 at
whichJk+1 becomes greater thanJc. This limitation does not
affect our calculation of the CSW speed since we are focused
only on timest≤t1, which allows us to estimatevCS by the
ratio λ/t1 without analyzing the subsequentJk+1 evolution.
The solution to Eq. (5) depends on nonlinear dynamics of
the diffusion coefficientDk which behaves differently before
and after the time instantt0 when the currentJk drops below
theβ Jc level. Assuming that the excitation transfer timet1
is much smaller than the characteristic timeτ of the diffu-
sion coefficient relaxation, the evolution ofDk as specified
by Eq. (1) can be approximately described as

Dk =

{
Dmax

(
1 − e t /τ

)
'

Dmax
τ

t t ≤ t0,

D (t0) e−(t−t0)/τ '
Dmax

τ
t0 t > t0,

(6)

Inserting Eq. (6) into Eq. (5) and applying the initial condi-
tions specified above, the analytic expressions for time evo-
lution of current densities in the interacting layers can easily
be obtained:

t≤t0 :


Jk=Jc e

−(2−ζ )
Dmax
2λ2τ

×t2

Jk+1=J0+
Jc

2−ζ

(
1−e

−(2−ζ )
Dmax
2λ2τ

×t2
)

,

t>t0 :


Jk=β−1Jce

−(2−ζ )
Dmax
λ2τ

t0×t

Jk+1=J0 +
Jc

2−ζ

(
1−β−1e

−(2−ζ )
Dmax
λ2 τ

t0×t
)

.

(7)

Time t0 entering the above relations is calculated from the
conditionJk(t=t0)=βJc which provides

t0 = λ

√
2 ln(1/β) τ

(2 − ζ ) Dmax
, (8)
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Fig. 1. Analytic dependence of the speedvCS of current sheet
waves (CSW) on normalized initial current density plotted for dif-
ferentζ values. In each case, CSW propagation condition is given
by the inequalityJ0/Jc<(1−ζ )/(2−ζ ).

The excitation transfer timet1 required to switch thek+1-
th current layer into the excited state withQ=Dmax can be
deduced from the condition

Jk+1(t = t1) = Jc. (9)

In general case, this time may be less or greater thant0. If
t1≤t0, thek+1-th layer switches to the unstable state while
the diffusion coefficientDk continues to grow, and its dy-
namics is described by the first pair of the expressions given
in Eq. (7). Otherwise,Dk is roughly constant, and the second
pair of expressions must be used. After the timet1 has been
estimated, the CSW speed is evaluated using the relation

vavl =
λ

t1 (J0, Jc, β, τ, Dmax, ζ )
(10)

giving a coarse-grained representation ofvCS as a function
of the initial current density, hysteresis parameters as well as
the coupling constantζ . Using this approach, we have found
that the CSW speed is given by the following formulas:

vCS=



√
(2−ζ )Dmax

2τ ln
(

1
1−(2−ζ )(1− J0/Jc)

) , 1−
1−β
2−ζ

≤
J0
Jc

<1

√
2(2−ζ )Dmaxln(1/β)/τ

ln
(

1/β

1−(2−ζ )(1−J0/Jc)

) , 1−ζ
2−ζ

≤
J0
Jc

<1−
1−β
2−ζ

(11)

These relations indicate that the wave speed goes down with
the initial current density. AsJ0 decreases, the expression
under the logarithm sign in the denominator of the second
branch of the solution (11) goes to zero, and the propagation
speed becomes negligibly small. This condition corresponds
to the limit

J0 → +Jc

(
1 − ζ

2 − ζ

)
(12)

By substituting differentζ values, we have built a family of
vCS(J0) dependences containing deceleration regions of dif-
ferent width (Fig. 1). In the extreme caseζ=1 when the cur-
rent layers with indexesk−1 andk are strongly coupled, the
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Fig. 2. A sample snapshot of anomalous resistivity distribution in
the 2-D driven current sheet model (Klimas et al., 2004b). The SCW
propagation region is limited by dashed horizontal lines correspond-
ing to the propagation condition described by Eq. (12). Black dots
are the unstable grid sites where the excitation conditionQ=Dmax
is fulfilled.

CSW can propagate in regions with the arbitrarily low initial
current density. In contrast, for very smallζ , the deceleration
region is fairly wide, and CSW can only penetrate into spatial
domains where the current is sufficiently high (J0≥0.5Jc).

To verify the obtained formulas, we have studied numer-
ical runs of the 2-D driven current sheet model developed
by (Klimas et al., 2004b). It has been found that usually,
the coupling constant of the DCS model is close to the value
ζ≈0.9, which leads to the CSW propagation condition

J0

Jc

> 0.1. (13)

According to our simulation results, the spatial domain in
which the instability waves can freely propagate does have
a limited width in z direction corresponding to the region
where initial current densities exceed the level 0.1Jc pre-
dicted by Eq. (13). Outside this region, the CSW mechanism
of excitation transfer turns off, and current sheet dynamics is
dominated by plasma convection. The CSW propagation re-
gion approximately coincides with the inner turbulent region
of the current sheet where unstable sites withQ > Dmax can
exist, the effect clearly seen in our simulations (Fig. 2). We
have also found that the transition between “fast” and “slow”
solutions given by Eq. (11) should occur atJ0/Jc≈0.9. Such
intense current densities are normally generated in the vicin-
ity of the neutral plane.

The range of CSW speeds observed in simulations is also
in a reasonable agreement with the theoretical result. To eval-
uate this range, we have investigated the motion of anoma-
lous resistivity region boundaries using the double threshold
condition

Sdiff (x, z, t) > a ∧ ∂Sdiff (x, z, t)/∂t > b, (14)

 

Fig. 3. Examples of spatiotemporal CSW propagation on thez t

plane (x=2.5). Black dots show the grid sites satisfying Eq. (14)
with the parametersa=1.5×10−4, b=8.0×10−4. Approximate es-
timates of speed values are given for each wave.

whereSdiff =|(c/4π) ηJ×B| is the magnitude of the diffu-
sive component of the Poynting flux,a andb are constants
thresholds adjusted empirically to provide a reliable repre-
sentation of CSW fronts. According to Eq. (14), we were
looking for the places where the diffusive energy flux ex-
ceeded some constant value, and, at the same time, its time
derivative was above some other value. Applying this crite-
rion, spatiotemporal CSW traces have been visualized and a
speed of about 200 waves has been estimated. It has been
found that depending on CSW position and the local current
density,vCS take values from the interval between 0 and 3.0
(Fig. 3). This range is consistent with the range of speeds cal-
culated based on the relation (11) usingζ=0.9 and varying
J0 parameter according to simulation results.

The solution (11) is not complete in the sense that it ex-
plicitly depends on the initial currentJ0 which in its turn is
defined by the prehistory of local magnetic field dynamics.
In order to obtain the expression for average SCW speed at
different spatial locations in a closed form, a time-averaged
current density profileJ (z) characterizing steady-state cur-
rent sheet configuration has been chosen as a simplest sub-
stitute forJ0. Functional form ofJ (z) can be obtained using
the results of the singular diffusion theory of self-organized
critical avalanching models. It has been shown (Montakhab
and Carlson, 1998; Carlson et al., 1990) that the long-term
spatiotemporal evolution of such models can be described by
the equations

∂ ρ

∂ t
= ∇

(
Dsng (ρ) ∇ρ

)
, Dsng (ρ) =

1

(ρc − ρ)φ
, (15)

in which ρ is the relevant dynamical variable representing
the quantity transported by the avalanche process,Dsng – the
singular diffusion coefficient diverging asρ approaches the
instability thresholdρc, φ – the order of the pole controlling
the singularity ofDsng in the self-organized critical regime.
In certain cases, the singularity orderφ can be used as a free
parameter allowing one to adjust the theory of singular diffu-
sion to systems differing in local interaction rules, distribu-
tion of energy states and other local characteristics.

It has been found (Carlson et al., 1990) that one-
dimensional self-organized critical systems satisfying asym-
metric boundary conditions

ρ (1) = 0, Dsng (ρ (0)) ∇ ρ (0) = −f0 (16)
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Fig. 4. Numerically estimated steady-state current density configu-
ration in the 2-D current sheet model (averaging during one repre-
sentative unloading interval) as compared to the singular diffusion
solution presented by Eq. (21) with three different singularity orders
φ.

are characterized by the following universal asymptotic con-
figuration att→∞:

ρ (r, φ>1)=ρc−

[
ρ−(φ−1)

c +f0 (φ−1) (1−r)
]−

1
φ−1

(17)

in which r is the spatial coordinate. The conditions (16) cor-
respond to open boundary atr=1 and closed boundary at
r=0 where the fixed diffusive fluxf0 is applied. In case
when the parameterf0 is unknown, it can be estimated self-
consistently from the boundary value of the dynamical vari-
ableρ:

f0 =
[ρc − ρ (0)] − ( φ −1)

− ρ
− ( φ −1)
c

φ − 1
(18)

The singular diffusion formalism has been successfully ap-
plied to various avalanching models, including cellular-
automaton models of critical gradients (Carlson et al., 1990;
Montakhab and Carlson, 1998) used as a discrete proto-
type for the DCS model (Lu, 1995; Klimas et al., 2000).
In contrast to the nonlinear diffusion Eq. (1) describing a
small-scale hysteretic evolution of anomalous resistivity, the
solutions to Eq. (15) represent large-scale self-organization
of spatial distribution of system’s activity accompanying its
evolution toward the critical state.

In the DCS model, the closest analogue toρ is the slowly
varying current density configuration obtained by averaging
over long intervals of time including many current driven in-
stabilities. Let us show that the boundary conditions (16) sat-
isfy the dependence of DCS current density onz coordinate.
First of these conditions is correct since the current density
is always zero atz=1. The applicability of the second con-
dition is not so obvious since the current is not fixed atz=0,
and its time average appears to be a result of current sheet
self-organization toward the stationary critical state in which
the rate of the annihilation of oppositely directed magnetic
fields along the neutral line is balanced by the rate at which
the magnetic flux is pumped into the simulation box (Uritsky
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Fig. 5. Dependence of characteristic CSW speed on thez-
coordinate at several different values of coupling parameterζ plot-
ted using the average current density profile described by Eq. (21)
calculated based on the singular diffusion approach.

et al., 2002a). At small temporal scale of the order of the
relaxation time of individual grid sites, current density vari-
ations along the linez=0 have a form of asymmetric pulses
with rather steep left fronts evolving on the time scalet0, and
much flatter right fronts reflecting exponential relaxation of
the diffusion coefficient with the characteristic timeτ . Ne-
glecting the ascending fronts of the current density pulses
and assuming that the mean frequency of pulses is of the or-
der of 1/τ , the average value ofJ at the positionz=0 can be
approximately estimated as

〈J (z = 0)〉t '
1

τ

τ∫
0

Jc e−t/τ dt = (1 − 1/e) Jc, (19)

which after substitutionρc≡Jc leads to the following depen-
dence of the boundary parameterf0 on the singularity order:

f0 =
J

− ( φ − 1)
c

(
e φ−1

− 1
)

φ − 1
(20)

Inserting the obtained formula into Eq. (17), we arrive at the
asymptotic expression for steady-state current density distri-
bution in thez direction:

ρ(r, φ)≡J (z, φ)=Jc

(
1−

[
1+

(
eφ−1

−1
)

(1−z)
]−

1
φ−1

)
(21)

By comparing the obtained solution with the results of nu-
merical simulations on the DCS model, it has been found that
Eq. (21) provides the best fit to average current density pro-
files at the singularity orderφ=5 (Fig. 4). Using this value
and inserting Eq. (21) into Eq. (11), finally we obtain:

vCS(z) '

√
2(2 − ζ ) Dmax ln (1/β)

/
τ

ln
(

1/β

1−(2−ζ )(1+53.6(1−z))− 1/4

) . (22)

For obtaining this expression, only the “slow” branch of
the solution (11) has been used since the current den-
sity given by the relation (21) never exceeds the level
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Jc (1−(1−β)/(2−ζ )) at which the “fast” solution comes
into play. Since we have replaced the initial currentJ0 with
the time-averaged quantityJ , expression (22) can be con-
sidered as the estimation of characteristic CSW speeds at
different z-locations (Fig. 5). The fact that actual (instan-
taneous) initial current densities may be essentially higher
than J leads to underestimation ofvCS values of certain
waves. On the contrary, if the actual current density is be-
low J , the CSW speed appears to be below the character-
istic value predicted by Eq. (22). As a result, some of the
CSWs observed in numerical simulations (Fig. 3) propagate
faster or slower than expected based on Eq. (22). On average,
however, the obtained relation provides a reasonable approx-
imation to spatialvCS dependence averaged over sufficiently
long time intervals.

3 Conclusions

The propagating current sheets seem to represent a new type
of cooperative plasma behavior which may play an important
part in the dynamics of the magnetotail plasma sheet. Basic
signatures of this type of behavior have been first described
in (Klimas et al., 2000) and subsequently generalized to a
more complete MHD system in (Klimas et al., 2004b). Our
analysis has generated two groups of results that provide a
more penetrating insight into this phenomenon in frames of
the resistive MHD approximation:

1. Analytical relation for CSW speed as a function of
plasma parameters controlling local anomalous resistiv-
ity dynamics has been derived that explains several ef-
fects discovered earlier in numerical simulations on the
2-D DCS model, such as the dependence of the CSW
speed on they-component of the electric current lead-
ing to wave deceleration in the vicinity of lower and
upper current sheet boundaries, as well as the existence
of spatial regions in which CSWs cannot propagate.

2. Asymptotic expression for global steady-state current
density distribution has been found that characterizes
average spatial configuration of the turbulent plasma
sheet in the vicinity of self-organized critical state. Us-
ing this expression, the characteristic speed of current
sheet waves as a function of distance from the central
neutral plane has been estimated.

Physical mechanism of current sheet waves involves co-
operative evolution of multiple current-driven instabilities at
the spatial scale of kinetic processes underlying hysteretic
response of the anomalous resistivity assumed in the DCS
model. This scale defines rather thin current layers which can
propagate over considerable distances and create conditions
for scale-free evolution of anomalous resistivity regions and
multiscale energy dissipation. Thin current sheet structures
resembling MHD solutions with a plain singularity have re-
ceived a good deal of attention during the last decade. Many
theoretical models of thin current sheets have been developed

showing an important role of such structures in magnetic en-
ergy storage and release during the substorm development
(see e.g. Zelenyi et al., 2002, 2004; Sitnov et al., 2004 and
references therein). In additional to these findings, our anal-
ysis strongly suggests that under certain conditions, thin cur-
rent sheets can also move in a form of solitary self-supporting
waves giving rise to complex scale-invariant spatial patterns
of activity in vast portions of the magnetotail. Existence of
such waves Earth’s magnetosphere can, in principle, be ver-
ified using measurement results of multiprobe missions ca-
pable to resolve fine 3D features of plasma dynamics and
presents a challenging task for future research.
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