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Abstract. In biogeochemical models coupled to ocean circu-
lation models, vertical mixing is an important physical pro-
cess which governs the nutrient supply and the plankton res-
idence in the euphotic layer. However, vertical mixing is of-
ten poorly represented in numerical simulations because of
approximate parameterizations of sub-grid scale turbulence,
wind forcing errors and other mis-represented processes such
as restratification by mesoscale eddies. Getting a sufficient
knowledge of the nature and structure of these errors is nec-
essary to implement appropriate data assimilation methods
and to evaluate if they can be controlled by a given observa-
tion system.

In this paper, Monte Carlo simulations are conducted to
study mixing errors induced by approximate wind forcings in
a three-dimensional coupled physical-biogeochemical model
of the North Atlantic with a 1/4◦ horizontal resolution. An
ensemble forecast involving 200 members is performed dur-
ing the 1998 spring bloom, by prescribing perturbations of
the wind forcing to generate mixing errors. The biogeochem-
ical response is shown to be rather complex because of non-
linearities and threshold effects in the coupled model. The re-
sponse of the surface phytoplankton depends on the region of
interest and is particularly sensitive to the local stratification.
In addition, the statistical relationships computed between
the various physical and biogeochemical variables reflect the
signature of the non-Gaussian behaviour of the system. It is
shown that significant information on the ecosystem can be
retrieved from observations of chlorophyll concentration or
sea surface temperature if a simple nonlinear change of vari-
ables (anamorphosis) is performed by mapping separately
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and locally the ensemble percentiles of the distributions of
each state variable on the Gaussian percentiles. The results
of idealized observational updates (performed with perfect
observations and neglecting horizontal correlations) indicate
that the implementation of this anamorphosis method into se-
quential assimilation schemes can substantially improve the
accuracy of the estimation with respect to classical computa-
tions based on the Gaussian assumption.

1 Introduction

Our understanding of the ocean biogeochemistry and ma-
rine ecosystems has made significant progress during the past
decade. Coupled physical-biogeochemical models (CPBM)
are becoming a useful source of information for many prac-
tical applications of societal and environmental importance,
such as the monitoring and forecasting of marine resources,
water quality and the ocean carbon cycle. Biogeochemical
models are bound to be an essential component of the oper-
ational oceanographic systems that are being implemented,
for instance, in the frame of the MERSEA and MyOcean Eu-
ropean projects (Brasseur et al., 2009). In order to provide an
accurate depiction of the essential biological variables, these
models should be used in conjunction with global scale ob-
servation systems involving ocean colour satellites and pro-
filing floats that, in the near future, will measure the sub-
surface concentration of oxygen, chlorophyll and nutrients
(e.g., Gruber et al., 2006). The optimal merging of these
multiple types of information requires the development of
purpose-built assimilation methods, taking into account the
specificities of the coupled physical-biogeochemical models,
and of the data available for assimilation.
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In order to design appropriate assimilation methods and
to evaluate the level of control that can be expected from
a given observation system, it is necessary to explore the
structure of the errors that affect the model and the observa-
tions. A standard way to explore model errors is to perform
Monte Carlo simulations (e.g., Evensen, 1994). This requires
making prior assumptions about the possible sources of er-
rors, originating for instance in a set of model parameters
or in forcing functions. One then postulates a prior proba-
bility distribution for these errors, from which a sample is
drawn. Model integrations are then performed for each el-
ement of the sample, and the resulting ensemble simulation
provides an image of the model error structure (a sample of
its probability distribution). From this image, it is then pos-
sible to diagnose how the original errors cascade on the vari-
ous model state variables, if the errors are correlated in space
and time, if robust relationships exist between observed and
unobserved variables, if these relationships are close to lin-
earity, how a given observing system can be used to control
these errors, etc. Ensemble statistics can also be used to de-
termine to which extent the probability distribution functions
(pdfs) are Gaussian, and from this, the theoretical properties
of the assimilation methods required to control the errors. In
the context of marine ecosystem modelling, it is useful for in-
stance to understand the level of control that can be expected
from ocean colour data.

A key objective of the present study is to provide a char-
acterization of mixing errors and their impact in coupled
physical biogeochemical simulations. Another objective is
to study the implications of the observed statistical behaviour
for estimation and data assimilation methods. In this paper, a
Monte Carlo method is applied to the study of mixing errors
in a coupled physical-biogeochemical model of the North
Atlantic ocean (described in Sect. 2.1), with a specific fo-
cus on the analysis of the ecosystem response to these errors.
It is indeed well known that a cautious control of the ocean
stratification and vertical mixing is crucial for consistent data
assimilation in such coupled models (Berline et al., 2006),
because it directly affects the nutrient supply and plankton
residence time in the euphotic layer. Erroneous vertical mix-
ing can be triggered by imperfections at different modelling
stages, such as the wind forcing, the turbulent closure scheme
or even the representation of mesoscale eddies through the
restratification of the upper ocean (Oschlies, 2002).

To perform the Monte Carlo experiments, perturbations
are applied to the wind forcing, which is the physical mech-
anism chosen here to trigger mixing errors in the coupled
model. Common knowledge suggests that these errors prop-
agate into the system according to the scheme of Fig. 1. Wind
perturbations first induce perturbations of the mixed layer dy-
namics which translate into modifications of the mixed layer
depth (MLD) and sea-surface temperature (SST). Deepening
or shallowing of the mixed layer then modifies the nutrient
supply in the euphotic layer, and subsequently the phyto-
plankton production in the euphotic layer. The impact on the

Fig. 1. Illustration of the conceptual transfer function between
wind errors and the variables of a coupled physical-biogeochemical
model. The arrows show the dominant effect that can be intuitively
expected from ocean mixed layer and ecosystem dynamics.

biogeochemical state can be measured by the surface nitrate
(NO3) and phytoplankton (PHY) concentration. The latter is
directly related to surface chlorophyll concentration (CHL), a
quantity that is well observed through ocean colour satellites.
By following this conceptual causal chain in the ensemble, it
is possible to characterize the statistical dependence between
the successive model variables and the observed quantities,
their variations in space and time, and eventually the possi-
bility to inverse the observed information back to the model
space and forcing functions. These questions are examined
in Sect. 3.

One of the results of the ensemble simulations is that even
for short-term forecasts (1 day), the relationships between
ecosystem variables and observations are not close to lin-
ear, so that they cannot be fully exploited by a linear esti-
mation method. For such a system, nonlinear methods are
useful to improve the quality of the estimates. However, gen-
eral nonlinear assimilation methods (e.g., particle filters as in
Losa et al., 2003) which make no specific assumption about
the shape of the prior pdf are too expensive for application
to large size CPBM (16×106 state variables in our model),
mainly because the identification of a general multivariate
pdf with so many state variables would require too many en-
semble members. Therefore, simplified solutions are needed
to cope with real size problems.

A possible approach to non-Gaussian estimation problems
is the use of anamorphosis transformations (i.e., Bertino et
al., 2003; Lenartz et al., 2007), making nonlinear changes
of variables to transform the forecast pdf (of arbitrary shape)
into a Gaussian pdf. At first glance, this does not necessarily
simplify the problem because identifying the change of vari-
ables requires a perfect knowledge of the original multivari-
ate pdf, i.e. an ensemble as large as previously mentioned for
particle filters. The simplified solution that we investigate in
this paper is to perform the change of variable separately and
locally for each state variable. In this way, a moderate size
ensemble is usually sufficient to identify the change of vari-
able and transform each marginal pdf to a nearly Gaussian
pdf (see discussion in Sect. 4). This is obviously not suffi-
cient to guarantee that the joint distribution becomes Gaus-
sian. However, it is usually possible to detect from the en-
semble the situations for which the approximation is accu-
rate and the situations for which it is not. Both occur in our
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case study, so that we will be able to evaluate the relevance
of the scheme in any situation. A quantitative evaluation of
the expected improvement with respect to linear estimates is
also attempted to conclude the study.

2 Ocean model and wind forcing perturbations

2.1 The coupled physical-biogeochemical model

The CPBM used for the ensemble simulation was originally
developed by Ourmières et al. (2009) for investigating the
relative importance of nutrient vs. physical data to constrain
the seasonal development of the phytoplankton bloom in the
North Atlantic. The components of the coupled model in-
clude a NEMO/OPA9 circulation model of the North Atlantic
basin at a 1/4◦ horizontal resolution (see Sect. 2.1.1), and
a biogeochemical model derived from the 6-compartment
LOBSTER formulation (see Sect. 2.1.2). The reference
simulation (without wind perturbations), that is used as a
reference for the Monte Carlo simulations, is described in
Sect. 2.1.3.

2.1.1 The North Atlantic Ocean circulation model

The circulation model is a DRAKKAR configuration (The
DRAKKAR Group, 2007) of the free surface primitive equa-
tion model NEMO/OPA (Madec et al., 1998). The domain
covered is the North Atlantic basin from 20◦ S to 80◦ N and
from 98◦ W to 23◦ E, with 1/4◦ resolution horizontal grid
(Barnier et al., 2006). The vertical discretization is done
using 45 geopotential levels, with a grid spacing increasing
from 6 m at the surface to 250 m at the bottom. Vertical mix-
ing of momentum and tracers is modelled by the TKE tur-
bulence closure scheme (Blanke and Delecluse, 1993), and
convection is parameterized with enhanced diffusivity and
viscosity. Buffer zones are defined at the southern, northern
and eastern (Mediterranean) boundaries with relaxation of
temperature (TEM) and salinity (SAL) to Levitus climatol-
ogy (Levitus et al., 2001). The forcing fluxes are calculated
using bulk formulations and the ERA40 atmospheric forcing
fields (Uppala et al., 2005). The prognostic variables include
the zonal and meridional velocity components (U andV ),
temperature, salinity and sea surface height (SSH).

2.1.2 The LOBSTER biogeochemical model

LOBSTER (LOcean Biogeochemical Simulation Tools for
Ecosystem and Resources) is a nitrogen-based ecosystem
model with 6 prognostic variables in the euphotic layer: ni-
trate (NO3), ammonium (NH4), phytoplankton (PHY), zoo-
plankton (ZOO), detritus and semi-labile dissolved organic
nitrogen (Levy et al., 2005a). The bottom of the euphotic
layer is prescribed at a constant depth of 191 m. Below the
euphotic layer, the model considers very simple parameter-
izations of decay to nitrate, detritus sedimentation and rem-

ineralization of zooplankton mortality. LOBSTER is cou-
pled on-line to the circulation model without feedback of the
biogeochemical variables on the physics. The coupling fre-
quency is equal to the circulation model time-step (40 min).
The on-line coupling as well as the maximum frequency is
thought to allow accurate diagnostics of the ecosystem evo-
lution without possible problems brought by the use of aver-
aged physical fields as an off-line configuration would need.
More detail about the model equations is available in Levy
et al. (2005a and 2005b) and about the North Atlantic imple-
mentation in Ourmìeres et al. (2009).

2.1.3 Reference simulation of the coupled model

The reference simulation of the coupled model used in this
study corresponds to year 1998 of the FREE simulation de-
scribed in Ourmìeres et al. (2009) and performed without
data assimilation. In this simulation, theU , V and SSH fields
are initialized to zero, while the TEM and SAL fields are in-
terpolated from the December Levitus climatology (Levitus
et al., 1998). Then, the physical model is run for 12 years
from 1 January, 1984 to 1 January, 1996, providing a bal-
anced physical ocean state to start the biogeochemical model
spin-up. At that time, the nitrate field is initialized with the
December climatology 2001 (Conkright et al., 2002) inter-
polated on the model grid. The other biogeochemical fields
are set to constant values in the euphotic zone and to zero be-
low: zooplankton is set to 0.01 mmol N/m3, phytoplankton
to 0.1 mmol N/m3 and ammonium, dissolved organic matter
and detritus to 0.001 mmol N/m3. The coupled model is then
run for 2 years starting 1 January, 1996 and using the physi-
cal ocean state obtained after 12 years of spin-up. Ourmières
et al. (2009) analysed the convergence of the run and showed
that the model is able to reproduce satisfying seasonal cycles
of the biogeochemical variables. In this study, we will anal-
yse the 1-month period between 15 April and 15 May, 1998,
i.e. when the bloom event occurs.

2.2 Perturbed simulations

In order to generate an ensemble of model runs impacted by
mixing errors in the upper ocean, Monte Carlo simulations
are performed using perturbations of the surface forcings.
Perturbations of the wind stress are considered here as the
only source of mixing errors, while in reality these errors
originate from a variety of approximations in the parame-
terization of sub-grid scale turbulence, in the specification
of the surface boundary conditions for momentum, heat and
salinity, and from other mis-represented dynamical processes
such as restratification by mesoscale eddies. We proceed in
two steps, assuming that the uncertainty in the wind can be
estimated from the variability of ERA40 winds of March,
April and May during 1985–2000: (i) the covariance of the
wind variability is calculated using the ERA40 database,
and (ii) the wind perturbations are randomly sampled from

www.ocean-sci.net/6/247/2010/ Ocean Sci., 6, 247–262, 2010



250 D. B́eal et al.: Mixing errors in physical-biogeochemical models

Fig. 2. (Left) Percentage of explained variance (left axis) and cumulated variance (right axis) for the first 50 EOFs computed from the
variability of the ERA40 1985–2000 wind archives. (Right) Wind stress standard deviation (in N/m2) calculated over the used archives.

a Gaussian probability distribution function with zero mean
and this pre-calculated covariance.

In practice, an ensemble composed of one wind field ev-
ery 4 days is extracted from the 1985–2000 ERA40 winds
during the 3 months period centred on 15 April. This ensem-
ble contains 368 members representative of the season during
which the Monte Carlo simulations are performed. A multi-
variate EOF (Empirical Orthogonal Function) analysis of this
ensemble is performed combining theu andv components
of the wind, and the first 50 dominant EOFs (representing
80% of the wind variance) are used to generate the perturba-
tions. Figure 2 (left panel) illustrates the first 50 eigenvalues
in decreasing order, their corresponding percentage of ex-
plained variance and the cumulated percentage of explained
variance. Figure 2 (right panel) also shows the standard devi-
ation of the resulting wind stress variability which is also the
expected standard deviation of the wind stress perturbations.
It is especially large over the subpolar gyre and over the Gulf
Stream region. As mentioned above, wind perturbations gen-
erate anomalies of the biogeochemical model variables. As
a result, a more intense ecosystem response is expected in
the subpolar and Gulf Stream regions. These regions are also
where the intensity of the spring bloom is maximum in the
reference simulation.

The Monte Carlo simulations are then performed using
an ensemble of 200 time-varying perturbations of the wind
forcing. Assuming that the typical decorrelation time scale
of wind errors is about 4 days, independent samples of
200 members are drawn every 4 days with the covariance
defined above. These are then interpolated linearly in time to
obtain perturbations every 6 h, which is the input frequency
of forcing fields in the ocean model. In practice, this cor-
responds to sample independent coefficients for each EOF
fromN (0,1) every 4 days, interpolate them in time to obtain
the perturbation amplitudeαi(t) for every EOFi , i = 1...50,
and them compute the perturbed wind using Eq. (1). It is
worth noting that in Eq. (1), the normalized EOFs are multi-
plied by the squared root of the corresponding eigenvalue, so

that each EOF is a column of the squared root of the pertur-
bation covariance matrix.(

u(t)

v(t)

)
pert

=

(
u(t)

v(t)

)
reference

+α1(t) EOF1+ ...

+α50(t) EOF50 (1)

3 Study of the ensemble forecast

The objective of this section is to describe the ensemble re-
sponse of the model to the wind perturbations described in
Sect. 2. This response is analysed by studying the ensemble
forecast at 14 stations in the North Atlantic (see their loca-
tion in Fig. 2), especially at BATS (Bermuda Atlantic Time
Series, station 5), INDIA (Ocean Weather Station India, sta-
tion 11) and NABE (North Atlantic Bloom Experiment, sta-
tion 12) biogeochemical stations, and in the Gulf Stream (sta-
tion 14, noted GS). For three of these stations (BATS, INDIA
and GS), ensemble scatterplots are presented to characterize
the relationships that can be deduced from the transfer func-
tion in Fig. 1, i.e. between WND and MLD, MLD and TEM,
MLD and NO3, MLD and PHY, or NO3 and PHY. (WND is
the wind stress modulus expressed in N/m2). To interpret the
mechanisms behind these relationships, we also analyse the
ensemble of TEM, NO3 and PHY vertical profiles at these
stations.

In addition, the information extracted from the ensemble
are synthesized using two statistics (presented for all 14 sta-
tions in Table 1):

– the linear correlation coefficient (Pearson):

r =

∑
i(xi −x)(yi −y)√∑

i(xi −x)2
√∑

i(yi −y)2
(2)

wherex=(xi)
n
i=1 andy=(yi)

n
i=1 are n-size samples of 2

random discrete variables andx andy are the respective
means of these samples;
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Table 1. Linear vs rank correlation coefficient between variables at 14 stations of the North Atlantic domain, as obtained from the 1-day
ensemble forecast. A significantly higher rank correlation (in bold) means that anamorphosis is likely to be useful.

Stations WND/MLD MLD/TEM MLD/NO3 TEM/PHY SAL/N03 NO3/PHY

Mauritania (1) 0.83/0.94 −0.88/−0.97 0.87/0.97 0.85/0.96 −0.93/−0.93 −0.81/−0.94
Norway (2) 0.85/0.06 0.98/0.91 0.75/0.37 −0.48/−0.01 0.97/0.93 −0.95/−0.67
New Foundland (3) 0.91/0.63 0.95/0.93 0.80/0.75−0.79/−0.59 0.99/1.00 −0.96/−0.91
Acores (4) 0.87/0.87 −0.95/−1.00 0.95/0.99 0.99/0.98 −0.97/−0.98 −0.98/−0.99
BATS (5) 0.88/0.91 −0.78/−1.00 0.85/0.97 0.99/0.98 −0.99/−0.99 −0.99/−0.95
Labrador 1 (6) 0.89/0.81 0.79/0.94 0.88/0.99 −0.87/−0.84 0.98/0.98 −0.99/−0.97
Subtropical Gyre (7) 0.72/0.92 −0.83/−0.93 0.32/0.31 0.78/0.62 −0.45/−0.69 −0.84/−0.61
Labrador (8) 0.76/0.69 0.29/0.37 0.89/0.94−0.31/−0.33 0.98/0.84 −1.00/−0.99
Gulf Stream (9) 0.90/0.91 −0.92/−0.98 0.89/0.4 0.91/0.99 −0.32/−0.17 0.85/0.39
Pomme (10) 0.87/0.93 −0.99/−1.00 0.96/0.99 0.99/1.00 0.05/0.41 −0.93/−0.98
INDIA (11) 0.31/0.48 −1.00/−0.98 0.45/0.41 0.53/0.48 0.93/0.97 −0.99/−0.98
NABE (12) 0.09/0.22 −0.97/−0.94 0.51/0.46 0.34/0.29 0.80/0.83 −0.90/−0.86
Gulf Stream 1 (13) 0.37/0.07 −0.67/−0.64 0.70/0.32 −0.10/−0.20 0.72/0.82 −0.73/−0.65
Gulf Stream 2 (14) 0.22/0.13 −0.98/−1.00 0.97/0.95 0.93/0.96 −0.73/−.72 −0.97/−0.99

– the rank correlation (Spearman) that is identical to the
linear correlation except that each valuexi (respectively
yi) is replaced by the value of its rankRi (respectively
Si) in the sample (e.g.Ri is the index ofxi in the sorted
sample). The sequenceRi (or Si) thus contains all inte-
gers between 1 andn:

rs =

∑
i(Ri −R)(Si −S)√∑

i(Ri −R)2
√∑

i(Si −S)2
(3)

whereR andS are respectively the mean ofR andS.
The rank correlation is useful to detect nonlinear rela-
tionships between variables (see for instance Press et
al., 1992, chapter 14).

We also study how these correlations between model vari-
ables evolve with time, and the time scales over which the
correlations with observed quantities can be considered ro-
bust enough to be exploited by a data assimilation system.

3.1 The ensemble response at three locations

By looking at the ensemble forecast after only one day of
run, we will see that mixing is the dominant mechanism re-
sponsible for the propagation of wind forcing errors to the
other state variables, in most locations. This is because the
daily time scale is too short to trigger intense dynamical in-
teractions between the biogeochemical variables of the LOB-
STER model.

The corresponding correlation statistics are given in Ta-
ble 1 for all 14 stations shown in Fig. 2. The ensemble re-
sponse is analysed in details at three specific locations: at

the BATS station (Fig. 3), the GS station (Fig. 4) and the
INDIA station (Fig. 5). The ensemble statistics obtained at
INDIA, BATS and GS provide good illustrations of statistical
behaviours that are representative of very different stratifica-
tion conditions. INDIA is located in a high-latitude, North
Atlantic region dominated by strong wind variability (Fig. 2)
and subject to strong convective events in winter. By con-
trast, BATS is representative of the subtropical gyre, with
rather stable winds and well stratified upper ocean through-
out the year. The GS station is located in the inter-gyre re-
gion, with intermediate wind variability and moderate strat-
ification conditions. The figures show five scatterplots de-
scribing the transfer function in Fig. 1, as well as ensemble
vertical profiles of temperature, nitrate and phytoplankton.
We will discuss in sequence the propagation of uncertainties
from the wind forcing to the physical properties, and then to
the biogeochemical properties of the mixed layer.

3.1.1 Relationships between wind forcing and physical
properties of the mixed layer

As a first step, we analyze the cascade of errors from the
wind forcing to the physical variables (first line in Fig. 1).

WND/MLD . Wind errors generate different types of re-
sponse on the mixed layer depth (see WND/MLD scatter-
plots in Figs. 3, 4 and 5). As a general rule, the larger the
wind, the deeper the mixed layer; however, there are signif-
icant differences between the 3 situations. The scale of the
plots shows that the amplitude of the MLD and TEM per-
turbations observed at INDIA are significantly smaller that
the corresponding perturbations at BATS and GS, in spite of
similar perturbations of the wind. Further, the spread around
the linear regression line is larger at the INDIA station, while
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Fig. 3. Scatterplots of 1-day ensemble forecasts at BATS (65◦ W/32◦ N) station: the red points correspond to the 200 ensemble members;
the blue point corresponds to the reference (unperturbed) run; the green square is the ensemble mean; the green line represents the linear
regression of the ensemble; the black doted lines indicate the quartiles of the distribution. Vertical profiles: the red lines correspond to the
200 ensemble members, the blue line is the profile of the reference run, the green line is the mean profile.
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Fig. 4. Same as Fig. 3 but for the Gulf Stream (47◦ W/40◦ N) station.

such spread does not occur in the same way at the other sta-
tions. The relationship between WND and MLD is obviously
nonlinear at INDIA station. For large wind anomalies, one
can observe a sort of saturation of mixed layer depth pertur-
bations. This can be explained by the very different mixed
layer structures of the 3 reference states: at BATS, the mixed
layer is very shallow and the turbulent energy brought by the
wind immediately propagates down to the thermocline. The
exactly opposite situation occurs at INDIA, where the water
column of the reference run is well mixed down to around
400 m. As a result, the mixed layer depth is relatively insen-
sitive to wind anomalies.

MLD/TEM . In general, the consequence of the mixed
layer deepening when wind forcing increases is a cooling of
the sea surface (see TEM/MLD plots in Figs. 3, 4 and 5).
The mixing of warm surface water with cold water at depth
results in a cooling of the mixed layer. The TEM/MLD rela-
tionships decrease monotonously, but not necessarily in a lin-
ear way. The shape of this relationship obviously depends on
the shape of the vertical TEM profile. Moreover, the statis-
tics of Table 1 show very high rank correlations, meaning
that a quite robust relationship exist for this combination of
variables (except at the Labrador station).
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Fig. 5. Same as Fig. 3 but for the INDIA (25◦ W/55◦ N) station.

3.1.2 Relationships between mixed layer and
biogeochemical properties

As a second step, we analyze the cascade of errors from
the mixed layer to biogeochemical variables (second line in
Fig. 1).

MLD/NO 3. Deepening of the mixed layer is expected to
bring nitrate to the surface by mixing nutrient-rich deep wa-
ter with nutrient-depleted surface water. This is exactly what
happens at BATS and GS stations, where a nonlinear increase
of NO3 concentration is observed when the mixed layer
deepens. From the scatterplot of the Gulf Stream station, one
can however notice the existence of a plateau around the ref-
erence NO3 concentration of 1.5 mmol m−3: perturbations
of the wind below some threshold are unable to propagate
anomalies down to the nutricline depth. By contrast, the
wind reduction yields restratification of the water column,
which favours the consumption of NO3 by phytoplankton.
At INDIA station, we observe the same phenomenology as
for MLD: the wind perturbations are not strong enough to
significantly modify the NO3 concentration over the whole
400 m mixed layer.

MLD/PHY . A nonlinear decrease of PHY concentration
is observed when the mixed layer deepens. Since phyto-
plankton concentration typically dominates in the euphotic
zone and weakens at depth, phytoplankton is expulsed from
surface layers by mixing, and the MLD and PHY variables
are negatively correlated. This is an exactly opposite be-
haviour compared to nitrate at BATS and GS stations, where
mixing seems to be the dominant effect. It is interesting to
note that such negative correlation could also be interpreted
as the combined effect of shallowing MLD and increasing
irradiance, as it typically occurs during bloom events. The
INDIA station still shows a complex response which is diffi-
cult to interpret by simple mechanisms.

Finally, we analyze the scatterplots between the NO3 and
PHY biogeochemical variables.

NO3/PHY. The scatterplots are characterized by well-
defined relationships with pretty high correlations, some-
times altered by threshold effects as illustrated for the GS
station. The statistics show that surface phytoplankton gen-
erally decreases when nitrate concentration increases. On the
vertical, inverse distributions of phytoplankton and nutrient
are observed over the water column. One can note interest-
ingly that this general trend is consistent with the basic mech-
anism of phytoplankton growth which requires nutrient con-
sumption in the euphotic layer. In the LOBSTER model, the
phytoplankton growth is made possible by 2 different path-
ways: the new production sustained by nitrate, and the regen-
erated production sustained by ammonium. A cluster of high
phytoplankton concentrations can be observed at BATS sta-
tion for poor nitrate values, which might be explained by the
regenerated phytoplankton production associated to very thin
MLD. This is an example where a biogeochemical mecha-
nism, different than mixing, transforms the error propagation
in the coupled model.

In summary, the results discussed here above indicate that
the propagation of wind errors after a one-day forecast is
strongly dependent on the local stratification of the ocean,
and that mixing is the dominant mechanism explaining the
behaviour of the ensemble. In a first approximation, the
state variables (TEM, NO3, PHY) can be considered as pas-
sive tracers as long as the lead time remains small (one
day). Further, the relationships between variables are gener-
ally loosing their robustness when the mixed layer deepens.
The response of the CPBM after one day can be very com-
plex, demonstrating nonlinear relationships between state
variables with sometimes threshold effects. In the follow-
ing section, we will focus on the evolution of the ensemble
spread and the corresponding correlations with time.
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3.2 Temporal evolution of the ensemble response

The objective of this section is to analyse the stability of these
statistical relationships over a 2 week period after the appli-
cation of wind perturbations. Figures 6 (BATS station) and
7 (Gulf Stream) show the scatterplots after 1, 2, 4, 8 and
15 days of run, illustrating the temporal evolution of rela-
tionships between variables. The discussion of the temporal
evolution of the ensemble response at INDIA station has not
been addressed in detail because it leads to conclusions that
are very similar to the GS case and does not bring novel in-
formation about the stability of the ensemble covariance.

The spread of the ensemble with time is the first general
trend clearly illustrated by these 2 figures. The more the ex-
periment lasts, the larger the dispersion (following each line
from left to right), and the variables tend to decorrelate with
time. This is particularly visible for MLD/TEM, PHY/TEM

and MLD/PHY relationships, leading for instance to an al-
most complete decorrelation after 8 or 15 days between PHY
and TEM at BATS station. Note that sometimes a decorrela-
tion during the first days of run can be followed by the recor-
relation of the variables, as for example for the MLD/PHY at
the GS station before and after the 4th day of run.

The shape of the relationships may also change with time.
For instance, the nonlinear TEM/MLD relationship at BATS
station is getting almost linear after the 8th day of run (except
for small MLD values). More than that, initially well-defined
relationships such as TEM/MLD and PHY/MLD at the GS
station are becoming fuzzy after 4 days of run, and recover
some structure after 8 or 15 days, but with a different shape.
Finally, scatterplots could also disperse in such a way that no
relationship exists anymore (e.g., PHY/TEM scatterplots on
Fig. 6 after 8 days).
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As a conclusion, the ensemble response of the CPBM at
lead times greater than one day is quite complex, with often
enhanced dispersion and structural modification of the rela-
tionships. The temporal evolution of the scatterplots shows
that reasonable relationships are sometimes preserved after 4
days of wind perturbation (e.g., at BATS station), and some-
times not (e.g., at the GS Station). In particular, relationships
at BATS station obtained after a 4-day forecast could be used
to determine the cascade of errors from WND to MLD, from
MLD to TEM, and finally from MLD and TEM to PHY.
From that kind of information, it is in principle possible to
evaluate the potential utilization of observed chlorophyll data
to control the state variables of the CPBM. In order to assess
which state variable of the CPBM can be estimated using sur-
face chlorophyll measurements over typical data assimilation
time scales of 4 to 6 days, we use the examples of BATS or
GS stations after 4 days of wind perturbations. These exam-
ples illustrate how the chain of errors in Fig. 1 can be used
as a conceptual mechanism to quantify the potential perfor-
mance of a linear observational update (even if, in practice,
the observational update of sequential assimilation schemes
should not be segmented into substeps according to this chain
of errors because it would make the estimation process sub-
optimal and increase the complexity of the analysis step). A
well-known limitation of the linear methods is indeed that
the quality of the observational update requires linear rela-
tionships with sufficiently low dispersion to compute accu-
rate inverse estimates of unobserved variables. The analysis
of our results (Figs. 6 and 7) indicates that, even if a lin-
ear update might be somewhat beneficial at these stations,
the clear non-Gaussian behaviour of the ensemble ideally re-
quires more advanced methods. In the next section, we will
demonstrate how linear updating methods can be upgraded
to take into account such non-Gaussian behaviours.

4 Toward data assimilation: inference method using
anamorphosis

The diagnostics of the ensemble forecasts presented in the
previous section show the omnipresence of non-Gaussian
behaviours as well as nonlinear relationships between state
variables, which should be taken into account to produce an
optimal update of the state of the system using the available
observations. In the first subsection (Sect. 4.1), we first illus-
trate the problems that occur if a linear (Gaussian) observa-
tional update is used. This is done at the surface of the ocean
using the reference phytoplankton as observation, and each
member of the ensemble as background state. In a second
stage (Sect. 4.2), a simple nonlinear transformation of the
variables (anamorphosis) is proposed to improve the obser-
vational update. And finally, in Sect. 4.3, we discuss the im-
pact of this anamorphic transformation for the whole North
Atlantic domain.

4.1 Problems with linear observational update

In conventional Kalman filters, the linear observational up-
date is computed using the formula:

xa
= xf

+K
(
y−Hxf

)
(4)

wherexf is the forecast (or background) state,y, the obser-
vation vector,H, the observation operator andK , the Kalman
gain. It minimizes the estimation error variance (and thus
corresponds to the best linear unbiased estimate) if the gain
is computed by:

K = Pf HT
(
HPf HT

+R
)−1

(5)

wherePf is the forecast (or background) error covariance
matrix andR, the observation error covariance matrix. This
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solution also provides the absolute minimum error variance
estimate (not only the best linear one) providing that the
probability distributions are Gaussian. In this case, it also
corresponds to the maximum likelihood estimate. Con-
versely, if the pdf are not Gaussian, better estimates exist in
general.

In this paper, we restrict ourselves to the problem of es-
timating one state variable from the perfect observation of
another state variable. For instance, in Fig. 8, we estimate
the mixed layer depth from one phytoplankton observation.
We use the reference simulation (large blue dot) as observa-
tion, and in order to get a solution that is statistically valid,
we use sucessively each member of the ensemble as back-
ground (red dots). The solution will be deduced from the
distribution of the updated values (small blue dots). We first
focus on the left panel of Fig. 8 which illustrates the linear
observational update. For that specific example, formula (6)
can be rewritten

MLDa
= MLDf

+γ
σMLD

σPHY

(
PHYo

−PHYf
)

(6)

where (PHYf ,MLDf ) are the background values (red
points), PHYo is the observed value (abscissa of the large
blue dot),(σPHY,σMLD) are the ensemble standard deviation for
PHY and MLD, andγ is the linear correlation coefficient be-
tween PHY and MLD. Since the observation is perfect, all
updated values(PHYo,MLDa) (blue dots) are aligned verti-
cally on the PHYo value.

From the previous equation, it is apparent that the obser-
vational update (from the red point to the blue point) is done
along a straight line with the given slopeγ σMLD

σPHY
, which is

the slope of the linear regression line (in green on the figure)
passing through the ensemble mean (green square). Hence,
in this simple example, the ensemble observational update
can be viewed as drawing from each red point a parallel to
the green line and find the updated value at the intersection
of this line with the vertical PHY=PHYo.

But, from the ensemble displayed in Fig. 8 (red points), it
is quite clear that the pdf is far from being Gaussian. For ex-
ample, the quartiles of the marginal distributions (thin dashed
lines) are not symmetric around the median (thick dashed
line). On the other hand, in a general two-dimensional pdf,
the regression curve (for instance for MLD) is defined (e.g.
Von Mises, 1964) as the line with maximum MLD proba-
bility density for each value of the other variable (PHY).
If a pdf is Gaussian, the regression curve is a straight line,
which corresponds to the linear regression line defined above
(drawn in green in the figure). Obviously, in our example, the
maximum MLD probability for each PHY value is usually
well above or well below the linear regression line, indicat-
ing again a non-Gaussian behaviour. Hence performing the
observational update by following the linear regression line
without exploiting the real shape of the distribution always
produces suboptimal estimates, with significantly larger esti-
mation errors. Moreover, we observe in Fig. 8 that the true

regression line has a general positive curvature, so that the
linear estimate is almost systematically above the true MLD
value.

4.2 Nonlinear observational update using
anamorphosis

4.2.1 Description of the anamorphosis transformation

In order to improve the observational update, we apply here
a simplified method (similar to the one proposed by Bertino
et al., 2003) with the general idea of transforming each
marginal pdf into a pdf that is close to Gaussian. This is
achieved by performing a change of variables (anamorpho-
sis) separately for each single variable of the state vector
(every physical/biogeochemical component at every horizon-
tal/vertical location). For instance, Fig. 9 (left panel) shows
the ensemble distribution of surface nitrate at the BATS sta-
tion. Again, the pdf is obviously far from Gaussian. Let us
denote byx the original random variable, and byy=f (x),
the transformed random variable. The objective is to find
the functionf defining a change of variables (anamorpho-
sis) such that the random variabley is as close as possible
to the Gaussian pdfN (0,1). Moreover, we want to inferf
from the current ensemble description of the pdf ofx. (This
last point is the main difference with respect to the work of
Bertino et al., 2003).

In order to reach this objective, the idea is to use the
piecewise linear change of variablef remapping a set
of percentiles of the pdf ofx to the same percentiles
of N (0,1). For instance, ifxk, k=1,...,p are thep per-
centiles ofx (such thatp(x<xk)=rk), for a given set of val-
uesrk,k=1,...,p,0<rk<1,rk<rk+1), andyk are the corre-
sponding percentiles ofN (0,1), the functionf (x) writes:

f (x) =


y1 for x <x1

yk +
yk+1−yk

xk+1−xk
(x −xk) for x ∈ [xk,xk+1]

yp for x >xp

(7)

This change of variables is only uniequivocal on the
range[x1,xp] so that the reciprocal function is only defined
on the range[y1,yp]. To go back to the original space, we
use the transformationx=g(y) defined by

g(y) =


x1 for y <y1

xk +
xk+1−xk

yk+1−yk
(y −yk) for y ∈ [yk,yk+1]

xp for y >yp

(8)

To reduce as much as possible the region of the state space
out of the interval[x1,xp], a possible solution is to include in
the list of percentiles, the minimum of the ensemble asx1 (as
percentiler1=1/2n if n is the size of the ensemble) and the
maximum of the ensemble asxp (as percentilerp=

2n−1
2n

).
This definition of the anamorphosis functions corresponds to
the most simple parameterization of the tails of the distri-
bution: zero probability is assumed outside the range of the
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Fig. 9. Illustration of the anamorphosis transformation for nitrate at BATS station. The left panel shows the histogram of nitrate values in the
200-members 1-day ensemble forecast; the middle panel shows the piecewise linear change of variable mapping the nitrate percentiles to the
N (0,1) percentiles and the right panel shows the histogram of the transformed variable.

ensemble forecast. This rely on the assumption that the en-
semble forecast is a consistent (and thus unbiased) sample
of the prior probability distribution, so that these tails cor-
respond to a very small cumulated probability: if all statis-
tics are correctly parameterized, only 0.5% of the updated
values should fall outside the range [−2.807, 2.807]. If lit-
tle is known about the extreme behaviour of the system, this
may be a useful way of avoiding any kind of “extrapolation”
outside the range of values explored by the ensemble fore-
cast. More sophisticated options are nevertheless possible by
introducing a prior assumption about the tails of the proba-
bility distribution (for instance a Gaussian assumption, as in
Simon and Bertino, 2009). Whatever the parameterization of
the tails, it is certainly important to check that they are not
used more often that statistically acceptable (i.e. more than
0.5% in our case), which would indicate inappropriate en-
semble statistics (for instance because of systematic errors),
and that something should be done to improve the error pa-
rameterizations.

Figure 9 (middle panel) shows the transformation that is
obtained for the surface nitrate concentration at BATS sta-
tion, usingp=20 equidistant percentiles (dividing the pdf
into 20 equiprobable intervals), and Fig. 9 (right panel)
shows the resulting distribution in the transformed space. By
construction, this distribution has the same 20 percentiles
asN (0,1) and is thus close to Gaussian. The quality of the
transformation relies on one subjective choice, which is the
set of percentilesrk, k=1,...,p. The largerp, the more com-
plex is the change of variables that it is possible to represent.
But a complex transformation needs a large ensemble to be
properly identified. It is certainly a good policy to keepp

small with respect to the size of the ensemble (p�n), and to
distribute the percentiles as regularly as possible, for instance
(with p odd): r1=

1
2n

, rk=
k−1
p−1,2≤k≤p−1, rp=

2n−1
2n

. How-
ever, even a limited number of percentiles computed locally
using 200 ensemble members can still be somewhat differ-
ent from the asymptotic solution forn → ∞. The inaccuracy

that is introduced by not using perfectly stabilized percentiles
is similar in nature to the inaccuracy that results from non-
stabilized ensemble mean and covariance, and their effect on
the accuracy of the optimal estimates should be checked with
the same care. The various scatterplots presented in the paper
clearly suggest that the general shape of the local anamor-
phosis functions would not be significantly modified by the
addition of new particles.

Note that our approach is quite different from the
Gaussian anamorphosis algorithm proposed by Simon and
Bertino (2009) to assimilate ocean colour data in a North
Atlantic model using the EnKF. In their study indeed, each
model variables is transformed using the same monovari-
ate anamorphosis function at all grid points of the model.
Each function is thus computed with a much larger ensem-
ble so that stabilized anamorphosis functions are more eas-
ily obtained. However, in view of the high inhomogeneity
of the statistics over the North Atlantic, this solution would
not have been applicable to our problem. The inaccuracy of
the anamorphosis function resulting from an assumption of
homogeneous statistics would have been far larger than the
inaccuracy that results from the imperfect convergence of the
percentiles of the distribution. In the present implementation,
the transformation is thus computed locally using the ensem-
ble statistics obtained at each particular grid point.

It is important to remark that with the definition (7) of
the anamorphosis functions, this new solution does not in-
troduce any spurious discontinuity in the estimation prob-
lem. If all ensemble members are spatially smooth, their
percentiles and thus the anamorphosis functions are spatially
smooth as well, and the spatial correlations among trans-
formed variables can still be exploited by the observational
update. However, even if no discontinuity is introduced, the
anamorphosis transformations (whetherf andg are global
or local) are likely to modify the spatial correlation struc-
ture (i.e. the linear correlation coefficients, but not a non-
linear measure like rank correlation, which is never altered
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by anamorphosis transformations), and it would be interest-
ing to investigate whether useful (linear) spatial correlations
are introduced, amplified or destroyed by the transformation.
This is a question that remains open (whetherf andg are
global or local) and it is out of the scope of this study, which
concentrates on the modification of the correlations between
variables at the same spatial location.

4.2.2 Observational update in the transformed space

We now apply this idea to the example presented in Sect. 4.1
(Fig. 8). We thus transformseparatelythe MLD and PHY
variables using their respective percentilesxk (correspond-
ing to: rk=0.0025, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
0.9975,k=1,...,11). The transformed scatterplot is shown
in Fig. 8 (middle panel). The dotted line corresponds to the
Gaussian percentilesyk∼−1.28, −0.84, −0.52, −0.25, 0,
0.25, 0.52, 0.84, 1.28,k=2,...,10 (the two extreme ones are
not drawn). By construction, each marginal pdf (for MLD
and PHY) has got the same percentilesyk as a Gaussian pdf.
More remarkably, the mean of the transformed ensemble is
close to the origin of the axes, and the regression line (green
line) is close to the true regression curve (corresponding
to maximum MLD probability for each PHY value): these
are two features that are not guaranteed by the method and
that depend on the shape of the initial ensemble distribution.
Moreover, due to the transformation, the linear correlation
coefficient between MLD and PHY has increased from 0.85
to 0.97. We thus observe that in this particular case, it is more
appropriate to perform the ensemble observational update in
this transformed space (blue dots) since moving parallely to
the regression line (in green) is certainly here the right thing
to do (even if there are still a few members that are signifi-
cantly above the regression line).

After that, we transform the solution back into the origi-
nal space using Eq. (8) (Fig. 8, right panel). As expected,
the ensemble of updated values (blue dots) is closer to the
true state (large blue dot). The updated ensemble error vari-
ance is thus much smaller than it was using directly the linear
observational update (compare to Fig. 8, left panel). If we
also transform back the linear regression line from the trans-
formed space (the green straight line in the middle panel of
Fig. 8), we obtain the thick green curve of the right panel.
We observe that it is very close to the true nonlinear re-
gression curve (maximum MLD probability for each PHY
value). Performing the observational update in the trans-
formed space is more or less like moving along this regres-
sion curve, which leads obviously to a smaller resulting error
variance.

In order to analyse the situations in which the method is
likely to work correctly, we now redo mentally the same
exercise for some of the example scatterplots presented in
Sect. 3. Four kinds of situations may be distinguished.
(i) The data are well correlated and the regression line is lin-
ear (as for instance, in Fig. 3: WND/MLD, PHY/NO3, in

Fig. 4: WND/MLD or in Fig. 5: MLD/TEM, NO3/PHY).
In this situation (high rank correlation and high linear cor-
relation), the linear observational update already exploits
quite correctly the information contained in the observed
variable, and only little improvement can be expected from
the transformation. (ii) The data are well correlated, the
regression curve is nonlinear and monotonous (as for in-
stance MLD/TEM, MLD/NO3, MLD/PHY in Fig. 3 and
MLD/TEM, MLD/NO 3, MLD/PHY, NO3/PHY in Fig. 4).
In this situation (high rank correlation and low linear cor-
relation, see Table 1), performing a linear observational up-
date (following the linear regression line in green) is not
a good solution, and making the simple anamorphosis de-
scribed above always leads to a significant improvement.
Exploiting adequately high rank correlations is the typical
case for which the method is designed, and the solution is
in this case closer to optimality. (iii) The data are well cor-
related (nonlinearly), the regression curve is nonlinear and
non-monotonous (as for instance WND/MLD, MLD/NO3 or
MLD/PHY in Fig. 5). In this situation (low rank correlation
and low linear correlation), our simplified method does not
fully solve the problems of the linear observational update,
and remains quite suboptimal. No separate transformation of
the two variables can transform the non-monotonous regres-
sion curve into a straight line; a joint two-dimensional non-
linear transformation (or another method) would be needed
here. However, the nonlinear method is not likely to be worse
than the linear observational update. (iv) The data are poorly
correlated (as can happen after a longer forecast in Figs. 6, 7
or 8). In this situation (no rank or linear correlation), trans-
forming the variables does not help a lot: not much can any-
way be expected from the multivariate observational update.

Up to now, the method has only been applied to a state vec-
tor made of 2 variables and with a perfect observation of one
of the variable. However, the method is general and can be
applied for any number of state variables and observations.
One only needs to transform every state variables and ob-
servations separately (i.e. for every physical/biogeochemical
component at every horizontal/vertical location) and perform
the standard multivariate observational update in the trans-
formed state space. If the observation operator is complex,
transforming the corresponding observation requires com-
puting the model equivalent to that observation for each
member of the ensemble and find the functionf given by
Eq. (7) from this ensemble of value. If the observations are
not perfect, a special care must also be taken to obtain a rel-
evant Gaussian parameterization of the observation errors in
the transformed space. The additional cost of these opera-
tions with respect to the linear observational update is very
small so that the method can easily be applied to large size
systems.

It is also worth noting that the method also solves the prob-
lem of inequality constraints that can exist on the value of
some state variables, for instancea≤x≤b. The linear ob-
servational update (assuming Gaussianity) can indeed often

Ocean Sci., 6, 247–262, 2010 www.ocean-sci.net/6/247/2010/
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Fig. 10. Standard deviation of the 1-day ensemble forecast for the mixed layer depth (left panel), nitrate (middle panel) and zooplankton
(right panel) concentrations.

violate such constraints, thus leading to inappropriate esti-
mates. With anamorphosis7 and8, it is sufficient to choose
x1≥a andxp≤b for the final estimate to statisfy the inequal-
ity constraints. This can be compared to the truncated Gaus-
sian filter proposed by Lauvernet et al. (2009) to solve the
problem. By contrast to their approach, the method described
here can only deal with inequality constraints that apply sep-
arately on each state variable. Moreover, a larger size ensem-
ble is required to identify the anamorphosis than to identify a
truncated Gaussian pdf. The truncated Gaussian filter is thus
cheaper, it can deal with more general inequality constraints,
but the shape of the prior pdfs is less general (truncated Gaus-
sian pdfs are assumed).

4.3 Application of the non linear update over the North
Atlantic

The operations performed in the previous section for the
BATS station are here repeated at every model grid point,
with the only purpose of generalizing the previous results
over the whole Atlantic domain. This means that horizon-
tal correlations are not taken into account here, and that this
experiment cannot be considered as an optimal global obser-
vational update. The purpose of this simplification is still to
concentrate on the improvement of the correlations between
variables at the same spatial location. As in the previous sec-
tion, the surface phytoplankton of the reference simulation is
considered to be the observation (still assumed perfect), and
the 1-day ensemble forecast at surface is used in the same
way to compute the observational update (i) in the regular
state space and (ii) in the anamorphosed state space. The
effect of the transformation is characterized by the standard
deviation of the updated ensemble.

Figure 10 shows the standard deviation of the 1-day en-
semble forecast for the mixed layer depth, nitrate and zoo-
plankton concentration before the observational update. It
represents the standard deviation of the error that we want
to reduce using the phytoplankton observations. The maps
show that the largest MLD errors (left panel) are located in
the Northern part of the domain that corresponds to large
wind standard deviations (see Sect. 2). Large MLD errors

usually yield large NO3 errors (middle panel), as can be ex-
pected from the scheme in Fig. 1. In times, this leads to errors
in the primary and secondary productions, that are neverthe-
less confined here to the Gulf Stream region (see ZOO errors
standard deviations range, in the right panel of Fig. 10), be-
cause the spring bloom starts in that area at the time of this
experiment (15 April).

Figure 11 shows the standard deviation reduction that is
obtained with the linear observational update, i.e. the ratio
of the updated ensemble standard deviation to the ensemble
forecast standard deviation (that is shown in Fig. 10), and
Fig. 12 shows the same result obtained using the anamorpho-
sis scheme. These results can be analysed using the classifi-
cation given in Sect. 4.2.2. (i) There are regions and vari-
ables for which the linear observational update is already
very good and not much can be expected from anamorpho-
sis to significantly improve the solution. In these regions,
the variable (MLD, NO3 or ZOO) is well correlated to PHY
and the regression line is linear. (ii) There are also many
regions where the error standard deviation can be substan-
tially reduced by anamorphosis. In these regions, the vari-
ables are well correlated to PHY (high rank correlation) but
along a nonlinear regression curve, so that they can be con-
trolled through PHY observations but not with a linear anal-
ysis scheme. (iii) Finally, there are regions where nor the lin-
ear observational update, nor anamorphosis can reduce the
forecast error that was induced by the wind perturbations.
These errors cannot be controllable by PHY observations
only. Direct observations would be necessary. This mostly
corresponds to regions where the forecast error is small (see
Fig. 10). Here, the wind is thus not likely to be one of the
dominant sources of errors, so that no conclusion of prac-
tical consequence can be derived from this simplified study
involving only wind errors.

Finally, in order to investigate the performance of the
method for longer lead times, the same experiment has been
repeated for the ensemble forecast at days 2, 4, 8 and 15. In
order to summarize the results, Fig. 13 shows for each case
study, the fraction of the domain (X-axis) for which the error
reduction factor by the ensemble observational update (fully
illustrated at day 1 by the maps in Figs. 11 and 12) is lower
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Fig. 11. Ratio of the updated ensemble standard deviation to the forecast ensemble standard deviation (shown in Fig. 10), as obtained using
the linear observational update.

Fig. 12. Ratio of the updated ensemble standard deviation to the forecast ensemble standard deviation (shown in Fig. 10), as obtained using
the nonlinear observational update (linear observational update in the transformed space).
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Fig. 13.Fraction of the domain (X-axis) for which the error reduction factor by the ensemble observational update (as illustrated for instance
in Figs. 12 and 13 for day 1) is lower than a given value (Y-axis). The result is shown for the linear observational update (blue curves) and
for the anamorphosis nonlinear observational update (red curves), at day 1, 2, 4, 8 and 15 (from thick curves to thin curves). The estimated
variable is mixed layer depth (left panel), nitrate concentration (middle panel) or zooplankton concentration (right panel).

than a given value (Y-axis). Thus, the lower the curve, the
largest fraction of the domain below a given reduction factor.
For instance, at day 1 (thickest curves), the nonlinear ob-
servational update (with anamorphosis) is always better than
the linear observational update (as already diagnosed from
Figs. 11 and 12). As the lead time increases (from day 1
to day 15, from thick curves to thin curves), all three vari-
ables tend to decorrelate from phytoplankton observations
(see Sect. 3.2), so that the accuracy of the estimation is deteri-
orating with time whatever the analysis scheme. We observe
however that the nonlinear scheme remains most often signif-
icantly better from day 1 to day 15 (except for zooplankton
at day 15), which means that there are many regions where
nonlinear correlations can be exploited to improve the obser-
vational update.

5 Conclusions and perspectives

The Monte Carlo experiments that were designed to study
mixing errors in a coupled physical biogeochemical model of
the North Atlantic yield a number of conclusions in the per-
spective of ocean colour data assimilation. As a general rule,
the results of the ensemble forecasts validate the concep-
tual transfer function proposed in the introduction (Fig. 1):
the first order causal relationships summarized in the figure
lead to tight correlations. However, the response is rather
complex, depending in particular on the local stratification,
in such a way that even the general features of the proba-
bility distributions can change radically in space and time
(e.g. sign and strength of the correlation, shape of the re-
gression curves, asymmetry between positive and negative
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D. Béal et al.: Mixing errors in physical-biogeochemical models 261

anomalies, presence of thresholds, . . . ). More embarass-
ing, the tight correlations (in a nonlinear sense) observed for
short term forecasts (1 day) decrease quickly with time, and
thereby reduce the level of control that can be expected from
a partial observing system like surface temperature and sur-
face chlorophyll. Despite of this, our results suggest that, in
many regions, a significant error variance reduction (on all
variables shown in Fig. 1) can be obtained from these ob-
servations if the forecast does not exceed a few days (2 to
7 days as a function of the region), providing that the non-
linear relationships between the variables are appropriately
exploited. For longer time-scales, the decorrelation observed
in the ensemble runs could be the consequence of the short
decorrelation time scale (4 days) adopted for the wind forc-
ing perturbations, and it would be interesting to investigate
the robustness of the results by using more persistent wind
anomalies.

Nonlinearities in the model lead to many kinds of non-
Gaussian behaviours, that cannot be properly handled by
classical linear assimilation methods. In order to tackle this
problem at moderate cost (i.e. in a way that is compati-
ble with large size data assimilation problems), a simplified
approximate nonlinear scheme has been studied in this pa-
per. The idea is to perform a nonlinear change of variables
(anamorphosis) separately for each state variable (locally in
space and time), by remapping the ensemble percentiles of
their marginal distribution to Gaussian percentiles. In that
way, the additional cost of the observational update to make it
nonlinear is negligible; the main cost is in the computation of
an ensemble forecast that is sufficient in size to identify prop-
erly the transformation functions. The method has been eval-
uated using idealized inference experiments, in which several
control variables (MLD, NO3, ZOO) are estimated from a
perfect and local chlorophyll observation. The results show
that our simplified scheme is often sufficient to detect and
to exploit the nonlinear relationships between observations
and estimated variables, thus restoring the control of the sys-
tem in situations for which linear estimation fails. In many
regions of the North Atlantic, non-Gaussian behaviours are
observed, which require a nonlinear estimation algorithm.

However, these experiments are still far from simulating a
realistic analysis step of a true assimilation sequence, which
would require at least to take explictly into account the hori-
zontal correlations, and to introduce adequate parameteriza-
tions of the observation error statistics. Furthermore, these
results have been produced for wind errors only, while many
other error sources exist in basin scale CPBMs. Before gen-
eral conclusions can be reached about the controllability of
the system or about the least cost effective algorithm, it is
necessary that similar studies be attempted for other im-
portant sources of errors, like the parameters governing the
ecosystem processes, the light forcing, the vertical advec-
tion or the horizontal advection and diffusion. In following
this research scenario, one should also be aware of possi-
ble nonlinear interactions between the error sources: conclu-

sions obtained by considering them separately may no more
be valid if they are present altogether.
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Lévy, M., Gavart, M., Ḿemery, L., Caniaux, G., and Paci,
A.: A four-dimensional mesoscale map of the spring bloom
in the northeast Atlantic (POMME experiment): Results
of a prognostic model, J. Geophys. Res., 110, C07S21,
doi:10.1029/2004JC002588, 2005a..
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