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Abstract. In biogeochemical models coupled to ocean circu-and locally the ensemble percentiles of the distributions of
lation models, vertical mixing is an important physical pro- each state variable on the Gaussian percentiles. The results
cess which governs the nutrient supply and the plankton resef idealized observational updates (performed with perfect
idence in the euphotic layer. However, vertical mixing is of- observations and neglecting horizontal correlations) indicate
ten poorly represented in numerical simulations because ofhat the implementation of this anamorphosis method into se-
approximate parameterizations of sub-grid scale turbulencequential assimilation schemes can substantially improve the
wind forcing errors and other mis-represented processes sudkccuracy of the estimation with respect to classical computa-
as restratification by mesoscale eddies. Getting a sufficientions based on the Gaussian assumption.

knowledge of the nature and structure of these errors is nec-
essary to implement appropriate data assimilation methods

and to evaluate if they can be controlled by a given observa| |ntroduction

tion system.

In this paper, Monte Carlo simulations are conducted toQur understanding of the ocean biogeochemistry and ma-
study mixing errors induced by approximate wind forcings in rine ecosystems has made significant progress during the past
athree-dimensional coupled physical-biogeochemical modetiecade. Coupled physical-biogeochemical models (CPBM)
of the North Atlantic with a 14° horizontal resolution. An  are becoming a useful source of information for many prac-
ensemble forecast involving 200 members is performed durtical applications of societal and environmental importance,
ing the 1998 spring bloom, by prescribing perturbations ofsuch as the monitoring and forecasting of marine resources,
the wind forcing to generate mixing errors. The biogeochem-water quality and the ocean carbon cycle. Biogeochemical
ical response is shown to be rather complex because of normodels are bound to be an essential component of the oper-
linearities and threshold effects in the coupled model. The reational oceanographic systems that are being implemented,
sponse of the surface phytoplankton depends on the region d@br instance, in the frame of the MERSEA and MyOcean Eu-
interest and is particularly sensitive to the local stratification.ropean projects (Brasseur et al., 2009). In order to provide an
In addition, the statistical relationships computed betweenaccurate depiction of the essential biological variables, these
the various physical and biogeochemical variables reflect thenodels should be used in conjunction with global scale ob-
signature of the non-Gaussian behaviour of the system. It i$ervation systems involving ocean colour satellites and pro-
shown that significant information on the ecosystem can bsiling floats that, in the near future, will measure the sub-
retrieved from observations of chlorophyll concentration or surface concentration of oxygen, chlorophyll and nutrients
sea surface temperature if a simple nonlinear change of varite.g., Gruber et al., 2006). The optimal merging of these
ables (anamorphosis) is performed by mapping separatelyhultiple types of information requires the development of
purpose-built assimilation methods, taking into account the
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In order to design appropriate assimilation methods and ‘ wind H Mixed Layer H Mixed Layer
to evaluate the level of control that can be expected from Depth Temperature
a given observation system, it is necessary to explore the T
structure of the errors that affect the model and the observa- _ —

. . Surface Surface Nitrate within
tions. A standard way to explore model errors is to perform | chiorophyll Phytoplankton ‘{ the Mixed Layer

Monte Carlo simulations (e.g., Evensen, 1994). This requires
making prior assumptions about the possible sources of erFig. 1. lllustration of the conceptual transfer function between
rors, originating for instance in a set of model parameterswind errors and the variables of a coupled physical-biogeochemical
or in forcing functions. One then postulates a prior proba_modeL The arrows show the dominant effect that can be intuitively
bility distribution for these errors, from which a sample is €xpected from ocean mixed layer and ecosystem dynamics.
drawn. Model integrations are then performed for each el-
ement of the sample, and the resulting ensemble simulation
provides an image of the model error structure (a sample opiogeochemical state can be measured by the surface nitrate
its probability distribution). From this image, it is then pos- (NOz) and phytoplankton (PHY) concentration. The latter is
sible to diagnose how the original errors cascade on the varidirectly related to surface chlorophyll concentration (CHL), a
ous model state variables, if the errors are correlated in spacguantity that is well observed through ocean colour satellites.
and time, if robust relationships exist between observed andpy following this conceptual causal chain in the ensemble, it
unobserved variables, if these relationships are close to linlS Possible to characterize the statistical dependence between
earity, how a given observing system can be used to controlhe successive model variables and the observed quantities,
these errors, etc. Ensemble statistics can also be used to délir variations in space and time, and eventually the possi-
termine to which extent the probability distribution functions Pility to inverse the observed information back to the model
(pdfs) are Gaussian, and from this, the theoretical propertie§Pace and forcing functions. These questions are examined
of the assimilation methods required to control the errors. Inin Sect. 3.
the context of marine ecosystem modelling, it is useful forin- ~ One of the results of the ensemble simulations is that even
stance to understand the level of control that can be expectet®r short-term forecasts (1 day), the relationships between
from ocean colour data. ecosystem variables and observations are not close to lin-
A key objective of the present study is to provide a char-e€ar, so that they cannot be fully exploited by a linear esti-
acterization of mixing errors and their impact in coupled mation method. For such a system, nonlinear methods are
physical biogeochemical simulations. Another objective isuseful to improve the quality of the estimates. However, gen-
to study the implications of the observed statistical behavioureral nonlinear assimilation methods (e.qg., particle filters as in
for estimation and data assimilation methods. In this paper, &-0sa et al., 2003) which make no specific assumption about
Monte Carlo method is applied to the study of mixing errors the shape of the prior pdf are too expensive for application
in a coupled physical-biogeochemical model of the Northto large size CPBM (181CP state variables in our model),
Atlantic ocean (described in Sect. 2.1), with a specific fo- mainly because the identification of a general multivariate
cus on the analysis of the ecosystem response to these erroggf with so many state variables would require too many en-
It is indeed well known that a cautious control of the oceansemble members. Therefore, simplified solutions are needed
stratification and vertical mixing is crucial for consistent data to cope with real size problems.
assimilation in such coupled models (Berline et al., 2006), A possible approach to non-Gaussian estimation problems
because it directly affects the nutrient supply and planktonis the use of anamorphosis transformations (i.e., Bertino et
residence time in the euphotic layer. Erroneous vertical mix-al., 2003; Lenartz et al., 2007), making nonlinear changes
ing can be triggered by imperfections at different modelling of variables to transform the forecast pdf (of arbitrary shape)
stages, such as the wind forcing, the turbulent closure schemiato a Gaussian pdf. At first glance, this does not necessarily
or even the representation of mesoscale eddies through th&mplify the problem because identifying the change of vari-
restratification of the upper ocean (Oschlies, 2002). ables requires a perfect knowledge of the original multivari-
To perform the Monte Carlo experiments, perturbationsate pdf, i.e. an ensemble as large as previously mentioned for
are applied to the wind forcing, which is the physical mech- particle filters. The simplified solution that we investigate in
anism chosen here to trigger mixing errors in the coupledthis paper is to perform the change of variable separately and
model. Common knowledge suggests that these errors progecally for each state variable. In this way, a moderate size
agate into the system according to the scheme of Fig. 1. Wingnsemble is usually sufficient to identify the change of vari-
perturbations firstinduce perturbations of the mixed layer dy-able and transform each marginal pdf to a nearly Gaussian
namics which translate into modifications of the mixed layer pdf (see discussion in Sect. 4). This is obviously not suffi-
depth (MLD) and sea-surface temperature (SST). Deepeningient to guarantee that the joint distribution becomes Gaus-
or shallowing of the mixed layer then modifies the nutrient sian. However, it is usually possible to detect from the en-
supply in the euphotic layer, and subsequently the phytosemble the situations for which the approximation is accu-
plankton production in the euphotic layer. The impact on therate and the situations for which it is not. Both occur in our
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case study, so that we will be able to evaluate the relevanc@eralization of zooplankton mortality. LOBSTER is cou-
of the scheme in any situation. A quantitative evaluation of pled on-line to the circulation model without feedback of the
the expected improvement with respect to linear estimates ibiogeochemical variables on the physics. The coupling fre-
also attempted to conclude the study. guency is equal to the circulation model time-step (40 min).

The on-line coupling as well as the maximum frequency is

thought to allow accurate diagnostics of the ecosystem evo-
2 Ocean model and wind forcing perturbations lution without possible problems brought by the use of aver-
aged physical fields as an off-line configuration would need.
More detail about the model equations is available in Levy
et al. (2005a and 2005b) and about the North Atlantic imple-
mentation in Ourn@res et al. (2009).

2.1 The coupled physical-biogeochemical model

The CPBM used for the ensemble simulation was originally
developed by Ourrgres et al. (2009) for investigating the

relative importance of nutrient vs. physical data to cons_tra|n2.1_3 Reference simulation of the coupled model
the seasonal development of the phytoplankton bloom in the
North Atlantic. The components of the coupled model in-

: : . The reference simulation of the coupled model used in this
clude a NEMO/OPAOQ circulation model of the North Atlantic study corresponds to year 1998 of the FREE simulation de-

bas_ln ata 14 _horlzontal resqluﬂon (see Sect. 2.1.1), and scribed in Ourngres et al. (2009) and performed without
a biogeochemical model derived from the 6-compartment

LOBSTER formulation (see Sect. 2.1.2). The referencedata "’?S.S'T“"a“"”' In this §|mulat|on,tbe v and S.SHf'eldS.
. . X . . . are initialized to zero, while the TEM and SAL fields are in-
simulation (without wind perturbations), that is used as a

reference for the Monte Carlo simulations, is described interpolated from the Decembe_r Levitus cIi_matoIogy (Levitus
Sect 2.1.3. et al., 1998). Then, the physical model is run f(_)r_ 12 years
from 1 January, 1984 to 1 January, 1996, providing a bal-
anced physical ocean state to start the biogeochemical model
spin-up. At that time, the nitrate field is initialized with the
The circulation model is a DRAKKAR configuration (The December climatology 2001 (Conkright et al., 2002) inter-
DRAKKAR Group, 2007) of the free surface primitive equa- Polated on the model grid. The other biogeochemical fields
tion model NEMO/OPA (Madec et al., 1998). The domain &re setto constant values in the euphotic zone and to zero be-

covered is the North Atlantic basin from 28 to 80 N and  low: zooplankton is set to 0.01 mmol Nfmphytoplankton
from 98 W to 23 E, with 1/4° resolution horizontal grid  t0 0.1 mmol N/ni and ammonium, dissolved organic matter

(Barnier et al., 2006). The vertical discretization is done @nd detritus to 0.001 mmol NfinThe coupled modelisthen
using 45 geopotential levels, with a grid spacing increasing'un for 2 years starting 1 January, 1996 and using the physi-
from 6 m at the surface to 250 m at the bottom. Vertical mix- €&l 0cean state obtained after 12 years of spin-up. Guesi

ing of momentum and tracers is modelled by the TKE tur- €t &l- (2009) analysed the convergence of the run and showed
bulence closure scheme (Blanke and Delecluse, 1993), antfat the model is able to reproduce satisfying seasonal cycles
convection is parameterized with enhanced diffusivity and©f the biogeochemical variables. In this study, we will anal-
viscosity. Buffer zones are defined at the southern, northerySe the 1-month period between 15 April and 15 May, 1998,
and eastern (Mediterranean) boundaries with relaxation of-€- When the bloom event occurs.

temperature (TEM) and salinity (SAL) to Levitus climatol-

ogy (Levitus et al., 2001). The forcing fluxes are calculated2-2 Perturbed simulations

using bulk formulations and the ERA40 atmospheric forcing )

fields (Uppala et al., 2005). The prognostic variables include!n order to generate an ensemble of model runs impacted by

2.1.1 The North Atlantic Ocean circulation model

the zonal and meridional velocity components &nd V), mixing errors in th_e upper ocean, Monte Carlo simulat?ons

temperature, salinity and sea surface height (SSH). are performed using perturbations of the surface forcings.
Perturbations of the wind stress are considered here as the

2.1.2 The LOBSTER biogeochemical model only source of mixing errors, while in reality these errors

originate from a variety of approximations in the parame-
LOBSTER (LOcean Biogeochemical Simulation Tools for terization of sub-grid scale turbulence, in the specification
Ecosystem and Resources) is a nitrogen-based ecosystenifithe surface boundary conditions for momentum, heat and
model with 6 prognostic variables in the euphotic layer: ni- salinity, and from other mis-represented dynamical processes
trate (NG), ammonium (NH), phytoplankton (PHY), zoo- such as restratification by mesoscale eddies. We proceed in
plankton (ZOOQ), detritus and semi-labile dissolved organictwo steps, assuming that the uncertainty in the wind can be
nitrogen (Levy et al., 2005a). The bottom of the euphotic estimated from the variability of ERA40 winds of March,
layer is prescribed at a constant depth of 191 m. Below theApril and May during 1985—-2000: (i) the covariance of the
euphotic layer, the model considers very simple parameterwind variability is calculated using the ERA40 database,
izations of decay to nitrate, detritus sedimentation and rem-and (ii) the wind perturbations are randomly sampled from
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Fig. 2. (Left) Percentage of explained variance (left axis) and cumulated variance (right axis) for the first 50 EOFs computed from the
variability of the ERA40 1985-2000 wind archives. (Right) Wind stress standard deviation (f) kgihsulated over the used archives.

a Gaussian probability distribution function with zero mean that each EOF is a column of the squared root of the pertur-

and this pre-calculated covariance.

In practice, an ensemble composed of one wind field ev-(

ery 4 days is extracted from the 1985-2000 ERA40 winds
during the 3 months period centred on 15 April. This ensem-

ble contains 368 members representative of the season during

which the Monte Carlo simulations are performed. A multi-

bation covariance matrix.

u(t)> Z(M(t)> +a1(t) EOR +...
v(® Jpert \ V(") /reference al

+as0(t) EOFso (1)

variate EOF (Empirical Orthogonal Function) analysis of this 3 stydy of the ensemble forecast

ensemble is performed combining theand v components

of the wind, and the first 50 dominant EOFs (representingThe objective of this section is to describe the ensemble re-
80% of the wind variance) are used to generate the perturbasponse of the model to the wind perturbations described in
tions. Figure 2 (left panel) illustrates the first 50 eigenvaluesSect. 2. This response is analysed by studying the ensemble
in decreasing order, their corresponding percentage of exforecast at 14 stations in the North Atlantic (see their loca-
plained variance and the cumulated percentage of explainetion in Fig. 2), especially at BATS (Bermuda Atlantic Time
variance. Figure 2 (right panel) also shows the standard deviSeries, station 5), INDIA (Ocean Weather Station India, sta-
ation of the resulting wind stress variability which is also the tion 11) and NABE (North Atlantic Bloom Experiment, sta-
expected standard deviation of the wind stress perturbationsion 12) biogeochemical stations, and in the Gulf Stream (sta-
Itis especially large over the subpolar gyre and over the Gulftion 14, noted GS). For three of these stations (BATS, INDIA
Stream region. As mentioned above, wind perturbations genand GS), ensemble scatterplots are presented to characterize
erate anomalies of the biogeochemical model variables. Ashe relationships that can be deduced from the transfer func-
a result, a more intense ecosystem response is expected ifon in Fig. 1, i.e. between WND and MLD, MLD and TEM,
the subpolar and Gulf Stream regions. These regions are alSgLD and NOz, MLD and PHY, or NG and PHY. (WND is
where the intensity of the spring bloom is maximum in the the wind stress modulus expressed in RynTo interpret the

reference simulation.

mechanisms behind these relationships, we also analyse the

The Monte Carlo simulations are then performed usingensemble of TEM, N@and PHY vertical profiles at these
an ensemble of 200 time-varying perturbations of the windstations.

forcing. Assuming that the typical decorrelation time scale

In addition, the information extracted from the ensemble

of wind errors is about 4 days, independent samples ofare synthesized using two statistics (presented for all 14 sta-
200 members are drawn every 4 days with the covariancéions in Table 1):

defined above. These are then interpolated linearly in time to
obtain perturbations every 6 h, which is the input frequency
of forcing fields in the ocean model. In practice, this cor-
responds to sample independent coefficients for each EOF
from N (0,1) every 4 days, interpolate them in time to obtain
the perturbation amplitude; (¢) for every EOF, i = 1...50,

and them compute the perturbed wind using Eg. (1). Itis
worth noting that in Eq. (1), the normalized EOFs are multi-
plied by the squared root of the corresponding eigenvalue, so

Ocean Sci., 6, 24262, 2010

the linear correlation coefficient (Pearson):

e Y ixi =) i—Y)
JEii =2 [ i - )2
wherex=(x;)!_; andy=(y;)?_, are n-size samples of 2

random discrete variables an@ndy are the respective
means of these samples;

@)

Www.ocean-sci.net/6/247/2010/



D. Béal et al.: Mixing errors in physical-biogeochemical models 251

Table 1. Linear vs rank correlation coefficient between variables at 14 stations of the North Atlantic domain, as obtained from the 1-day

ensemble forecast. A significantly higher rank correlation (in bold) means that anamorphosis is likely to be useful.

Stations WND/MLD  MLD/TEM  MLD/NO3  TEM/PHY SAL/NO3 NGs/PHY

Mauritania (1) 0.83/0.94 —-0.88/0.97 0.87/0.97 0.85/0.96 —0.93~0.93 —-0.81/0.94
Norway (2) 0.85/0.06 0.98/0.91 0.75/0.37 —0.48/-0.01 0.97/0.93  —0.95/-0.67
New Foundland (3) 0.91/0.63 0.95/0.93 0.80/0.75—0.79/-0.59 0.99/1.00 —0.96/-0.91
Acores (4) 0.87/0.87 —0.95~1.00 0.95/0.99  0.99/0.98 —-0.97/~0.98 —0.98/-0.99
BATS (5) 0.88/0.91 —-0.78~1.00 0.85/0.97  0.99/0.98 —0.99/-0.99 —0.99/-0.95
Labrador 1 (6) 0.89/0.81  0.79/0.94 0.88/0.99 —-0.87/0.84 0.98/0.98 —0.99/-0.97
Subtropical Gyre (7) 0.72/0.92 —0.83~0.93 0.32/0.31 0.78/0.62 —0.45/-0.69 —0.84/0.61
Labrador (8) 0.76/0.69 0.29/0.37 0.89/0.94-0.31/-0.33 0.98/0.84 —1.00/0.99
Gulf Stream (9) 0.90/0.91 —-0.92/-0.98 0.89/0.4 0.91/0.99  —-0.32~0.17 0.85/0.39

Pomme (10) 0.87/0.93 —0.99/~1.00 0.96/0.99 0.99/1.00 0.05/0.41 —0.93/0.98
INDIA (11) 0.31/0.48 —1.00~0.98 0.45/0.41 0.53/0.48 0.93/0.97  —0.99/-0.98
NABE (12) 0.09/0.22 —-0.97/-0.94 0.51/0.46 0.34/0.29 0.80/0.83 —0.90/-0.86

Gulf Stream 1 (13) 0.37/0.07 —-0.67-0.64 0.70/0.32 —0.10~0.20 0.72/0.82  —0.73/0.65
Gulf Stream 2 (14) 0.22/0.13 —0.98~1.00 0.97/0.95 0.93/0.96 —0.73~.72 —0.97/0.99

— the rank correlation (Spearman) that is identical to thethe BATS station (Fig. 3), the GS station (Fig. 4) and the
linear correlation except that each valjdrespectively  INDIA station (Fig. 5). The ensemble statistics obtained at
y;) is replaced by the value of its rark (respectively  INDIA, BATS and GS provide good illustrations of statistical
S;i) in the sample (e.gR; is the index ofx; in the sorted  behaviours that are representative of very different stratifica-
sample). The sequendg (or S;) thus contains all inte-  tion conditions. INDIA is located in a high-latitude, North

gers between 1 and Atlantic region dominated by strong wind variability (Fig. 2)
and subject to strong convective events in winter. By con-
Y (Ri—R)(Si =) trast, BATS is representative of the subtropical gyre, with
I's= — — ©) rather stable winds and well stratified upper ocean through-
\/Zi(Ri _R)z\/Zi(Si —$)? out the year. The GS station is located in the inter-gyre re-
gion, with intermediate wind variability and moderate strat-
whereR andS are respectively the mean &f and S. ification conditions. The figures show five scatterplots de-

The rank correlation is useful to detect nonlinear rela- scribing the transfer function in Fig. 1, as well as ensemble
tionships between variables (see for instance Press etertical profiles of temperature, nitrate and phytoplankton.
al., 1992, chapter 14). We will discuss in sequence the propagation of uncertainties

from the wind forcing to the physical properties, and then to
We also study how these correlations between model varithe biogeochemical properties of the mixed layer.

ables evolve with time, and the time scales over which the
correlations with observed quantities can be considered ro3.1.1 Relationships between wind forcing and physical
bust enough to be exploited by a data assimilation system. properties of the mixed layer

3.1 The ensemble response at three locations As a first step, we analyze the cascade of errors from the
wind forcing to the physical variables (first line in Fig. 1).
By looking at the ensemble forecast after only one day of WND/MLD . Wind errors generate different types of re-
run, we will see that mixing is the dominant mechanism re-sponse on the mixed layer depth (see WND/MLD scatter-
sponsible for the propagation of wind forcing errors to the plots in Figs. 3, 4 and 5). As a general rule, the larger the
other state variables, in most locations. This is because thaind, the deeper the mixed layer; however, there are signif-
daily time scale is too short to trigger intense dynamical in-icant differences between the 3 situations. The scale of the
teractions between the biogeochemical variables of the LOBplots shows that the amplitude of the MLD and TEM per-
STER model. turbations observed at INDIA are significantly smaller that
The corresponding correlation statistics are given in Ta-the corresponding perturbations at BATS and GS, in spite of
ble 1 for all 14 stations shown in Fig. 2. The ensemble re-similar perturbations of the wind. Further, the spread around
sponse is analysed in details at three specific locations: ahe linear regression line is larger at the INDIA station, while

WWW.ocean-sci.net/6/247/2010/ Ocean Sci., 6, 262-2010
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such spread does not occur in the same way at the other sta- MLD/TEM . In general, the consequence of the mixed
tions. The relationship between WND and MLD is obviously layer deepening when wind forcing increases is a cooling of
nonlinear at INDIA station. For large wind anomalies, one the sea surface (see TEM/MLD plots in Figs. 3, 4 and 5).
can observe a sort of saturation of mixed layer depth perturThe mixing of warm surface water with cold water at depth
bations. This can be explained by the very different mixedresults in a cooling of the mixed layer. The TEM/MLD rela-
layer structures of the 3 reference states: at BATS, the mixedionships decrease monotonously, but not necessarily in a lin-
layer is very shallow and the turbulent energy brought by theear way. The shape of this relationship obviously depends on
wind immediately propagates down to the thermocline. Thethe shape of the vertical TEM profile. Moreover, the statis-
exactly opposite situation occurs at INDIA, where the watertics of Table 1 show very high rank correlations, meaning
column of the reference run is well mixed down to around that a quite robust relationship exist for this combination of
400 m. As a result, the mixed layer depth is relatively insen-variables (except at the Labrador station).

sitive to wind anomalies.
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3.1.2 Relationships between mixed layer and Finally, we analyze the scatterplots between the;Méd
biogeochemical properties PHY biogeochemical variables.
NOgz/PHY. The scatterplots are characterized by well-

As a second step, we analyze the cascade of errors frorefined relationships with pretty high correlations, some-
the mixed layer to biogeochemical variables (second line intimes altered by threshold effects as illustrated for the GS
Fig. 1). station. The statistics show that surface phytoplankton gen-

MLD/NO 3. Deepening of the mixed layer is expected to erally decreases when nitrate concentration increases. On the
bring nitrate to the surface by mixing nutrient-rich deep wa- vertical, inverse distributions of phytoplankton and nutrient
ter with nutrient-depleted surface water. This is exactly whatgre observed over the water column. One can note interest-
happens at BATS and GS stations, where a nonlinear increasfigly that this general trend is consistent with the basic mech-
of NOs concentration is observed when the mixed layer anism of phytoplankton growth which requires nutrient con-
deepens. From the scatterplot of the Gulf Stream station, ongumption in the euphotic layer. In the LOBSTER model, the
can however notice the existence of a plateau around the rephytoplankton growth is made possible by 2 different path-
erence N@ concentration of 1.5 mmolm: perturbations  ways: the new production sustained by nitrate, and the regen-
of the wind below some threshold are unable to propagaterated production sustained by ammonium. A cluster of high
anomalies down to the nutricline depth. By contrast, thephytoplankton concentrations can be observed at BATS sta-
wind reduction yields restratification of the water column, tion for poor nitrate values, which might be explained by the
which favours the consumption of NGy phytoplankton.  regenerated phytoplankton production associated to very thin
At INDIA station, we observe the same phenomenology asmLD. This is an example where a biogeochemical mecha-
for MLD: the wind perturbations are not strong enough to njsm, different than mixing, transforms the error propagation
significantly modify the N@ concentration over the whole in the coupled model.
400 m mixed layer. In summary, the results discussed here above indicate that

MLD/PHY . A nonlinear decrease of PHY concentration the propagation of wind errors after a One-day forecast is
is observed when the mixed layer deepens. Since phytostrongly dependent on the local stratification of the ocean,
plankton concentration typically dominates in the euphoticand that mixing is the dominant mechanism explaining the
zone and weakens at depth, phytoplankton is expulsed frombehaviour of the ensemble. In a first approximation, the
surface layers by mixing, and the MLD and PHY variables state variables (TEM, N§) PHY) can be considered as pas-
are negatively correlated. This is an exactly opposite besijve tracers as long as the lead time remains small (one
haviour compared to nitrate at BATS and GS stations, wherejay). Further, the relationships between variables are gener-
mixing seems to be the dominant effect. It is interesting toally loosing their robustness when the mixed layer deepens.
note that such negative correlation could also be interpretedhe response of the CPBM after one day can be very com-
as the combined effect of shallowing MLD and increasing plex, demonstrating nonlinear relationships between state
irradiance, as it typically occurs during bloom events. Theyariables with sometimes threshold effects. In the follow-
INDIA station still shows a complex response which is diffi- ing section, we will focus on the evolution of the ensemble
cult to interpret by simple mechanisms. spread and the corresponding correlations with time.
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3.2 Temporal evolution of the ensemble response and MLD/PHY relationships, leading for instance to an al-
most complete decorrelation after 8 or 15 days between PHY

The objective of this section is to analyse the stability of these?nd TEM at BATS station. Note that sometimes a decorrela-
statistical relationships over a 2 week period after the appli-ion during the first days of run can be followed by the recor-
cation of wind perturbations. Figures 6 (BATS station) and relation of the variables, as for example for the MLD/PHY at

7 (Gulf Stream) show the scatterplots after 1, 2, 4, 8 andthe GS station before and after the 4th day of run.

15 days of run, illustrating the temporal evolution of rela- _ 11e Shape of the relationships may also change with time.

tionships between variables. The discussion of the temporaf " instance, the nonlinear TEM/MLD relationship at BATS
evolution of the ensemble response at INDIA station has nottation is getting almostlinear after the 8th day of run (except

been addressed in detail because it leads to conclusions thigf Small MLD values). More than that, initially well-defined
are very similar to the GS case and does not bring novel inrelationships such as TEM/MLD and PHY/MLD at the GS

formation about the stability of the ensemble covariance. ~ Station are becoming fuzzy after 4 days of run, and recover
h f th le with time is the fi Isome structure after 8 or 15 days, but with a different shape.
The spread of the ensemble with time is the first general, a1y scatterplots could also disperse in such a way that no

trend clearly illustrated by these 2 figures. The more the eXyg|ationship exists anymore (e.g., PHY/TEM scatterplots on
periment lasts, the larger the dispersion (following each “neFig. 6 after 8 days).

from left to right), and the variables tend to decorrelate with
time. This is particularly visible for MLD/TEM, PHY/TEM
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Fig. 8. Observational update at BATS station {6&/32° N) using a perfect phytoplankton observation. The figure shows the 1-day ensemble
forecast (red dots), with mean (green square) and linear regression line (thin green line), the reference simulation (large blue dot) that gives
the PHY observation and the update ensemble (blue dots). The left panel illustrates a linear observational update performed in the original
state space. In the middle panel the linear observation update is performed in a transformed state space (by anamorphosis). In the right pan:
the solution showed in the middle panel is transformed back into the original state space. The linear regression line of the middle panel (thin
green line) transforms into the thick green line of the right panel. Dashed lines are medianes, and dotted lines are percentiles (quartiles in the
left panel and deciles in the other panels).

As a conclusion, the ensemble response of the CPBM a#f Toward data assimilation: inference method using
lead times greater than one day is quite complex, with often anamorphosis
enhanced dispersion and structural modification of the rela-
tionships. The temporal evolution of the scatterplots showsl he diagnostics of the ensemble forecasts presented in the
that reasonable relationships are sometimes preserved aftef4evious section show the omnipresence of non-Gaussian
days of wind perturbation (e.g., at BATS station), and some-behaviours as well as nonlinear relationships between state
times not (e.g., at the GS Station). In particular, relationshipsvariables, which should be taken into account to produce an
at BATS station obtained after a 4-day forecast could be use@ptimal update of the state of the system using the available
to determine the cascade of errors from WND to MLD, from observations. In the first subsection (Sect. 4.1), we first illus-
MLD to TEM, and finally from MLD and TEM to PHY. trate the problems that occur if a linear (Gaussian) observa-
From that kind of information, it is in principle possible to tional update is used. This is done at the surface of the ocean
evaluate the potential utilization of observed chlorophyll datausing the reference phytoplankton as observation, and each
to control the state variables of the CPBM. In order to assesgnember of the ensemble as background state. In a second
which state variable of the CPBM can be estimated using surstage (Sect. 4.2), a simple nonlinear transformation of the
face chlorophyll measurements over typical data assimilatiorvariables (anamorphosis) is proposed to improve the obser-
time scales of 4 to 6 days, we use the examples of BATS onvational update. And finally, in Sect. 4.3, we discuss the im-
GS stations after 4 days of wind perturbations. These exampact of this anamorphic transformation for the whole North
ples illustrate how the chain of errors in Fig. 1 can be usedAtlantic domain.
as a conceptual mechanism to quantify the potential perfor-
mance of a linear observational update (even if, in practice,A"1
the observational update of sequential assimilation schemersn conventional Kalman filters. the linear observational u
should not be segmented into substeps according to this chain_.~ . . ’ . b-
: T date is computed using the formula:
of errors because it would make the estimation process sub-
optimal and i.nc.regse the complexity of the analysis step). Aa _yf 1K (y— HXf) (4)
well-known limitation of the linear methods is indeed that
the quality of the observational update requires linear rela
tionships with sufficiently low dispersion to compute accu-
rate inverse estimates of unobserved variables. The analysig,i, |+ minimizes the estimation error variance (and thus
of our results.(Flgs. 6 and 7) |nd|cate§ .that, even if a I.'n' corresponds to the best linear unbiased estimate) if the gain
ear update might be somewhat beneficial at these stationg, computed by:
the clear non-Gaussian behaviour of the ensemble ideally re-
quires more advanped methoqs. In the next section, we will, _ pryT (HPfHT +R>7l )
demonstrate how linear updating methods can be upgrade
to take into account such non-Gaussian behaviours.

Problems with linear observational update

‘Wherex/ is the forecast (or background) stayethe obser-
vation vectorH, the observation operator akd the Kalman

whereP/ is the forecast (or background) error covariance
matrix andR, the observation error covariance matrix. This
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solution also provides the absolute minimum error varianceregression line has a general positive curvature, so that the
estimate (not only the best linear one) providing that thelinear estimate is almost systematically above the true MLD
probability distributions are Gaussian. In this case, it alsovalue.
corresponds to the maximum likelihood estimate. Con-
versely, if the pdf are not Gaussian, better estimates exist if.2 Nonlinear observational update using
general. anamorphosis

In this paper, we restrict ourselves to the problem of es-
timating one state variable from the perfect observation of4-2.1 ~Description of the anamorphosis transformation
another state variable. For instance, in Fig. 8, we estimate ) )
the mixed layer depth from one phytoplankton observation.!n ©rder to improve the observational update, we apply here
We use the reference simulation (large blue dot) as observa? SimPplified method (similar to the one proposed by Bertino
tion, and in order to get a solution that is statistically valid, €t @l 2003) with the general idea of transforming each

we use sucessively each member of the ensemble as bacR@rdinal pdf into a pdf that is close to Gaussian. This is
ground (red dots). The solution will be deduced from the achieved by performing a change of variables (anamorpho-

distribution of the updated values (small blue dots). We firstSiS) Separately for each single variable of the state vector
focus on the left panel of Fig. 8 which illustrates the linear (EVerY Physical/biogeochemical component at every horizon-

observational update. For that specific example, formula (6)taI/verticaI location). For instance, Fig. 9 (left panel) shows
can be rewritten the ensemble distribution of surface nitrate at the BATS sta-

tion. Again, the pdf is obviously far from Gaussian. Let us
MLD? = MLDf_H/UMi (PHYO - PHYf) (6)  denote byx the original random variable, and by= f (x),
Oy the transformed random variable. The objective is to find
where (PHY/ ,MLD/) are the background values (red the function /' defining a change o_f variables (anamor_pho—
points), PHY is the observed value (abscissa of the largeSiS) Such that the random variableis as close as possible
blue dot),(0my, ows ) are the ensemble standard deviation for 10 the Gaussian pdk/(0,1). Moreover, we want to infey
PHY and MLD, andy is the linear correlation coefficient be- 10 the current ensemble description of the pdio{This
tween PHY and MLD. Since the observation is perfect, all last pomt is the main difference with respect to the work of
updated valuegPHY?,MLD) (blue dots) are aligned verti- Bertinoetal., 2003). S
cally on the PHY value. .In or.der 'Fo reach this objectlye, the idea is to use the
From the previous equation, it is apparent that the obserPi€cewise linear change of variablg remapping a set
vational update (from the red point to the blue point) is done®f Percentiles of the pdf ofv to the same percentiles
along a straight line with the given slopeZ.2, which is of N'(0,1). For instance, ifxx, k=1,..., p are thep per-
the slope of the linear regression line (in gréen on the figureFentiles ofx (such thatp (x <xi)=ry), for a given set of val-
passing through the ensemble mean (green square). Hencd€S7k.k=1,...,p,0<ri<1ri<ri+1), andyy are the corre-
in this simple example, the ensemble observational updatéPonding percentiles 0¥'(0, 1), the functionf (x) writes:
can be viewed as drawing from each red point a parallel to forx < x
the green line and find the updated value at the intersection - N !
of this line with the vertical PH¥:PHY?. SO =1 et 5=y (=0 forx € [xe, xe @)
But, from the ensemble displayed in Fig. 8 (red points), it Yp forx > x,

is quite clear that the pdfis far from being Gaussian. FOr €X—rhis change of variables is only uniequivocal on the
ample, the quatrtiles of the marginal distributions (thin daShedrange[xl,xp] so that the reciprocal function is only defined

lines) are not symmetric around the median (thick dashed,, e rangdy1. y,]. To go back to the original space, we
line). On the other hand, in a general two-dimensional pdf, sa the transformatian=g(y) defined by

the regression curve (for instance for MLD) is defined (e.qg.

Von Mises, 1964) as the line with maximum MLD proba- X1 fory <y
bility depsny for .each value of the other \_/ar|able .(PHY). g ={ x+ fv‘iﬁ_j;/k«(y_yk) fory € [y, yes1l (8)
If a pdf is Gaussian, the regression curve is a straight line, X, fory >y,

which corresponds to the linear regression line defined above

(drawn in green in the figure). Obviously, in our example, the To reduce as much as possible the region of the state space
maximum MLD probability for each PHY value is usually out of the intervalx1, x,], a possible solution is to include in
well above or well below the linear regression line, indicat- the list of percentiles, the minimum of the ensemble a&s

ing again a non-Gaussian behaviour. Hence performing theercentilery;=1/2n if n is the size of the ensemble) and the
observational update by following the linear regression linemaximum of the ensemble asg, (as percentilerp=2”7*l).
without exploiting the real shape of the distribution always This definition of the anamorphosis functions corresponds to
produces suboptimal estimates, with significantly larger estithe most simple parameterization of the tails of the distri-
mation errors. Moreover, we observe in Fig. 8 that the truebution: zero probability is assumed outside the range of the
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Fig. 9. lllustration of the anamorphosis transformation for nitrate at BATS station. The left panel shows the histogram of nitrate values in the
200-members 1-day ensemble forecast; the middle panel shows the piecewise linear change of variable mapping the nitrate percentiles to th
N (0,1) percentiles and the right panel shows the histogram of the transformed variable.

ensemble forecast. This rely on the assumption that the enthat is introduced by not using perfectly stabilized percentiles
semble forecast is a consistent (and thus unbiased) sample similar in nature to the inaccuracy that results from non-
of the prior probability distribution, so that these tails cor- stabilized ensemble mean and covariance, and their effect on
respond to a very small cumulated probability: if all statis- the accuracy of the optimal estimates should be checked with
tics are correctly parameterized, only 0.5% of the updatedhe same care. The various scatterplots presented in the paper
values should fall outside the range4.807, 2.807]. If lit-  clearly suggest that the general shape of the local anamor-
tle is known about the extreme behaviour of the system, thigphosis functions would not be significantly modified by the
may be a useful way of avoiding any kind of “extrapolation” addition of new particles.
outside the range of values explored by the ensemble fore- Note that our approach is quite different from the
cast. More sophisticated options are nevertheless possible kgaussian anamorphosis algorithm proposed by Simon and
introducing a prior assumption about the tails of the proba-Bertino (2009) to assimilate ocean colour data in a North
bility distribution (for instance a Gaussian assumption, as inatlantic model using the EnKF. In their study indeed, each
Simon and Bertino, 2009) Whatever the parameterization Oh’]ode| variables is transformed using the same monovari-
the tails, it is certainly important to check that they are not ate anamorphosis function at all grid points of the model.
used more often that statistically acceptable (i.e. more thareach function is thus computed with a much larger ensem-
0.5% in our case), which would indicate inappropriate en-pje so that stabilized anamorphosis functions are more eas-
semble statistics (for instance because of systematic errorsjy obtained. However, in view of the high inhomogeneity
and that something should be done to improve the error paof the statistics over the North Atlantic, this solution would
rameterizations. not have been applicable to our problem. The inaccuracy of
Figure 9 (middle panel) shows the transformation that isthe anamorphosis function resulting from an assumption of
obtained for the surface nitrate concentration at BATS stanomogeneous statistics would have been far larger than the
tion, using p=20 equidistant percentiles (dividing the pdf inaccuracy that results from the imperfect convergence of the
into 20 equiprobable intervals), and Fig. 9 (right panel) percentiles of the distribution. In the presentimplementation,
shows the resulting distribution in the transformed space. Bythe transformation is thus computed locally using the ensem-
construction, this distribution has the same 20 percentiledle statistics obtained at each particular grid point.
asN(0,1) and is thus close to Gaussian. The quality of the It is important to remark that with the definition (7) of
transformation relies on one subjective choice, which is thethe anamorphosis functions, this new solution does not in-
set of percentiles,, k=1, ..., p. The largerp, the more com-  troduce any spurious discontinuity in the estimation prob-
plex is the change of variables that it is possible to represeniem. If all ensemble members are spatially smooth, their
But a complex transformation needs a large ensemble to bpercentiles and thus the anamorphosis functions are spatially
properly identified. It is certainly a good policy to kegp  smooth as well, and the spatial correlations among trans-
small with respect to the size of the ensemble), andto  formed variables can still be exploited by the observational
distribute the percentiles as regularly as possible, for instancepdate. However, even if no discontinuity is introduced, the
(with p odd): r1=4, rk=f7;_31',2§k§p—l, rp=2=1 How-  anamorphosis transformations (whettfeand g are global
ever, even a limited number of percentiles computed locallyor local) are likely to modify the spatial correlation struc-
using 200 ensemble members can still be somewhat differture (i.e. the linear correlation coefficients, but not a non-
ent from the asymptotic solution far— oo. The inaccuracy linear measure like rank correlation, which is never altered
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by anamorphosis transformations), and it would be interest¥ig. 4: WND/MLD or in Fig. 5: MLD/TEM, NGs/PHY).
ing to investigate whether useful (linear) spatial correlationsin this situation (high rank correlation and high linear cor-
are introduced, amplified or destroyed by the transformationrelation), the linear observational update already exploits
This is a question that remains open (whetlfeand g are  quite correctly the information contained in the observed
global or local) and it is out of the scope of this study, which variable, and only little improvement can be expected from
concentrates on the modification of the correlations betweenhe transformation. (ii) The data are well correlated, the
variables at the same spatial location. regression curve is nonlinear and monotonous (as for in-
stance MLD/TEM, MLD/NQG, MLD/PHY in Fig. 3 and
4.2.2 Observational update in the transformed space MLD/TEM, MLD/NO 3, MLD/PHY, NO3/PHY in Fig. 4).
In this situation (high rank correlation and low linear cor-

We now apply this idea to the example presented in Sect. 4.%elation, see Table 1), performing a linear observational up-
(Fig. 8). We thus transforrseparatelythe MLD and PHY  date (following the linear regression line in green) is not
variables using their respective percentilgs(correspond-  a good solution, and making the simple anamorphosis de-
ing to: r,=0.0025, 01, 0.2, 0.3, 04, 05, 06,07, 08,09,  scribed above always leads to a significant improvement.
0.9975,k=1,...,11). The transformed scatterplot is shown Exploiting adequately high rank correlations is the typical
in Fig. 8 (middle panel). The dotted line corresponds to thecase for which the method is designed, and the solution is
Gaussian percentileg,~—1.28, —0.84, —0.52, —0.25, 0,  in this case closer to optimality. (iii) The data are well cor-
0.25,052, 084, 128,k=2,...,10 (the two extreme ones are related (nonlinearly), the regression curve is nonlinear and
not drawn). By construction, each marginal pdf (for MLD non-monotonous (as for instance WND/MLD, MLD/N®©r
and PHY) has got the same percentijgss a Gaussian pdf. MLD/PHY in Fig. 5). In this situation (low rank correlation
More remarkably, the mean of the transformed ensemble isind low linear correlation), our simplified method does not
close to the origin of the axes, and the regression line (greeffully solve the problems of the linear observational update,
line) is close to the true regression curve (correspondingand remains quite suboptimal. No separate transformation of
to maximum MLD probability for each PHY value): these the two variables can transform the non-monotonous regres-
are two features that are not guaranteed by the method anglon curve into a straight line; a joint two-dimensional non-
that depend on the shape of the initial ensemble distributionlinear transformation (or another method) would be needed
Moreover, due to the transformation, the linear correlationhere. However, the nonlinear method is not likely to be worse
coefficient between MLD and PHY has increased from 0.85than the linear observational update. (iv) The data are poorly
t0 0.97. We thus observe that in this particular case, it is morecorrelated (as can happen after a longer forecast in Figs. 6, 7
appropriate to perform the ensemble observational update iar 8). In this situation (no rank or linear correlation), trans-
this transformed space (blue dots) since moving parallely tcforming the variables does not help a lot: not much can any-
the regression line (in green) is certainly here the right thingway be expected from the multivariate observational update.
to do (even if there are still a few members that are signifi- Up to now, the method has only been applied to a state vec-
cantly above the regression line). tor made of 2 variables and with a perfect observation of one

After that, we transform the solution back into the origi- of the variable. However, the method is general and can be
nal space using Eq8) (Fig. 8, right panel). As expected, applied for any number of state variables and observations.
the ensemble of updated values (blue dots) is closer to th@©ne only needs to transform every state variables and ob-
true state (large blue dot). The updated ensemble error variservations separately (i.e. for every physical/biogeochemical
ance is thus much smaller than it was using directly the linearcomponent at every horizontal/vertical location) and perform
observational update (compare to Fig. 8, left panel). If wethe standard multivariate observational update in the trans-
also transform back the linear regression line from the transformed state space. If the observation operator is complex,
formed space (the green straight line in the middle panel oftransforming the corresponding observation requires com-
Fig. 8), we obtain the thick green curve of the right panel. puting the model equivalent to that observation for each
We observe that it is very close to the true nonlinear re-member of the ensemble and find the functiprgiven by
gression curve (maximum MLD probability for each PHY Eq. (7) from this ensemble of value. If the observations are
value). Performing the observational update in the transmnot perfect, a special care must also be taken to obtain a rel-
formed space is more or less like moving along this regresevant Gaussian parameterization of the observation errors in
sion curve, which leads obviously to a smaller resulting errorthe transformed space. The additional cost of these opera-
variance. tions with respect to the linear observational update is very

In order to analyse the situations in which the method issmall so that the method can easily be applied to large size
likely to work correctly, we now redo mentally the same systems.
exercise for some of the example scatterplots presented in Itis also worth noting that the method also solves the prob-
Sect. 3. Four kinds of situations may be distinguished.lem of inequality constraints that can exist on the value of
(i) The data are well correlated and the regression line is lin-some state variables, for instanegx<b. The linear ob-
ear (as for instance, in Fig. 3: WND/MLD, PHY/NQin servational update (assuming Gaussianity) can indeed often
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Fig. 10. Standard deviation of the 1-day ensemble forecast for the mixed layer depth (left panel), nitrate (middle panel) and zooplankton
(right panel) concentrations.

violate such constraints, thus leading to inappropriate estiusually yield large N@ errors (middle panel), as can be ex-
mates. With anamorphosisand8, it is sufficient to choose pected from the scheme in Fig. 1. In times, this leads to errors
x1>a andx, <b for the final estimate to statisfy the inequal- in the primary and secondary productions, that are neverthe-
ity constraints. This can be compared to the truncated Gaudess confined here to the Gulf Stream region (see ZOO errors
sian filter proposed by Lauvernet et al. (2009) to solve thestandard deviations range, in the right panel of Fig. 10), be-
problem. By contrast to their approach, the method describedause the spring bloom starts in that area at the time of this
here can only deal with inequality constraints that apply sep-experiment (15 April).
arately on each state variable. Moreover, a larger size ensem- Figure 11 shows the standard deviation reduction that is
ble is required to identify the anamorphosis than to identify agptained with the linear observational update, i.e. the ratio
truncated Gaussian pdf. The truncated Gaussian filter is thugf the updated ensemble standard deviation to the ensemble
cheaper, it can deal with more general inequality constraintsforecast standard deviation (that is shown in Fig. 10), and
but the shape of the prior pdfs is less general (truncated Gaus=ig. 12 shows the same result obtained using the anamorpho-
sian pdfs are assumed). sis scheme. These results can be analysed using the classifi-
cation given in Sect. 4.2.2. (i) There are regions and vari-
4.3 Application of the non linear update over the North  ables for which the linear observational update is already
Atlantic very good and not much can be expected from anamorpho-
sis to significantly improve the solution. In these regions,
The operations performed in the previous section for thethe variable (MLD, NQ or ZOO) is well correlated to PHY
BATS station are here repeated at every model grid pointand the regression line is linear. (ii) There are also many
with the only purpose of generalizing the previous resultsregions where the error standard deviation can be substan-
over the whole Atlantic domain. This means that horizon- tially reduced by anamorphosis. In these regions, the vari-
tal correlations are not taken into account here, and that thigibles are well correlated to PHY (high rank correlation) but
experiment cannot be considered as an optimal global obseglong a nonlinear regression curve, so that they can be con-
vational update. The purpose of this simplification is still to trolled through PHY observations but not with a linear anal-
concentrate on the improvement of the correlations betweensis scheme. (iii) Finally, there are regions where nor the lin-
variables at the same spatial location. As in the previous secear observational update, nor anamorphosis can reduce the
tion, the surface phytoplankton of the reference simulation isforecast error that was induced by the wind perturbations.
considered to be the observation (still assumed perfect), an@hese errors cannot be controllable by PHY observations
the 1-day ensemble forecast at surface is used in the sanmnly. Direct observations would be necessary. This mostly
way to compute the observational update (i) in the regularcorresponds to regions where the forecast error is small (see
state space and (ii) in the anamorphosed state space. THheg. 10). Here, the wind is thus not likely to be one of the
effect of the transformation is characterized by the standardlominant sources of errors, so that no conclusion of prac-
deviation of the updated ensemble. tical consequence can be derived from this simplified study
Figure 10 shows the standard deviation of the 1-day eninvolving only wind errors.
semble forecast for the mixed layer depth, nitrate and zoo- Finally, in order to investigate the performance of the
plankton concentration before the observational update. lmethod for longer lead times, the same experiment has been
represents the standard deviation of the error that we wantepeated for the ensemble forecast at days 2, 4, 8 and 15. In
to reduce using the phytoplankton observations. The mapsrder to summarize the results, Fig. 13 shows for each case
show that the largest MLD errors (left panel) are located instudy, the fraction of the domain (X-axis) for which the error
the Northern part of the domain that corresponds to largereduction factor by the ensemble observational update (fully
wind standard deviations (see Sect. 2). Large MLD errorsillustrated at day 1 by the maps in Figs. 11 and 12) is lower
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Fig. 11. Ratio of the updated ensemble standard deviation to the forecast ensemble standard deviation (shown in Fig. 10), as obtained usinc
the linear observational update.

Fig. 12. Ratio of the updated ensemble standard deviation to the forecast ensemble standard deviation (shown in Fig. 10), as obtained usinc
the nonlinear observational update (linear observational update in the transformed space).
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Fig. 13. Fraction of the domain (X-axis) for which the error reduction factor by the ensemble observational update (as illustrated for instance
in Figs. 12 and 13 for day 1) is lower than a given value (Y-axis). The result is shown for the linear observational update (blue curves) and
for the anamorphosis nonlinear observational update (red curves), at day 1, 2, 4, 8 and 15 (from thick curves to thin curves). The estimated
variable is mixed layer depth (left panel), nitrate concentration (middle panel) or zooplankton concentration (right panel).

than a given value (Y-axis). Thus, the lower the curve, the5 Conclusions and perspectives

largest fraction of the domain below a given reduction factor.

For instance, at day 1 (thickest curves), the nonlinear ob- . .

servational update (with anamorphosis) is always better tha|:|- he Monte Carlo experiments that were designed to study

the linear observational update (as already diagnosed fronTliXilgg err]rc;\rf in facqulpdled phyiical t]?iogeolch_emicql n;]odel of
Figs. 11 and 12). As the lead time increases (from day 1the North Atlantic yield a number of conclusions in the per-

to day 15, from thick curves to thin curves), all three vari- spective of ocean colour data assimilation. As a general rule,

ables tend to decorrelate from phytoplankton observation§he results of the ensemble forecasts validate the concep-

(see Sect. 3.2), so that the accuracy of the estimation is deterﬂjal transfer function proposed in the introduction (Fig. 1):

orating with time whatever the analysis scheme. We observ he first order causal relationships summarized in the figure
however that the nonlinear scheme remains most often signif-ead to tight correlations. However, the response is rather

icantly better from day 1 to day 15 (except for zooplankton f:omplex, depending in particular on the local stratification,

at day 15), which means that there are many regions wher%} such a way that even the general features of the proba-

nonlinear correlations can be exploited to improve the obser- lity d_|str|but|ons can change radlcally in space and time
vational update. (e.g. sign and strength of the correlation, shape of the re-

gression curves, asymmetry between positive and negative
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anomalies, presence of thresholds, ...). More embarasssions obtained by considering them separately may no more
ing, the tight correlations (in a nonlinear sense) observed fobe valid if they are present altogether.
short term forecasts (1 day) decrease quickly with time, and
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