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The restoration techniques are usually oriented toward modeling the type of degradation in 

order to infer the inverse process for recovering the given image. This approach usually 

involves the option for a criterion to numerically evaluate the quality of the resulted image and 

consequently the restoration process can be expressed in terms of an optimization problem. 

Most of the approaches are essentially based on additional hypothesis concerning the 

statistical properties of images. However, in real life applications, there is no enough 

information to support a certain particular image model, and consequently model-free 

developments have to be used instead. In our approaches the problem of image 

denoising/restoration is viewed as an information transmission/processing system, where the 

signal representing a certain clean image is transmitted through a noisy channel and only a 

noise-corrupted version is available. The aim is to recover the available signal as much as 

possible by using different noise removal techniques that is to build an accurate approximation 

of the initial image. Unfortunately, a series of image qualities, as for instance clarity, 

brightness, contrast, are affected by the noise removal techniques and consequently there is a 

need to partially restore them on the basis of information extracted exclusively from data.  

Following a brief description of the image restoration framework provided in the introductory 

part, a PCA-based methodology is presented in the second section of the paper.  The basics of a 

new informational-based development for image restoration purposes and scatter 

matrix-based methods are given in the next two sections. The final section contains concluding 

remarks and suggestions for further work.  

Keywords: Principal Component Analysis, Scatter Matrix, Bhattacharyya Upper Margin, 

Optimal Linear Compression/Decompression, Image Restoration  

 

Introduction 

Image restoration methods are used to 

improve the appearance of an image by the 

application of a restoration process based on a 

mathematical model to explain the way the 

image was distorted by noise. Examples of 

types of degradation include blurring caused 

by motion or atmospheric disturbance, 

geometric distortion caused by imperfect 

lenses, superimposed interference patterns 

caused by mechanical systems, and noise 

induced by electronic sources. 

Usually, it is assumed that the degradation 

model is either known or can be estimated 

from data. The general idea is to model the 

degradation process and then apply the 

inverse process to restore the original image. 

In cases when the available knowledge does 

not allow to adopt a reasonable model for the 

degradation mechanism it becomes necessary 

to extract information about the noise directed 

by data and then to use this information for 

restoration purposes. The knowledge about 

the particular generation process of the image 

is application specific. For example, it proves 

helpful to know how a specific lens distorts an 

image or how mechanical vibration from a 

satellite affects an image. This information 

can be gathered from the analysis of the image 

acquisition process and by applying image 

analysis techniques to samples of degraded 

images.  

The restoration can be viewed as a process 

that attempts to reconstruct or recover a 

degraded image using some available 

knowledge about the degradation mechanism. 

Typically, the noise can be modeled with 

either a Gaussian, uniform or salt and pepper 

distribution. The restoration techniques are 

usually oriented toward modeling the type of 
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degradation in order to infer the inverse 

process for recovering the given image. This 

approach usually involves the option for a 

criterion to numerically evaluate the quality 

of the resulted image and consequently the 

restoration process can be expressed in terms 

of an optimization problem.    

The multi-resolution support set is a data 

structure suitable for developing noise 

removal algorithms [2], [3]. The 

multi-resolution algorithms perform the 

restoration tasks by combining, at each 

resolution level, according to a certain rule, 

the pixels of a binary support image. Some 

others use a selective wavelet shrinkage 

algorithm for digital image denoising aiming 

to improve the performance. For instance 

Balster [3] proposes an attempt of this sort 

together with a computation scheme, the 

denoising methodology incorporated in this 

algorithm involving a two-threshold 

validation process for real time selection of 

wavelet coefficients.  

A new solution of the denoising problem 

based on the description length of the 

noiseless data in the subspace of the basis is 

proposed in [4], where the desired description 

length is estimated for each subspace and the 

selection of the subspace corresponding to the 

minimum length is suggested.  

In [2], a method for removing Gaussian noise 

from digital images based on the combination 

of the wavelet packet transform and the PCA 

is proposed. The method leads to tailored 

filters by applying the Karhunen-Loeve 

transform in the wavelet packet domain and 

acts with a suitable shrinkage function on 

these new coefficients, allowing the noise 

removal without blurring the edges and other 

important characteristics of the images. 

Wavelet thresholding methods modifying the 

noisy coefficients were proposed by several 

authors [5], [27]. The attempts are based on 

the idea that images are represented by large 

wavelet coefficients that have to be preserved 

whereas the noise is distributed across the set 

of small coefficients that have to be canceled. 

Since the edges lead to a considerable amount 

of wavelet coefficients of lower values than 

the threshold, the cancellation of these 

wavelet coefficients may cause small 

oscillations near the edges resulting spurious 

wavelets in the restored image.  

Most of the approaches are essentially based 

on additional hypothesis concerning the 

statistical properties of images. However, in 

real life applications, there is no enough 

information to support a certain particular 

image model, and consequently model-free 

developments have to be used instead.  

In our approaches the problem of image 

denoising/restoration is viewed as an 

information transmission/processing system, 

where the signal X  representing a certain 

clean image is transmitted through a noisy 

channel and only a noise-corrupted version 
 X


 is available. The aim is to recover  X


as much as possible by using different noise 

removal techniques that is to build an accurate 

approximation of X . Unfortunately, a series 

of image qualities, as for instance clarity, 

brightness, contrast, are affected by the noise 

removal techniques and consequently there is 

a need to partially restore them on the basis of 

information extracted exclusively from data. 

Assume that a noise-removing binomial filter 

is applied to the output   X


 resulting 
  F X


, and   F X


is submitted to a 

restoration process yielding to X , an 

approximation of the X , where the 

restoration process is based  exclusively on  
 X  and   XF . We assume that, for each 

image X , a series of its noisy variants 
   22

1 ,..., NXX  are available whose 

corresponding filtered versions are 
   X X N1

1 1
,..., . As an working assumption, we 

consider that the noisy variants were 

generated independently, while the noise that 

affected the initial clean image X preserved 

its statistical properties. We consider the 

normal model for noise, that is 
    X X N1

2 2
,..., is a Bernoullian sample of the 

random r c -dimensional vector
 X X


  , where     N ,  and  

    X X N1

1 1
,...,  is a sample of the filtered 

random vector
  XF , where  X


and 
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  F X


are normally distributed. Let us 

denote by
     

1
 E F X ,      XE2 ,

11
, 22

, the expectations and the covariance 

matrices of   F X


and  X


respectively.  

In case the assumption that 2  r c

-dimensional vector 
     X F X
 

, is 

normally distributed holds, the conditional 

distribution of   F X


on  X


is

       N X 
1

12 22

1 2

11 2   , . , where 

     E F X X
 

=        
1

12 22

1 2
   X  

is the regression function of   F X


 on 

 X


, and ,

. 

It is well known that  

minimizes the variance of 
   YXF 

in the 

class of random vectors  X


-measurable and 

maximizes the correlation coefficient 
   YXF ,  between 

  XF and Y in the 

class of linear functions of . Moreover, 

 is -measurable and, 

since -  and  

are independent, the whole information 

carried by  with respect to is 

contained by .  

 

2 Principal Component Analysis (PCA) – 

based Approaches for Linear 

Compression/ Decompression 

The aim of this section is to present the 

PCA-based framework for a series of image 

processing tasks, as noise removal and image 

recognition. For simplicity sake, we assume 

that the image is represented by a 

n-dimensional real-valued random vector X of 

mean 0 and covariance matrix Σ. The main 

idea is that, as it is often experimentally 

confirmed, the minor components of the 

repartition of X contain the maximum amount 

of noise. Consequently, a possible strategy to 

clean the image is to filter it by applying a 

compression process that yields to a 

representation of the image in the space of 

major components followed by a lifting or 

decompression step that produces cleaned 

versions of X in the initial space. Our 

approach in designing the 

compression/decompression filters is of linear 

type, that is both modules are modeled in 

terms of linear transforms. If we denote by m 

the desired dimension of the feature space, 

nm 1 , and let A and B be the linear 

compression, and decompression filters 

respectively, that is the entries of the 

m-dimensional representation of Y are linear 

combinations of the entries of X, and the 

columns of A can be viewed as feature vectors 

(Figure 1). Since the compression should 

minimized the loss of information, usually the 

design of the compression filters aims to 

remove redundancy from the processed image 

X. Consequently, the feature vectors should 

be at least linearly independent, that is a 

natural requirement is to assume   mArank 

. The most popular criterion function to 

express the quality of a linear 

compression/decompression scheme is the 

mean error   









22 ˆ,, XXEBAm and, 

for given m, the optimal linear 

compression/decompression scheme  **, BA  

minimizes  BAm ,,2 , that is 

 
 

 BAmBA

nxm

nxm

MB
mArank

MA
,,minarg, 2** 





 . This 

optimization problem can be solved by 

decomposing it into two simpler optimization 

problems, namely, 

P1: For given nxmMA such that   mArank 

, compute    BAmAB
nxmMB

,,minarg 2* 


 . 

P2: Compute

 

  ABAmA

mArank
MA nxm

*2* ,,minarg 



  

     12  cov ,F X X
 

     11 2 11 12 22

1

12.    T

     E F X X
 

 X


     E F X X
   X



  F X
      E F X X

   X


 X
   F X



     E F X X
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       X           XAY T              BYX ˆ  
 

    n-dimensional         m-dimensional                          n-dimensional 

TA  
B  

 
Fig. 1. The solutions of P1 and P2 are given by the following theorems [30] 

 

Theorem 1. The solution of P1 is 

    1* 
 SAASAAB T , where S is the 

autocorrelation matrix of the repartition of X. 

 

Theorem 2. Let be the 

0......21  nm   eigenvalues 

of S and n ,...,, 21 unit orthogonal 

corresponding eigenvectors; 
   m
m  ,...,, 21 . The set of solutions 

of P2 is 
  orthogonal** CCA m . 

Moreover,   



n

mi
iBAm

1

**2 ,,  . 

Note that in case mIC  , an optimal linear 

compression/decompression scheme is 

      mmBA  ,, ** . 

The principal directions of the repartition of X 

are the directions corresponding to the 

maximum variability, where the variability is 

expressed in terms of the variance.  

Definition. The vector 1 R
n
 is the first 

principal direction if 11   and

   XX T

R

T

n






varsupvar

1

1 . 

The value XT
1   is referred as the first 

principal component of X.  

Now, recursively, for any k, nk 2 , if we 

denote by  11,..., 

  kL  the linear subspace 

orthogonal on the linear subspace generated 

by the first (k-1) directions, k R
n 

is a k-th 

principal direction if 1k  and 

 
 

 XX T

L

T
k

k




 



varsupvar

1
,..., 11

. 

The value XT

k   is referred as the k-th 

principal component of the signal X.  

 

Note that a set of principal directions 

n ,...,1  of the repartition of X is an 

orthogonal basis of R
n
, and XY T  being 

the image representation in terms of the 

selected principal directions, where 

 n ,...,1 .  

The fundamental result is given by the 

celebrated Karhunen-Loeve theorem. 

 

Theorem 3.  Let X be a n-dimensional 

real-valued random vector and 

  TXXCov , . Then the principal 

directions n ,...,1 are orthogonal unit 

eigenvectors of Σ.  

If we denote by n  ...21 the 

eigenvalues of Σ, then, for any k, nk 1 , 

the k-th principal direction is an eigenvector 

of Σ associated to k .   

In case we use the orthogonal basis n ,...,1

the representation of X is 



n

i
iiyX

1

 , where 

Xy
T

ii  , ni 1 . Obviously, 

      ii
T
ii

TT
ii XXEy  var

, where  is the mean vector of the repartition 

of X. Assume that the linear 

compression/decompression scheme is based 

on the information contained by the linear 

subspace spanned by the principal directions, 

the compression/decompression filters are 

both,    m
m  ,...,1 . Then the mean 

error becomes      



n

mi
i

mmm
1

2 ,,  . 

Note that in case of 0-mean repartitions, the 

autocorrelation matrix S equals the covariance 

matrix  , that is S . In this case, 

according to the results given by Theorem 2 

and Theorem 3, the optimal linear 

compression/ decompression scheme from the 

point of view of mean error criterion is based 
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exclusively on the information contained by 

the linear m-dimensional subspace of 

principal directions that is the subspace where 

the repartition of X is of maximum variability. 

The sum 


n

mi
i

1

 is a measure of the amount of 

information lost because of ignoring the 

minor components nm   ,...,1  in the sense 

of the mean error criterion. 

Although, in the general case when the 

nO , the principal directions are different 

from the columns of the optimal linear 

compression filter, experimentally it is 

confirmed that both subspaces 

 mL  ,...,, 21  and  mL  ,...,1  

contain the maximum amount of noise, that is 

put in other words the 

compressed/decompressed images 

     XX
Tmm 

~
and  

     XX
Tmm ˆ correspond to cleaned 

versions of X. 

In practical applications, the statistical 

properties of the processed images are 

unknown, but a series of versions 

NXXX ,...,, 21  are available instead, we use 

as an working assumption the hypothesis that 

they corresponds to an i.i.d. sample from the 

repartition of X and the principal directions 

are estimated from data. The accuracy of the 

resulted linear compression/decompression 

scheme depends essentially on the size N of 

the sample, but this dependency is extremely 

hard or even impossible to be evaluated in 

advance. The alternative is to gradually 

improve the accuracy by taking more 

examples, that is to enlarge the sample size, 

but the re-computation of the estimates of the 

covariance matrices, autocorrelation matrices, 

eigenvalues and eigenvectors is 

computationally complex. Hopefully, the 

re-computation can be avoided using the first 

order approximation schemes.    

The estimates of the covariance matrices and 

autocorrelation matrices on the basis of the 

samples NXXX ,...,, 21 , are     

  






N

i

T
NiNiN XX

N 1

ˆˆ
1

1ˆ  , and  

 TNNNNS  ˆˆˆˆ  , respectively,  

where 



N

i
iN X

N 1

1
̂ . 

The estimates computed on the basis of 

   121 ,...,,  NN XXXX can be simply 

re-computed using N̂ , N̂ , NŜ , and 1NX

as follows. 

11
1

1
ˆ

1
ˆ 





 NNN X

NN

N
  

  TNNNNNN XμX
N

Σ
N

N
Σ ̂ˆ

1

1ˆ1ˆ
111 





 

  

 TNNNNS 1111 ˆˆˆˆ
    

 

Unfortunately, the expressions of the 

eigenvalues and eigenvectors of 1
ˆ

N , and 

1
ˆ

NS in terms of the eigenvalues and 

eigenvectors of N̂ , and NŜ  respectively 

cannot be directly derived and consequently 

we are forced to derive first-order 

approximations instead.   

The following lemma establishes first order 

approximations for the eigenvalues and 

eigenvectors of the matrix 1
ˆ

N , and 

approximations of the eigenvalues and 

eigenvectors of 1
ˆ

NS can be obtained using 

similar computations. 

Let us denote by N

n

NN   ...21  the eigen 

values and by N

n

N ψ,...,ψ1  a set of orthonormal 

eigen vectors of N̂ .  

Lemma 1. In case the eigen values of N̂  are 

pairwise distinct, the following first order 

approximations hold [33], 

    N
iN

TN
i

N
iN

TN
i

N
i

N
i ψΣψψΣψ 1

1 ˆˆ


  

     

 












n

ij
j

N
jN

j
N
i

N
iN

Tj
NN

i
N
i ψ

ψΣψ
ψψ

1

1
ˆ


                  

Proof. Using the perturbation theory, we get,  
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NNN ΣΣΣ ˆˆˆ
1   and,  

N

i

N

i

N

i ψψψ 1  , N

i

N

i

N

i  1 , 

ni 1 .  

Then, 

   N
T

NNNNN Σ
N

μXμX
N

Σ ˆ1

1

1ˆ
11 


 

 

     N
i

N
i

N
i

N
i

N
i

N
iNN ψψψψΣΣ  ˆˆ

                               

Using first-order approximations, we get, 
N
i

N
i

N
i

N
i

N
i

N
i

N
iN

N
iN

N
i

N
i ψψψψΣψΣψ   ˆˆ

           

hence,  

      2
ˆˆ N

i
N
i

N
i

TN
i

N
i

N
iN

TN
i

N
iN

TN
i ψψψψΣψψΣψ  

      

Using     N

TN
i

TN
i

N
i Σψψ ˆ  we obtain , 

      N
i

N
i

TN
i

N
i

N
iN

TN
i

N
i

TN
i

N
i ψψψΣψψψ   ˆ

  

 hence   N
iN

TN
i

N
i ψΣψ ˆ   that is, 

    N
iN

TN
i

N
iN

TN
i

N
i

N
i ψΣψψΣψ 1

1 ˆˆ


  

     

The first order approximations of the 

orthonormal eigenvectors of 1
ˆ

NΣ   can be 

derived using the expansion of each vector 
N

iψ   in the basis represented by the 

orthonormal eigen vectors of NΣ̂ , 





n

j

N

jji

N

i b
1

, ψψ ,                                     

 where   N

i

TN

jjib ψψ,  .           

Using the orthonormality, we get,   

       N
i

TN
i

N
i

TN
i

N
i

N
i

N
i   2121

22

that is   N

i

TN

iiib ψψ,  =0  

The approximation,  
N
i

N
i

N
i

N
i

N
iN

N
iN ψψψΣψΣ   ˆˆ .         

holds for each ni 1 . 

For nij 1 , we obtain the following 

equations, 

        N
i

Tj
N

N
i

N
i

Tj
N

N
i

N
iN

Tj
N

N
iN

Tj
N ψψψψψΣψψΣψ   ˆˆ

          

      N
i

Tj
N

N
i

N
iN

Tj
N

N
iN

Tj
N ψψψΣψψΣψ  ˆˆ

                       

      N
i

Tj
N

N
i

N
iN

Tj
N

N
i

Tj
N

N
j ψψψΣψψψ   ˆ

           

We get, 

     N
iN

Tj
N

N
i

Tj
N

N
j

N
i ψΣψψψ ˆ           

   
N
j

N
i

N
iN

Tj
NN

i

TN
jji

ψΣψ
ψψb

 




ˆ

,          

Consequently, the first-order approximation 

of the eigenvectors of 1
ˆ

NΣ  are, 

 



 




n

ij
j

N
jN

j
N
i

N
iN

Tj
NN

i
N
i

N
i ψ

ψΣψ
ψψψ

1

ˆ


         

 

On the other hand, when an object has to be 

removed from the sample, then the estimate of 

the covariance matrix can be computed as, 

11
ˆˆˆ

  NNN ΣΣΣ ,  

where 

  
  TNNNNNN μXμX

NN

N
Σ

N
Σ 





  1111

11
ˆ

1

1ˆ

         

and 

 
 

NN

N NN
N

11 Xμ1
μ  


  

 

3 Information-based approaches for image 

restoration purposes 
The basics of the informational-based method 

for image restoration purposes are given by 

the following theoretical results [29]. 

If X is a continuous n-dimensional random 

vector and f is the density function of X 

repartition, we denote by  XH =-

   
nR

dxxfxf ln  the differential entropy 

(Shannon) of X. 

Lemma 2  Let  X  be a  continuous n

-dimensional random vector  and   RMA n  

a non-singular matrix, AXY  . Then,  

 XH =   AYH ln . 

Proof. If we denote by g  the density function 

of the random vector Y , then  
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A

yAfyg
11 .  

Using straightforward computation, we get, 

 XH =-    f x f x dx

Rn

ln = 

-    


nR

dyyAfyAf
A

11 ln
1

= 

-     
nR

dyygAygA
A

ln
1

= 

-       













 

nn RR

dyygAdyygyg lnln =  H Y -

ln A  

 

Lemma 3. Let X  be a continuous n

-dimensional normally distributed random 

vector, X   ,0N  and q a given natural 

number, 1 q <n.  If 

 

  














2

1

X

X
X where  1X  is 

q -dimensional, then, for any   2x R
n-q

, 

      221 xXXH  =

         2211 xXXEXH  ,  

where       221 xXXE   is the regression 

function  of   1X  on    22 xX  , and 
      221 xXXH   is the conditional 

differential entropy of  1X  being given
   22 xX  . 

Proof. Let  













2212

1211

T
  

where     TXX 11

11 ,cov , 

    22

2 2
 cov ,X X

T
,  

    12

1 2
 cov ,X X

T
.  

Since  E X  0 , we get 

      221 xXXE  =  21

2212 x . 

The linear transform of matrix 

A
I

I

q

n q














 12 22

0
de-correlates 

   21 , XX  

and consequently  1Y ,  2Y  are normally 

distributed independent random vectors [1], 

therefore  H Y =   1YH +   H Y
2

, 

where Y AX =
 

 

Y

Y

1

2









 . 

Moreover, 
              221121

2212

11 xXXEXxXY  

,    22 XY  , and  Y
1
  N 0 11 2, . ,  2Y 

 22,0 N , 

where      11 2 11 12 22

1

12.    T
. 

Since 1A , using Lemma 2, we get 

 H X =  H Y , that is   

    H X X
1 2

, = 

            22211 XHxXXEXH   

Finally, taking into account that     21 , XXH

= 
         2212 xXXHXH  , we obtain 

          2211 xXXEXH  = 

      221 xXXH   

Since        221 xXXH   represents a 

measure of the amount of incertitude still 

remaining with respect to  1X  when  2X  is 

known, the previous relation establishes that 

the whole information contained by  X
2

 

with respect to  X
1

 is concentrated on 
      221 xXXE  . 

Note that since the entropy of the n

-dimensional normal distribution  N ,  is 

given by   H X =
n

e
2

2
1

2
ln ln   , we get   

       H X E X X
1 1 2
 =

    H X X
1 2

=

q
e

2
2

1

2
11 2ln ln .   . 

 

Using the notations introduced in Section 1 

and the results established in lemmas 2 and 3, 

we obtain, 

=  

  

         H F X E F X X
  



     H F X X
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and conclude that contains 

the whole information existing in   with 

respect to  a part of it being 

responsible of  the initial existing noise  and 

another component being responsible of the 

degradation of quality . 

 

4 The image restoration method based on 

scatter matrices and on bounds on the 

probability of error 
In statistical discriminant analysis, 

within-class, between-class and mixture 

scatter matrices are used to formulate criteria 

of class separability.  

In case we need to discriminate between m 

classes miH i ,1,   and     i

N

i XX ,...,1  are 

examples of patterns coming respectively 

from these classes, the within -class scatter 

matrix  shows the scatter of samples around 

their class expected vectors and it is typically 

given by the expression 

      
 


m

i

N

k

T

i

i

ki

i

kiw XXS
1 1

ˆˆ , where î

is the prototype of iH  and i  is the a priori 

probability  of miH i ,1,  . 

Very often, the a priori probabilities are taken 

m
i

1
  and each prototype is computed as 

the weighted mean of  the patterns belonging 

to the respective class.  

The between-class scatter matrix is the scatter 

of the expected vectors around the mixture 

mean as    
 


m

i

N

k

T

iiibS
1 1

00
ˆˆ  where 0  

represents the expected vector of the mixture 

distribution; usually 0  is taken as 





m

i
ii

1
0

ˆ . 

The mixture scatter matrix is the covariance 

matrix of all samples regardless of their class 

assignments and it is defined by bwm SSS 

. Note that all these scatter matrices are 

designed to be invariant under coordinate 

shifts. 

In order to formulate criteria for class 

separability, these matrices should be 

converted into a number. This number should 

be larger when the between-class scatter is 

larger or the within-class scatter is smaller. 

Typical criteria are  1

1

21 SStrJ  , 

1

1

22 ln SSJ  ,  

where

          wmmwmbwb SSSSSSSSSS ,,,,,,,, 21   

and their values can be taken as measures of 

overall class separability. Obviously, both 

criteria are invariant under linear non-singular 

transforms and they are currently used for 

feature extraction purposes. When the linear 

feature extraction problem is solved on the 

basis of either 1J or 2J , their values are taken 

as numerical indicators of the loss of 

information implied by the reduction of 

dimensionality and  implicitly deteriorating 

class separability. Consequently, the best 

linear feature extraction is formulated as the 

optimization problem   










kk

RA

JAmJ
mn

,infarg
*

 

where m stands for the desired number of 

features ,  AmJk , is the value  of the criterion 

2,1, kJ k  in the transformed  

m-dimensional space of  XAY T , where A 

is a mn* matrix . 

If the pattern classes are represented by the 

noisy image  X and the filtered image  
  XF  respectively, the value of each of the 

criteria 2,1, kJ k is a measure of overall 

class separability  as well as a measure of the 

information discriminating between these 

classes. In other words, 2,1, kJ k can be 

taken as measuring the effects of the noise 

removing filter expressing a measure of the 

quantity of information lost due to the use of 

the particular filter. In order to remove at least 

partially  

The idea of our attempt is to use the most 

informative features discriminating between 

and  for getting correction 

terms in restoring the filtered images

. The attempt is justified by the argument that 

besides information about the removed noise, 

the most informative features discriminating 
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between and  would contain 

appropriate information allowing the quality 

improvement of the image . Let 

 be the sample of noise 

corrupted versions of the -dimensional 

image  and  their filtered 

versions, , . We 

assume , therefore the scatter 

matrices become Sw    1 2
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where m ,...,1  are unit eigenvectors 

corresponding to the m largest eigenvalues of 

1

1

2 SS   [10]. 

Proof. Let  be the matrix diagonalizing 

simultaneously the symmetric matrices , 

,  , , , 

where . 

It is well known that the eigenvalues

n ,...,, 21 , of  are real positive 

values, and the columns of  are 

eigenvectors of . Therefore,  

= = = =  

= = =  

Let  be such that  

and ; we denote by ,

 the counterparts of  ,  in the 

-dimensional resulted space. Obviously, 

for 

we get ,  

and consequently,  

= = , 

where  is the diagonal matrix having 

as entries the eigenvalues of  

. 

The critical points of  are the 

matrices  that are solutions of the equation

, that is 

 
which can be also written as  
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Let  be the matrix diagonalizing 

simultaneously , . 

Since , 

  

and , we obtain that  is a 

critical point of  if and only if  

 that is, if and only if 

the columns of   are eigenvectors and the 

entries of the diagonal matrix  are 

the corresponding eigenvalues of  . 

Consequently,  and  

 is minimized when the linear 

feature extractor  is such that the columns 

of  are the eigenvectors corresponding to 

the largest   eigenvalues of 

.Obviously the criterion function  is 

invariant with respect to non-singular 

transforms therefore  can 

be taken as the optimal linear feature extractor 

where  are the eigenvectors 

corresponding to the largest eigenvalues of 

. 

 X
   F X



  F X


    X X N1

2 2
,...,

r c

X     X X N1

1 1
,...,

    X F Xi i

1 2
 i N 1,

 1 2 05  .

C

S1

S2 C S C IT

n2  C S CT

1   CC ST  

2

1

   diag n 1 ,...,

S S2

1

1



C

S S2

1

1



J1  tr S S2

1

1

  tr CC ST

1  tr C S CT

1  k

k

n




1

J S S2 2

1

1 ln ln CC ST

1 ln ln k

k

n




1

 A M Rn m   rank A m

Y A XT  S m A1 ,

 S m A2 , S1 S2

m

          S S S S S S S S S Sb w b m w m m w1 2, , , , , , , ,

 S m A A S Ak

T

k,  k  1 2,

 J m A1 ,   tr A S A A S AT T

2

1

1



  tr m A ,

  m A,

   S m A S m A2

1

1

 , ,

 J m A1 ,

A

 


A
J m A1 0, 

       S AS m A S m A S m A S AS m A2 2

1

1 2

1

1 2

1  , , , ,

   S S A AS m A S m A2

1

1 2

1

1

  , ,

 B M Rm

 S m A1 ,  S m A2 ,

 B S m A B IT

m2 , 

   B S m A B m AT

1 , , 

 BB S m AT  

2

1 , A

 J m A1 ,

 S S AB AB m A2

1

1

   ,

AB

  m A,

S S2

1

1



 J m A1 ,  J1

 J m A J1 1, 

A

AB

m S S2

1

1



J1

     
m

m 1 ,...,

i i m, , 1

S S2

1

1





                           Informatica Economică vol. 16, no. 1/2012 

 

 

46 

In case the criterion function  is selected to 

measure the effects of the noise removing 

filter, the critical points of 

= 

  are the solutions of 

the equation  . By 

straightforward computation we obtain 

 , that is  

. 

Therefore, the optimal linear feature extractor 

from the point of view of both criteria , 

 is given by . 

The probability of error is the most effective 

measure of classification decision rule 

usefulness, but its evaluation involves 

integrations on complicated regions in high 

dimensional spaces. When a closed-form 

expression for the error probability cannot be 

obtained, we may seek either for approximate 

expressions, or upper/lower bounds for the 

error probability.  

Assume that the design of the Bayes classifier 

is intended to discriminate between two 

pattern classes and the available information 

is represented by mean vectors i , 2,1i  

and the covariance matrices i , 2,1i  

corresponding to the repartitions of the 

classes respectively. The Chernoff upper 

bounds of the Bayesian error [15] are given by 
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 is called the Bhattacharyya 

distance and it is frequently used as a measure 

of the separability between two repartitions.  

Using straightforward computations, the 

Bhattacharyya distance can be written as, 
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Note that one of the first two terms of 
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vanishes, when 21  , 21   

respectively, that is the first term expresses 

the class separability due to the 

mean-difference while the second one gives 

the class separability due to the covariance 

difference.  

The Bhattacharyya distance can be used as 

criterion function as well to express the 

quality of a linear feature extractor of matrix
nxmRA . When 21  = , 
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therefore J  is a particular case of the 

criterion 1J  for 2S  and 

  TbSS 12121  . Consequently 

the whole information about the class 

separability is contained by an unique feature 
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where njj ,1,   are the eigenvalues of 

2

1

1  .  

If the linear feature extractor is defined by the 

matrix nxmRA , then the value of the 

Bhattacharyya distance in the transformed 

space XAY T  is given by,  AmJ , = 
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The critical points of  AmJ ,  are the 

solutions of the equation 
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Suboptimal solutions can be identified as the 

solutions of the system 
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Obviously the criterion function J  is 

invariant with respect to non-singular 

transforms and, using standard arguments, 

one can prove that    m

m  ,...,1  can be 

taken as the suboptimal linear feature 

extractor where mii ,1,   are unit 

eigenvectors corresponding to the eigenvalues 

m ...,,1 of 1

1

2   such that 

n

n

m

m









1

...
1

...
1

1

1 . 

But, in case of image restoration problem, 

both assumptions 21  , 21   are 

unrealistic, therefore, we are forced to accept 

the hypothesis that 21   and 21  . 

Since there is no known procedure available 

to optimize the criterion J when 21   and

21  , a series of attempts to find 

suboptimal feature extractors have been 

looked for, as for instance [15].  

 

5 Concluding remarks 

The paper presents a series of developments 

aiming to obtain a suitable methodology for 

image denoising and restoration purposes in a 

model-free framework. The performances of 

the resulted algorithms were experimentally 

evaluated by a long series of tests entailing 

positive and optimistic conclusions. Some of 

the presented results and variants of them 

have been already published and they were 

welcomed by the scientific community.  

A series of new developments extending this 

work are in progress and the experimental 

analysis points out a promising perspective.  
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