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ENHANCEMENTS OF FUZZY Q-LEARNING ALGORITHM

Fuzzy Q-Learning algorithm combines reinforcement learning techniques with fuzzy mod-
elling. It provides a flexible solution for automatic discovery of rules for fuzzy systems in
the process of reinforcement learning. In this paper we propose several enhancements to
the original algorithm to make it more performant and more suitable for problems with
continuous-input continuous-output space. Presented improvements involve generalization
of the set of possible rule conclusions. The aim is not only to automatically discover an
appropriate rule-conclusions assignment, but also to automatically define the actual conclu-
sions set given the all possible rules conclusions. To improve algorithm performance when
dealing with environments with inertness, a special rule selection policy is proposed.

Keywords: fuzzy models, reinforcement learning, Q-Learning, automatic generation of fuzzy
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ROZSZERZENIA ALGORYTMU FUZZY Q-LEARNING

Algorytm Fuzzy Q-Learning pozwala na automatyczny dobór reguł systemu rozmytego
z użyciem technik uczenia ze wzmocnieniem. W niniejszym artykule zaproponowana została
zmodyfikowana wersja oryginalnego algorytmu. Charakteryzuje się ona lepszą wydajnoś-
cią działania w systemach z ciągłymi przestrzeniami wejść i wyjść. Algorytm rozszerzono
o możliwość automatycznego tworzenia zbioru potencjalnych konkluzji reguł z podanego
zbioru wszystkich możliwych konkluzji. Zaproponowano także nową procedurę wyboru reguł
dla polepszenia prędkości działania w systemach z bezwładnością.

Słowa kluczowe: modele rozmyte, uczenie ze wzmocnieniem, Q-Learning, automatyczne
tworzenie modeli rozmytych

1. Introduction

Automatic construction of fuzzy model is a challenging task. There are many known
solutions of the problem of finding optimal fuzzy model describing a given set of
data. Commonly used techniques are based on the usage of genetic algorithms [1],
neural networks [4] and clustering methods [6]. The problem becomes different where
no learning data is given. A variety of techniques known as reinforcement learning
[11] address this kind of problems. In these kind of methods the system is provid-
ed with a critic signal r being reinforcement received after taking particular action.
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Fuzzy Q-Learning algorithm proposed by Glorennec and Jouffe [2] uses reinforcement
learning Q-Learning algorithm [11] to produce fuzzy model for maximization of re-
ceived reinforcement signal values in a given environment. Original algorithm cannot
fully depend on environment signal only. Some a priori knowledge about a model
is needed. In order to run Fuzzy Q-Learning one must provide proposition of input
space partitioning as well as propositions of fuzzy rules conclusions. In this paper we
propose various enhancements for original Fuzzy Q-Learning algorithm to make it
more performant and more suitable for problems with continuous-input continuous-
output space. In the first section we present the original version of Fuzzy Q-Learning
algorithm then, in the second section, we describe the problems we address in our
improved version of the algorithm and our solution to these problems. In the final
section we describe the results of comparison of our improved version and the original
Fuzzy Q-Learning. The problem we choose as a benchmark problem is a standard
Ball and Beam problem.

2. Fuzzy Q-Learning algorithm

The Fuzzy Q-Learning algorithm is the extension of Watkins’ Q-Learning. The algo-
rithm is designed to be able to learn simplified fuzzy Takagi-Sugeno model [9] in the
process of reinforcement learning. The idea behind the extension of classic Q-Learning
algorithm to its fuzzy version is to be able to perform reinforcement learning over a
problem with continuous input/output space. As original reinforcement learning oper-
ates in the environment described by classic Markov decision process, its state space
is discrete. There are other known extensions of reinforcement learning for finding
solutions to problems with continuous state space [3].

A simplified Takagi-Sugeno model is a fuzzy inference system with rules with
conclusions in a form of constant (it can be viewed as Mamdani [7] model with con-
clusions in a form of crisp singleton sets). Rule in the described inference system has
the following form:

Ri : IF x1 IS X1i AND x2 IS X2i AND . . .AND xn IS Xni THEN y = yi (1)

The evaluation of the rule depends on the chosen t-norm for representation of AND
operator in the conditions part of the rule. It also depends on the choice of fuzzy
implication operator representing THEN operator.

Given a set of rules containingK rules and a set of possible conclusions containing
C different conclusions it is possible to build CK different fuzzy models with rules in
the form (1). Fuzzy Q-Learning algorithm’s task is to find an appropriate assignment
of a conclusion to each of the rules.

The evaluation of quality of each of possible conclusion to rule assignments is
maintained in a special lookup vector qi for a rule Ri such that qi(cj) describes a
quality of an assignment.
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The actual Q value (by means of original Q-learning algorithm) of an inferred
action a in the state x is defined as follows:

Q(x, a) =

K∑

i=1
αi(x)qi(c∗i )

K∑

i=1
αi(x)

(2)

where c∗i is a conclusion assigned to i-th rule in the evaluated time step and αi(x) is
an activation level of i-th rule in a state x.
Let r be a reinforcement signal received in a current learning step, xt, xt+1 the

current and the next (after execution of action a) state of the system, and γ the
Q-Learning discount multiplier. The error of estimation for a Q function can be cal-
culated by the following formula:

ΔQ = r + γQ(xt+1, a∗)−Q(xt, a) (3)

where a∗ is ”the best” possible action to take in the state xt+1. It is constituted of
conclusions with the biggest q value for each of the rules.
A formula for updating q lookup vectors is obtained by gradient descent method

and takes a form:

Δqi(cj) := βΔQ
αi(x)
K∑

i=1
αi(x)

(4)

where β is a learning rate.
Having in mind above formulas and assumptions original Fuzzy Q-Learning al-

gorithm is described as follows:
Algorithm 1. The original Fuzzy Q-Learning algorithm:

1. Observe the current state xt.

2. For each of the rules choose the consequence using some greedy
or epsilon greedy policy with respect to current q values of
conclusion for this rule.

3. Compute the global action a as a result of fuzzy inference and its
corresponding Q value by using formula (2).

4. Execute action a, observe the new state xt+1 and reinforcement
signal r.

5. Update q lookup tables using formulas (3) and (4).

3. Improvements to the Fuzzy Q-Learning algorithm

As it was said before the Fuzzy Q-Learning algorithm needs a certain amount of
designer’s a priori knowledge in order to discover proper fuzzy model for a given
environment. This knowledge includes initial partitioning of input space into the fuzzy
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sets as well as the definition of a set of possible output variables for the system to
choose. At least a part of this initial knowledge can be left for the system for discovery.
We address this issue in this paper presenting a method for eliminating initial output
values definition and letting the system choose appropriate values.

The second issue we address in this paper is related to an adaptation of ep-
silon greedy action selection policy introduced in the original Fuzzy Q-Learning al-
gorithm. Fuzzy Q-Learning algorithm is rather a straight-forward approach to adapt
Q-Learning for the problems over continuous input/output spaces. Unfortunately, in
such problems, especially when the system dynamics involves some kind of inertness
the original adaptation of epsilon greedy policy is not enough. As an example let us
consider the Ball and Beam problem (which we use as our benchmark problem). The
state of the system is described by two variables – current ball position and speed.
The output of the system is the desired angle of the beam. The task is to position
the ball in the centre of the beam. The ball balancing should be performed in a way
that prevents the ball from falling of the beam.

Fig. 1. Ball and Beam. The system measures current ball speed and its distance to the center
of the beam r. The steering u is applied to modify the beam angle

If the angular speed of the beam is limited (which is always the case in the
real system) under some conditions the desired angle of the beam cannot be realised
within a short period of time (one simulation or decision step). To better illustrate the
problem let us imagine the ball falling down to the left of the beam as illustrated in the
Figure 1. If the random action chosen by epsilon greedy (or any other random) policy
is supposed to set the angle of the beam to the opposite position it is impossible to
realize the action in one simulation step. What’s more, it is highly doubtable that the
simple epsilon greedy policy will choose the next action to be similar to the previous
one to give us some more time for positioning. Additionally because of inertness of
the ball it will not move to the right immediately. It will continue moving to the
left. As a result this random action will have almost no effect on the system and the
used algorithm will become more like SARSA algorithm [11] than like Q-Learning.
Exploration is an important part of Q-Learning and as we showed above the original
Fuzzy Q-Learning algorithm may lack exploration under circumstances similar to
those above. We propose a way to deal with this issue later on.
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3.1. Continuous conclusion quality evaluation functions

Presented method for eliminating the need of a priori knowledge of the exact values
for the rules conclusions is based on the following fact: instead of lookup tables used
for storing the quality of conclusions the function approximator can be used. As the
problem we deal with is a continuous one, we expect the result of the inference to be
aggregated by some sort of ”centre of gravity” aggregation method. Therefore we can
let the conclusion values to be chosen from a continuous interval. Let

qi : [cmin, cmax]→ R (5)

be a function describing a quality of a conclusion for a rule Ri, cmin and cmax be the
boundaries of the possible conclusions interval. The task of the system will be not only
to choose the appropriate conclusions from the specified set but also the definition of
a set itself. In the original approach the set is given and this function is discrete with
its values stored in the lookup table. In our approach the set will be defined as a set
composed of n maximums of functions of type (5).
Any kind of function approximator can be used for qi function representation as

long as it is able to:

• Update function value in any given point of an interval by on-line adaptation. It
is needed for calculation of formula (4) in the 5th step of the Fuzzy Q-Learning
algorithm.

• Expose the maximum of an approximated function (as well as the argument for
function maximum) effectively. This is needed in the calculation of formula (3)
in the 5th step of the algorithm as a∗ is constituted of actions with the highest
quality function value.

As the first condition is held by almost every on-line function approximator, the
second one is not a popular demand for a good function approximator. In our imple-
mentation we use CMAC [8, 11] as both of above conditions can be easily fulfilled
with it. For easiness of computation of maximum we will use our mechanism of max-
imum caching for CMAC. Due to trivial construction of CMAC approximator it is
easy to do so. Please notice that if neural network was chosen instead of CMAC the
maximum computation wouldn’t be that simple. But still it would be computable
given a network structure.
One thing must be taken into the consideration when updating cached max val-

ue. In CMAC approximator, if a currently updated function value is bigger than
the current cached maximum value the current value becomes a new maximum (as
neighbouring values cannot become bigger). Naive approach would be to assume that
this is the only case in which the maximum changes. Unfortunately it is not. The
function is updated also when the current value is lower than the current maximum
value. After update a check is needed to make sure that function still preserves its
maximum value. If it doesn’t, it means that current maximum was lowered and that
there can be a new maximum elsewhere. In this case the cached value must be cleared
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and calculated on demand on the next call to ”get maximum” function. It can be
easily proven that the average amortized time of this implementation for operations
of function update and maximum retrieval is O(1).
The idea behind the use of function approximator is not only to enhance abilities

of performing without a priori knowledge about the conclusions. It is also supposed
to speed up the learning process. As the approximated function is supposed to be
continuous, the function approximator during value update changes not only the
value for a given argument itself but also values from its neighbourhood.
As reinforcement learning is supposed to be used in on-line learning processes

we need an efficient computation of maximum of function represented by CMAC
approximator. It can be performed in constant time using maximum value caching
described above.

3.2. Conclusion selection policy

Our proposition for dealing with problems of assuring proper exploration for the
algorithm in the environments with inertness involved is to extend original epsilon
greedy action selection policy to a different one. As we explained above, the inertness
may cause insufficient exploration effect. We propose to extend the original policy
used so that it preserves the chosen action as long as it is needed for action to have a
desired effect on a system. Also due to the change of discrete set for possible actions
it is harder to directly implement action selection policy proposed in [5].
Original policy balances between exploration and exploitation. The choice of

action for a given action quality vector q is defined [5] as follows:

action(i) = argmax
c∈C
(qi(c) + η(c) + ρi(c)) (6)

where η(c) is defined by random variable with exponential distribution over all possible
conclusions and ρi(c) decreases exponentially with each use of conclusion c in rule i.
The policy prefers rarely chosen rules. Both ρi(c) and η(c) are scaled by appro-

priate factors [5] to balance between directed and undirected exploration [10]. If the
action selection was based only on q function values it would be a greedy policy always
selecting the best action with no exploration. Adding a random value η(c) and select-
ing the action with the greatest sum introduces undirected exploration. To balance it
with directed exploration in the areas which were not explored or explored rarely up
to the current moment a ρi(c) value is added. The nature of ρi(c) function is that is
bigger for conclusions selected rarely and smaller for conclusions selected often.
It is possible to implement the above policy using function approximators for

both η(c) and ρ(c) functions in the continuous case. CMAC approximator initial
values can be easily set to represent η(c) with exponential probability distribution.
Approximation of sum of functions represented by CMAC can be implemented by
simply adding the values stored in CMAC tables. So the method mentioned before
for calculation of maximum of CMAC represented function can be used to discover
the action to choose using the policy above.
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Whether, as it is shown above, it is possible to proceed with the original strategy
we propose to exchange it with the special policy for tasks with inertness. Our rule
selection algorithm is described below:
Algorithm 2. Conclusion selection policy for enhanced version of Fuzzy Q-

Learning:

SELECT ACTION(i) {
IF T=0 {
r:=rnd(0,1)
IF r > ε THEN

action(i):=argmaxc qi(c)
ELSE {
T = rnd(0, 1)l + L
IF r ≤ bε THEN action(i):= argmaxc fi(c)
ELSE action(i) = rnd(cmin, cmax)

}
} ELSE T:=T-1
fi(action(i)) := fi((action(i)) + 1
RETURN action(i)

}
T and action vector are local variables maintained by the policy object, so they

are preserved between invocations of the method shown above. T represents inertness
and is random number indicating a number of times ahead in which selected random
action should be applied. Every time T is 0, a new decision is being made. With
probability 1 − ε greedy action with respect to the current policy is selected. When
random action is to be selected it is selected to be executed for T times, where T
varies from L to L + l. Random action can represent both directed and undirected
exploration so parameter b ∈ [0, 1] is introduced as the balance between directed and
undirected exploration.
Exploration gets more undirected with the decrease of b parameter. For directed

exploration a special set of frequency functions fi : C → N is introduced to maintain
frequencies of appliance of actions. CMAC approximator is being used for represen-
tation of these functions.
Above algorithm is meant to be an implementation of step 2 in our modification

of original Fuzzy Q-Learning algorithm (Algorithm 1).

3.3. Enhanced Fuzzy Q-Learning algorithm

As a result of above discussion we present enhanced version of Fuzzy Q-Learning
algorithm.
Algorithm 3. The Enhanced Fuzzy Q-Learning algorithm:

1. Observe the current state xt.

2. For each of the rules choose the consequence using procedure
specified by Algorithm 2.
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3. Compute the global action a as a result of fuzzy inference.
Compute its corresponding Q value by using formula (2).

4. Execute action a, observe the new state xt+1 and reinforcement
signal r.

5. Update approximation of q function using formulas (3) and 4. Please
have in mind that as mentioned in sec. 3.1 selected function
approximator must provide values needed by formulas (3) and 4.

Please have in mind that all references to q function in this algorithm refer to
approximated value of this function by the means of function approximator used. This
is one of the main differences from original approach, as there q function was stored
in a lookup table indexed by pre-selected conclusion values.

4. Experiments and further work

Above improvements were applied to the Ball and Beam problem described in the
previous section. For comparison original Fuzzy Q-Learning algorithm was used. The
input space was partitioned with use of five fuzzy sets for each of the variables. These
are BL (big left), L (left), Z (zero), R (right), BR (big right) for ball position and NB
(negative big), N (negative), Z (zero), P (positive), PB (positive big) for ball speed.
Ball position varies form −1m to 1m. Ball speed varies from −1 to 1m/s. For the
original Fuzzy Q-Learning algorithm 5 prototype conclusions were chosen. These are
C = {−π4 ,−π8 , 0, π8 , π4 }. For our enhanced version of the algorithm conclusions there
is no need to specify exact conclusion values. These are to be chosen by the system
from a given continuous interval [−π4 , π4 ].
Following rewards and punishments were chosen to represent the reinforcement:

• 1, when the ball is positioned on the centre of the beam, with tolerance of 2%
(corresponding to beam length) and the speed of the ball is less than 0.03m/s
with ball angle set to no more than 0.03 rad;

• −1 when the ball hits the left or right side of the beam (ball doesn’t fall off the
beam, so the task can be continued);

• −1 when the ball stands still outside the centre of the beam for more than
3 simulation clock ticks (one clock tick is every 0.04 s), where standing still is
defined as moving with a speed less than 0.03m/s.

Beam angular speed has been limited to π2 rad/s.
Calculations were performed using a simulation program written in Java. Learn-

ing parameters were set to the following values:

ε = 0.01, β = 0.001, γ = 0.9, b = 0.2, L = 15, l = 15.

Both algorithms were implemented with use of eligibility traces [5, 11] with eli-
gibility rate λ = 0.9 to speed-up the learning procedure. Traces were implemented by
memorizing recent states visited during trial.
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Every balancing trial was composed of at most 250 simulation steps (10 seconds).
If there was no success after this period of time the task was interrupted. If there
was reward of 1 received task was finished. At the beginning of each trial ball was
positioned randomly on the beam and its speed was set randomly to any speed from
[−0.25m/s, 0.25m/s] interval.
Both algorithms performed well and with comparable results and learning time,

as it is shown in Figure 2 and Figure 3. Enhanced version was able to learn proper
rule base after about 150 trials. Original algorithm needed comparable time to extract
the rule base.
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Fig. 2. Results of sample run with enhanced algorithm

Fig. 3. Results of sample run with original algorithm
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Please note, that even if the computation times were comparable, the task per-
formed by the enhanced version was slightly different – not only appropriate con-
clusion rule assignment had to be done but also the definition of the conclusions
themselves.
Rule bases discovered by both methods after 1000 iterations are presented in the

Tables 1 and 2.
Table 1

Rule base of enhanced algorithm after 1000 trials

Distance

NB N Z P PB

Speed

NB −0.754 0.22 0.565 0.408 −0.126
N 0.251 0.314 0.754 0.534 −0.251
Z 0.408 0.754 0 −0.785 −0.723
P 0.534 −0.471 −0.423 −0.314 −0.503
PB 0.251 −0.754 −0.283 −0.66 −0.377

Table 2
Rule base of original algorithm after 1000 trials

Distance

NB N Z P PB

Speed

NB 0.785 0.785 0.393 −0.785 −0.393
N 0.393 0 −0.785 0.393 −0.393
Z 0 0.393 0 0.393 0
P 0.393 −0.393 0 −0.785 −0.393
PB −0.785 0 −0.785 −0.785 −0.393

Please note that rule bases did not change a lot in iterations 300–1000. The most
significant changes to the rule bases were done in iterations 0–300.
As it was shown above enhanced version of Fuzzy Q-Learning algorithm is able

to discover a set of desired conclusions for a given rule base. The learning speed of
the enhanced version is not lower than the one of the original algorithm. Some further
work concerning a method for automatic discovering of rules conditions may prove
useful in minimizing the need for expert knowledge. Presented method can be easily
enhanced to support any Takagi-Sugeno type conclusions, not only those in the simple
form. Function approximators as CMAC can be used to approximate function of more
than one variable, therefore we can make an assignment of linear (or any other type)
function parameters to each of the rules. The learning process will remain unchanged.
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