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Abstract. A theorem is presented describing a transforma-
tion by means of which it is possible to assign to an elemen-
tary multiport with fairly general constitutive equations (in-
cluding all kinds of controlled sources, nullors, ideal trans-
formers, etc.) a modified multiport with the same all-pole ter-
minal behavior. The branch set of this modified multiport is
augmented with so called auxiliary branches whereas its con-
stitutive equations are always in conductance form. There-
fore an interconnection of a family of multiports transformed
in this manner can always be analyzed by means of a system
of nodal voltage equations. It will be shown that this sys-
tem of equations is equivalent to a system of modified nodal
voltage equations set up for the network that is an intercon-
nection of the elementary multiports originally given.

1 Introduction

For an arbitrary elementary multipole with semi-implicite
constitutive equations we consider an algorithm for the con-
struction of a multipole having the same terminal behavior
as the given elementary multipole but with constitutive equa-
tions in conductance form.

The idea for the construction of this algorithm goes back to
a conference paper ofReinschke and Schwarz(1977). For-
mer related results go back to papers ofKlein (1958) and
his collaboratorsEngelhardt and Heinz(1970); Thielmann
(1973); Kremer(1978).

As an application of the theory of terminal behavior of net-
works developed inReibiger(1985, 1986, 2003a) we present
a reformulation of this algorithm which makes its network
theoretic assumptions and consequences more transparent.
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2 Network theoretical background

In this section we give a short review of results of our re-
search on the foundations of network theoryReibiger(1985)
to Reibiger(2003b).

As standing notations we use the symbolsU , I, andT
to denote thespace of branch voltage values, the space of
branch current values, and thetime axis, respectively. We
assume that all these spaces are provided with the structure
of one-dimensional normed oriented real vector spaces. IntT
denotes the set of all intervals of the time axis.

The assumptionsU=RV, I=RA, andT =Rs lead to the
class ofelectrical networksandU=I=T =R to that ofnor-
malized networks. In the same manner it is possible to in-
troduce network classes which can be used for modeling me-
chanical or thermal systems, etc., cf.Koenig et al.(1967);
Reinschke and Schwarz(1976).

For each nonvoid finite setZ and each interval
T ∈Int T we assume that the setsUZ , (UZ )T , UZ×IZ ,...,
(UZ )T ×(IZ )T are provided with the structure of normed
linear spaces induced by the structures of the spacesU and
I1. The setS :=

⋃
T ∈IntT (UZ )T × (IZ )T is denoted as the

universal signal set onZ.
Let W⊆S, whereS is the universal signal set onZ. Let

sdW:={T | ∃(u,i)∈W T =domu}, and let∨̇ denote the exclu-
sive or. The setW is denoted asrestriction compatibleif the
following conditions are fulfilled:

(i)
⋃

T ′∈sdW T ′
∈ sdW,

(ii) | sdW| = 1 ∨̇ (∀T ,T ′∈IntT T ∈ sdW ∧ T ′
⊆ T

⇒ T ′
∈ sdW),

(iii) ∀(u,i)∈W∀T ∈sdW T ⊆ domu ⇒ (u|T , i|T ) ∈ W.

The setW⊆S is calledproperly restriction compatibleif
| sdW|>1 otherwiseW is referred to astrivially restriction
compatible.

1As usual in set theory we denote for any two setsX andY the
set of all mappings fromX to Y by YX. For eachf ∈X andX′

⊂X

we denote withf |X′ the restriction off to X′.
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For each(u, i)∈W, b∈Z, andZ ′
⊂Z, (Z ′

6=∅) we denote
with ub, ib, and uZ ′ , iZ ′ the time functions defined for
all t∈domu=domi by ub(t):=u(t)(b) andib(t):=i(t)(b), or
uZ ′(t):=u(t)|Z ′, and iZ ′(t):=i(t)|Z ′, respectively. Under
the same assumptions the setWZ ′ :={(uZ ′ , iZ ′)| (u, i)∈W}

is denoted as theprojection ofW generated byZ ′.
An oriented graph is defined as an ordered triple

(Z,K,A) of two finite disjoint setsZ and K with
(K=∅⇒Z=∅) and a mapA :Z→K×K. Z is thebranch set,
K thenode set, andA the incidence mappingof this graph.
The incidence map assigns to each branchb the ordered pair
(v, w):=A(b) of its initial andterminal node. Each branch
is orientedfrom its initial to its terminal node.

Let G=(Z,K,A) and Ḡ=(Z̄, K̄, Ā) be oriented graphs.
Ḡ is a subgraphof G if Z̄ ⊆ Z, K̄ ⊆ K, and Ā=A|Z̄.
If Z ′

⊆Z, A′
=A|Z ′ and K′

= {v| ∃b ∈ Z v initial or
terminal node ofb} thenGZ ′ := (Z ′,K′,A′) is denoted
as the subgraph ofG generatedbyZ ′.

As in Reibiger (1997); Reibiger et al.(1999); Reibiger
(2003a,b) we define anetwork N as an ordered pair
N=(C,V) of a skeleton and a constitutive relation. The
skeletonC is an ordered pairC=(Gv,Gc) of two oriented
graphs with the same branch and node set differing at most
in their orientations.Gv andGc are denoted as thevoltageor
current graphofN , respectively. Theconstitutive relationV
is a restriction compatible nonvoid subsetV of the universal
signal set on the branch set ofGv andGc. For simplicity this
signal set is denoted as theuniversal signal set ofN . Analo-
gously, the branch and node sets of the graphsGv andGc are
denoted as those ofN .

The skeleton describes the topological structure of a net-
work. The constitutive relation characterizes the physical
properties assigned to the branch set of a network. The con-
stitutive relation is a set of ordered pairs of time functions
and it is therefore a binary relation in the sense of set theory.

In the standard case the constitutive relation of a network is
properly restriction compatible. The treatment of linear time-
invariant networks by means of Laplace transform, where
only time functions defined on the intervall[0, +∞] are ad-
mitted, delivers typical examples of networks with trivially
restriction compatible constitutive relations.

Let N be a network with branch setZ. The elements of
the universal signal set ofN are denoted assignals. If (u, i)

is a signal thenu is called the correspondingvoltage on the
branch set ofN andi is called the correspondingcurrent in
the branch set ofN . For each signal(u, i) and eachb∈Z,
Z ′

⊂Z (Z ′
6=∅) the time functionsub, ib, uZ ′ , andiZ ′ are de-

noted as the correspondingbranch voltage, branch current,
partial voltage onZ ′, andpartial current inZ ′, respectively.

The orientations of the branches of the voltage and the
current graph determine thereference directionsfor branch
voltages and branch currents, respectively. The constitutive
relation and both of the Kirchhoff’s laws have reference to
these orientations.

For the computer-aided analysis of networks it is indis-
pensable to separate off the constitutive relation of a network
from the corresponding universal signal set, or an appropri-
ate subset of this set, by means of a constitutive equation. In
analogy toWillems(1991); Poldermann and Willems(1998)
the notion of a constitutive equation can be introduced as fol-
lows.

Let N=:(C,V) be a network with universal signal setS.
If there exist a subsetS ′

⊆S with V⊆S ′, anequating setE ,
and two mappingsf, g : S ′

→E such that the relationship

V = {(u, i) ∈ S ′
|f (u, i) = g(u, i)} (1)

holds, then the equationf (u, i)=g(u, i) is denoted as acon-
stitutive equationof N . The right hand side of Eq. (1) is
denoted as arepresentationof the constitutive relation ofN
by means of a constitutive equation.

Let N be a network with universal signal setS and con-
stitutive relationV. Because the universal signal set contains
a lot of very complicated signals, e.g. signals with nowhere
differentiable voltages and currents, etc., it is useful to intro-
duce in addition to the universal signal set some more spe-
cific signal sets. Of course, such a signal setS ′ of N must
be a subset of its universal signal set and it must contain its
constitutive relation,V⊆S ′

⊂S. An important special case
of such a signal set is a signal set with a prescribed type of
branch signals.

Let R:I→U be a linear bijection then a setS∗ ⊆
⋃

T ∈IntT
UT

×IT is denoted as abranch signal typeif it fulfills the
conditions:

(i) S∗={(u, i)|u∈S∗v∧i∈S∗c∧ domu=domi}, where
S∗v:={u|∃i(u, i)∈S∗}, S∗c:={i|∃u(u, i)∈S∗}.

(ii) S∗={(R ◦ i, R−1
◦ u)|(u, i) ∈ S∗},

(iii) T ∈sdS∗, where sdS∗:={T |∃u,i(u, i)∈S∗∧T =domu}.

(iv) ∀(u,i)∈S∗
∀T ∈IntT T ⊆domu⇒(u|T , i|T )∈S∗.

Typical examples of branch signal types are sets of or-
dered pairs of continously differentiable, piecewise conti-
nously differentiable functions, locally Riemann-integrable
functions, etc.

Let Z be a finite set,S the universal signal set onZ, and
S∗ a branch signal type. A setS ′

⊆S is called theS∗-signal
setonZ if S ′

={(u, i)∈S| ∀b∈Z (ub, ib)∈S∗}.
Let N be a network whose constitutive relation is repre-

sented by means of an equating setE and a constitutive equa-
tion f (u, i)=g(u, i) as a subset of some signal setS ′. This
constitutive equation is denoted as a constitutive equation in
Belevitch formif the following additional conditions are ful-
filled:

(i) The equating setE is a subset of
⋃

T ∈IntT (Rm)T ,
wherem is some natural number.
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(ii) The function g is defined for all (u, i)∈S ′ by
g(u, i):=0domu, where 0domu denotes the zero function
of (Rm)domu.

The resulting constitutive equationf (u, i)=0domu is usually
simply written asf (u, i)=0.

In the standard case, fornondegeneratednetworks, the
value ofm is equal to the number of branches of the network.

Constitutive equations in resistance, conductance, hybrid,
or chain form are special cases of constitutive equations in
Belevitch form.

The setH of all signals(u, i) of a network whereu and
i fulfills Kirchhoff’s voltage or current law, respectively, is
denoted as theKirchhoff partof its universal signal set. The
intersectionL:=H∩V of Kirchhoff part and constitutive re-
lation is denoted as thebehavioror thesolution setof that
network.

Obviously, both Kirchhoff’s laws lead for each networkN
to a finite system of homogeneous linear algebraic equations.
Therefore, if the constitutive relation ofN is represented by
means of some system of constitutive equations, the problem
of the determination of the solution set ofN can be reduced
to the determination of the solution set of the resulting system
of equations. Such a resulting system of equations is denoted
as a system ofbehavioral equationsof N .

Traditionally, matrix calculus is used for the formulation
of constitutive and behavioral equations of networks. Using
a numbering of the branches of the network under considera-
tion it is always possible to transfer the representation of the
elements of the universal signal set of a network into the lan-
guage of matrix calculus. LetZ be the branch set of this net-
work, z:=|Z|, andζ :{1, . . . , z}→Z a bijection. The defini-
tionsuζ

:=(uζ(1), . . . , uζ(z))
T andiζ

:=(iζ(1), . . . , iζ(z))
T as-

sign to each signal(u, i) of the universal signal set onZ its
matrix representation(uζ , iζ ) with respect toζ .

Above we have introduced the notion of a projection of
a subset of the universal signal set of a network generated
by a subset of the branch set of this network. The following
definition makes an interesting use of this concept.

LetN andÑ be networks with branch setsZ andZ̃, re-
spectively, and solution setsL and L̃, respectively, where
Z⊂Z̃. We say thatÑ generates the solution set ofN if
L=L̃Z .

A multipoleis a network with a distingushed subset of its
node set whose elements are used as accessibleterminalsfor
the interconnection with other networks.

A multiport is a multipole whose terminal set is partitioned
into terminal pairs.

Obviously, eachn-port can be identified with a 2n-pole.
A network withn nodes is called anelementaryn-pole if

its graphs are forests whose branches connect these nodes. A
network with 2n nodes andn branches is called anelemen-
tary n-port if its graphs are forests with one-branch compo-
nents only.

On this basis it is possible to introduce special kinds of
networks such asindependent voltageandcurrent sources,
open and short circuits, nullators and norators, resistors,
controlled sources, gyrators, inductors, coupled inductors,
capacitors, etc.

Elementaryn-poles deliver in some sense minimal mod-
els of technical devices withn terminals (Reibiger(2003a);
Koenig et al.(1967), too). But it should be noted that in the
general case it is only possible to construct a minimal model
for some real technical device if networks with sufficiently
general constitutive relations are admitted. Otherwise one
has to try to synthesize an approximate realization by means
of an interconnection of networks with more restricted con-
stitutive relations.

Let (N l)l∈L be a family of networksN l
=(Cl,V l)

with branch setsZ l and node setsKl . This fam-
ily of networks is denoted asinterconnectable if
∀k,l∈L,k 6=l(Zk

∩Z l
=∅∧Kk

∩Z l
=∅∧sdVk

=sdV l).

An interconnectionof such a family of networks can be
determined with the help of an equivalence relation'equ on
the unionK̄:=

⋃
l∈LKl of their node sets. Its skeleton is

then defined by an identifiction of the elements of each of the
equivalence classesK′

∈K̄/ 'equ and its constitutive relation
is equal to{(u, i)∈S| ∀l∈L (uZ l , iZ l )∈V l

} whereS denotes
the universal signal sets on

⋃
l∈L Z l . For details seeReibiger

(2003b).

Sometimes it is appropriate to use aformal interconnec-
tion of a family of interconnectable networks. It is defined
by means of the identical relation on the union of their node
sets.

Obviously, each network can be represented both as an in-
terconnection of elementary multipols and as an interconnec-
tion of elementary multiports, too.

Elementary multipoles and multiports are usually denoted
as network elements in the literature. But in our formaliza-
tion of network theory they are itself networks (obviously,
networks with very simple skeletons) and they can be sub-
networks of other, larger networks. Therefore we avoid to
denote them aselements.

The notion of the terminal behavior of a network is of cen-
tral importance as well for the application of network theory
as for the further development of this theory, too. Indeed, a
lot of theorems of network theory deliver propositions about
the terminal behavior of some networks.

Let N be a given network with a prescribed subset of its
node set whose elements are denoted as terminals. The ter-
minal behavior ofN has to characterize the behavior of this
network with respect to all interconnections of its terminals
with arbitrary admissible external networks̃N in such a man-
ner that after an exchange of the given networkN by another
network N̂ with the same terminal behavior this exchange
can not be observed in all the external networksÑ of these
interconnections.
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160 A. Reibiger: Auxiliary branch method and modified nodal voltage equations

For an introduction let us first assume thatN is a network
with at least two nodes where exactly two of its nodes are
distingushed asterminalsat whichN can be interconnected
with external networksÑ . Theterminal behaviorof N can
then be defined as the set of all ordered pairs of terminal pair
voltages and terminal currents corresponding to the solution
sets of all interconnections of the given networkN with ar-
bitrary external networksÑ . Obviously, each such ordered
pair of terminal pair voltages and terminal currents is also
compatible with the interconnection ofN with a norator. Be-
cause this norator is an element of the set of all admissible
interconnections ofN with external networks, it suffices to
consider for the determination of the terminal behavior ofN
merely its interconnection with only one norator. The termi-
nal behavior ofN is then essentially equal to the projection
of the solution set of this interconnection generated by the
branch set of the external norator.

By means of this idea we have given inReibiger(1997) a
geometrical proof of the Th́evenin-Norton theorem.

These considerations can be immediately generalized to
the case of the determination of the terminal behavior of
networks which are connected to external networks at more
than two terminals. As it is shown inReibiger(1985, 1986,
2003a); Haase(1983) it suffices in this case to analyse the
interconnection of a given network with a tree (and in more
general cases with a forest) of norators connecting the termi-
nals of the given network. These ideas are also applied in
Clauß et al.(1995); Enge-Rosenblatt et al.(2007).

3 Central results

In this section we consider the relationship between four net-
works denoted asN ,N aug, N̄ , andN̄ aug.

For this purpose we assume that there are given a branch
signal typeS∗ and four finite pairwise disjoint nonvoid sets
Z1, Z2, Z3, andK with |Z2|=|Z3| and|K|=2|Z1∪Z2|. The
S∗-signal sets onZ:=Z1∪Z2 andZaug

:=Z1∪Z2∪Z3 are
denoted withS andSaug, respectively.

The networkN is defined as an elementary multiport with
branch setZ, node setK, and a constitutive relation which
can be represented by means of theS∗-signal setS as the set
of all signals(u, i)∈S obeying the semi-implicit constitutive
equations

iZ1 = g(uZ1, uZ2, iZ2) , (2)

0 = h(uZ1, uZ2, iZ2) , (3)

where

g:{(uZ1, uZ2, iZ2)| (u, i)∈S}→{iZ1| (u, i)∈S}

and

h:{(uZ1, uZ2, iZ2)|(u, i)∈S}→{iZ3|(u, i)∈Saug
}.

The networkN aug is defined as a meshless multipole with
branch setZaug and terminal setK satisfying the following
conditions: The voltage and current graph ofN aug consist
of at least|Z| components and and each of these compo-
nents includes at most one branch ofZ. The subgraphs of
these graphs generated byZ are equal to the corresponding
graphs ofN . Its constitutive relation can be represented by
means of theS∗-signal setSaug together with a linear bijec-
tion G:UZ3→IZ2 as the set of all signals(u, i)∈Saug obey-
ing the following constitutive equations in conductance form

iZ1 = g(uZ1, uZ2, G ◦ uZ3) , (4)

iZ2 = G ◦ uZ3 , (5)

iZ3 = h(uZ1, uZ2, G ◦ uZ3) . (6)

Theorem 1: The networksN and N aug have the same
terminal behavior with respect toK.

PROOF: For a proof of this theorem we connectN andN aug

with a norator tree consisting of|K|−1 branches such that
in the resulting network exactly one branch of this norator
network is parallel to a branch ofZ and all these parallel
connections are pairwise connected by means of one of the
remaining norators.

Then both of these interconnections are analyzed. It
is easy to see that the projections of the solution sets of
these interconnections generated by the branch set of the
norator-tree are equal. That means,N andN aug have the
same terminal behavior.�

Remark 1: Theorem 1 and both of the subsequent theorems,
too, can be generalized to the caseZ1=∅. Then the Eqs. (2)
and (4) are to delete and in the remaining equations the term
uZ1 must be omitted.�

Remark 2: Let (N l)l∈L be a family of interconnectable el-
ementary multiports whose constitutive relations satisfy the
assumptions of Theorem 1. Then the formal interconnection
of these multiports is an elementary multiport, too, fulfilling
these assumptions likewise.�

Let 'equ denote an equivalence relation defined on the
terminal set ofN andN aug. The networksN̄ andN̄ aug are
then defined by an identification of the elements of each of
the equivalence classesK′

∈K/ 'equ.

Theorem 2: The networkN̄ aug generates the solution set of
N̄ . �

Our proof of this theorem is based on the following lemma.
Its proof follows directly from the fact that the branches of
Z3 are not included in any mesh of̄N aug. For the formulation
of this lemma we need some additional notations.
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We set z1:=|Z1|, z2:=|Z2|, z3:=|Z3|, z:=|Z|=z1+z2.
Nullity and rank of the graphs ofN̄ are denoted byn
and r, respectively. M denotes a reduced mesh-branch
incidence matrix of the voltage graph ofN̄ andK a reduced
node-branch incidence matrix of the current graph ofN̄ .
By definition, M is an n×z and K an r×z matrix. The
assignment of the columns of these matrices to the branch
set ofN̄ is given by a bijective numberingζ :{1, . . . , z}→Z
satisfyingζ({1, . . . , z1})=Z1 andζ({z1+1, . . . , z})=Z2.

Lemma: Suppose(M1 M2) denote the natural partition of
the matrixM corresponding to the partition(Z1, Z2) of Z,
then there exists ann×z3 zero matrix 0 such that

(M1 M2 0)

is a reduced mesh-branch incidence matrix of the voltage
graph ofN̄ aug.

Analogously, if(K1 K2) denotes the natural partion of
K corresponding to the partition(Z1, Z2) of Z, then there
exist appropriate zero matrices and a regularz3×z3 matrix
K3 such that (

K1 K2 0
0 0 K3

)
is a conformably partitioned reduced cut-branch incidence
matrix of the current graph ofN aug. �

PROOF OF THEOREM 2: For simplicity we identify in the
following the partial voltages and currents of each signal
(u, i) of the universal signal set ofN augcorresponding to the
branch setsZ1, Z2, andZ3 with column matrices of length
z1, z2, andz3, resp.

Obviously, the constitutive Eqs. (4), (5), and (6) deliver
together with

(
M1 M2 0

) uZ1

uZ2

uZ3

 = 0 (7)

and (
K1 K2 0
0 0 K3

) iZ1

iZ2

iZ3

 = 0 (8)

a system of behavioral equations forN̄ aug. Let (u, i) be a
solution ofN̄ aug, i.e., a solution of the system of the Eqs. (4)
to (8). Then the Eqs. (7) and (8) imply

(
M1 M2

) (
uZ1

uZ2

)
= 0 (9)

and (
K1 K2

) (
iZ1

iZ2

)
= 0 . (10)

SinceK3 is regular, it follows from Eq. (8) that

iZ3 = 0

and therefore, together with Eqs. (5) and (6), thatuZ1, uZ2,
iZ1, and iZ2 satisfy the Eqs. (2) and (3). But the Eqs. (2),
(3), (9) and (10) are a system of behavioral equations of for
N̄ . That means,(uZ , iZ ) is a solution ofN̄ . �

Let Kdat. be an arbitrary chosen equivalence class of the
quotient setK/'equand letndat. be that node ofN̄ andN̄ aug

corresponding to this equivalence class.

Theorem 3: If the branches ofZ3 generate starlike subtrees
of the voltage and current graph ofN̄ aug with ndat. as center
node, then the system of nodal voltage equations forN̄ aug

with respect tondat. as datum node is equivalent to a system
of modified nodal voltages for̄N .

PROOF: Our proof consists of two parts.
Part 1: Analysis of N̄ by means of a system ofu-i-uø

equations: (
uZ1

uZ2

)
=

(
KT

1
KT

2

)
uø ,

iZ1 = g(uZ1, uZ2, iZ2) ,

0 = h(uZ1, uZ2, iZ2) ,

(
K1 K2

) (
iZ1

iZ2

)
= 0 .

Elimination ofuZ1, uZ2, andiZ1 delivers a system of modi-
fied nodal voltage equations for̄N :

K1 g(KT
1 uø, KT

2 uø, iZ2) + K2 iZ2 =0 , (11)

h(KT
1 uø, KT

2 uø, iZ2) =0 . (12)

Part 2: Analysis ofN̄ aug by means of nodal voltage equa-
tions:

Under the assumptions of Theorem 3 the branches ofZ3
generate starlike subtrees with the datum node as center
node. Therefore the submatrixK3 of the node-branch in-
cidence matrix ofN̄ aug is equal to az3×z3 unit matrix E3
and it follows uZ1

uZ2

uZ3

 =

KT
1 0

KT
2 0

0 E3

 (
u

ø
1

u
ø
2

)
,

iZ1 = g(uZ1, uZ2, iZ2) ,

iZ2 = G ◦ uZ3 ,

iZ3 = h(uZ1, uZ2, iZ2) ,

(
K1 K2 0
0 0 E3

) iZ1

iZ2

iZ3

 = 0 .
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Obviously,iZ3=0. Elimination ofiZ2 anduZ3 yields

K1g(KT
1 u

ø
1, K

T
2 u

ø
2, G ◦ u

ø
2) + K2G ◦ u

ø
2 = 0, (13)

h(KT
1 u

ø
1, K

T
2 u

ø
2, G ◦ u

ø
2) = 0. (14)

It is easy to see that the assignment(uø, iZ2)7→(u
ø
1, u

ø
2)

defined byuø
1:=uø andu

ø
2:=G−1

◦ iZ2 delivers a bijection
between the solution sets of the equation systems Eqs. (11)
and (12), and Eqs. (13) and (14).�

The modified nodal voltage Eqs. (11) and (12) are set up
here under the assumption that the constitutive equations
of N̄ are the semi-implicit Eqs. (2) and (3). However, in
the literature it is for this purpose usually assumed that the
constitutive equations are given in hybrid form. Observe,
the constitutive equationsu1=0 , i1=0 of a nullor are not in
hybrid form.

Examples
(1◦) Nullor: A nullor is an elementary two-port. IfZ:={1, 2}

denotes its branch set, then its constitutive relation can be
characterized by the equations

u1=0, i1=0

or equivalently
i1=0, 0=G◦u1 ,

whereG:U→I linear bijection. Therefore the associated
networkN aug can defined by

Z1={1}, Z2={2}, Z3={3},

i1=0, i2=G◦u3, i3=G◦u1 .

(2◦) Independent Voltage Source: An independent voltage
source is an elementary one-port. IfZ:={1} denotes its
branch set, then its constitutive relation can be together with
a prescribed voltageue

1∈S∗ characterized by the equation

u1=ue
1|domu1,

or equivalently

0 = G◦(u1−ue
1|domu1) ,

whereG:U→I linear bijection. Therefore the associated
networkN aug can be defined by

Z1=∅, Z2={1}, Z3={2},

i1=G◦u2 , i2=G◦(u1−ue
1|domu1) .

(3◦) Current Controlled Voltage Source: A current controlled
voltage source is an elementary two-port. IfZ:={1, 2} de-
notes its branch set, then its constitutive relation can be char-
acterized by the equations

u1=0, u2=Rtrf◦i1

or equivalently

0=G◦u1, 0=G◦u2−G◦Rtrf◦i1 ,

whereRtrf :I→U is an arbitrary map andG:U→I is a lin-
ear bijection. Therefore the associated networkN aug can be
defined by

Z1=∅, Z2={1, 2}, Z3={3, 4},

i1=G◦u3 , i2=G◦u4 , i3=G◦u1

i4=G◦u2−G◦Rtrf◦i1 .

If Rtrf is a bijection, too, then it is possible to start from the
equations

i1=R−1
trf ◦u2 , 0=G◦u1 .

The associated networkN aug can now be defined by

Z1={1}, Z2={2}, Z3={3},

i1=R−1
trf ◦u2 , i2=G◦u3 , i3=G◦u1 .

4 Concluding remarks

On the basis of some recent results on the foundations of
network theory we have presented an algorithm for the con-
struction of a multipole having the same all-pole terminal
behavior as an given elementary multiport whose constitu-
tive relation is defined by means of a system of semi-implicit
constitutive equations such that the constitutive relation of
the modified multipole can be represented by means of con-
stitutive equations in conductance form.

A row of other applications of the auxiliary branch method
to circumvent restrictions of the input languages of circuit
simulators can you find inHaase(1983); Clauß et al.(1995);
Reibiger and Elst(1983).
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