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Auxiliary branch method and modified nodal voltage equations

A. Reibiger
Dresden University of Technology, Department of Electrical Engineering, Mommsenstr. 13, 01062 Dresden, Germany

Abstract. A theorem is presented describing a transforma-2 Network theoretical background
tion by means of which it is possible to assign to an elemen-
tary multiport with fairly general constitutive equations (in- In this section we give a short review of results of our re-
cluding all kinds of controlled sources, nullors, ideal trans- search on the foundations of network theRwibiger(1989
formers, etc.) a modified multiport with the same all-pole ter- to Reibiger(2003h.
minal behavior. The branch set of this modified multiportis As standing notations we use the symbtlsZ, and 7T
augmented with so called auxiliary branches whereas its conto denote thespace of branch voltage valuethe space of
stitutive equations are always in conductance form. Therebranch current valugsand thetime axis respectively. We
fore an interconnection of a family of multiports transformed assume that all these spaces are provided with the structure
in this manner can always be analyzed by means of a systemf one-dimensional normed oriented real vector space§. Int
of nodal voltage equations. It will be shown that this sys- denotes the set of all intervals of the time axis.
tem of equations is equivalent to a system of modified nodal The assumption&=RV, Z=RA, and7=Rs lead to the
voltage equations set up for the network that is an intercon<lass ofelectrical networkand/=7=7 =R to that ofnor-
nection of the elementary multiports originally given. malized networks In the same manner it is possible to in-
troduce network classes which can be used for modeling me-
chanical or thermal systems, etc., Kbenig et al.(1967);
1 Introduction Reinschke and Schwa(2976.
For each nonvoid finite setZ and each interval

For an arbitrary elementary multipole with semi-implicite 7€Int7 we assume that the sé&®, %), UZ xIZ,...,
constitutive equations we consider an algorithm for the con-U?)" x(Z#)" are provided with the structure of normed
struction of a multipole having the same terminal behaviorlinear spaces induced by the structures of the specasd
as the given elementary multipole but with constitutive equa-Z*. The setS := Uy gy @) x (Z%)T is denoted as the
tions in conductance form. universal signal set oZ.

The idea for the construction of this algorithm goes backto Let WCS, whereS is the universal signal set ofi. Let
a conference paper &teinschke and Schwa(1977. For-  sOWV:={T |3, eyw T=donu}, and letv denote the exclu-
mer related results go back to paperskiéin (1958 and  sive or. The selV is denoted agestriction compatibléf the
his collaborator€Engelhardt and Heingl970; Thielmann  following conditions are fulfilled:
(1973; Kremer(1978. )

As an application of the theory of terminal behavior of net- () Urresaw T" € sdW,
works developed ifReibiger(1985 1986 20033 we present . .
a reformulation of this algorithm which mal?es itg network () lSdV\fl =1V (rreanr T €AV AT CT

: : = T’ e sdW),

theoretic assumptions and conseguences more transparent.

(i) Yo.newVresaw T S domu = u|T,i|T) e W.

The setWWCS is calledproperly restriction compatiblé
| sdW|>1 otherwiselV is referred to asrivially restriction

compatible
- 1As usual in set theory we denote for any two sétandY the
Co-rr.esponQence toh. Reibiger set of all mappings fronX to ¥ by YX. For eachfeX andX’cX
BY (reibiger@iee.et.tu-dresden.de) we denote withf| X’ the restriction off to X'.

Published by Copernicus Publications on behalf of the URSI Landesausschuss in der Bundesrepublik Deutschland e.V.



https://core.ac.uk/display/26942761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/

158

For each(u, i)eW, be Z, andZ'C Z, (Z'#£%) we denote
with up, ip, anduz/, iz the time functions defined for
all redomu=domi by u; (¢):=u () (b) andi,(¢):=i(t)(b), Or
uz (t):=u()|Z’, andiz (¢):=i(t)|Z’, respectively. Under
the same assumptions the ¥t :={(uz/, iz)| (u,i)eW}
is denoted as thprojection of VW generated byz2’.

An oriented graphis defined as an ordered triple
(Z,K, A of two finite disjoint setsZ and K with
(K== Z=@)andamapd :Z—Kx K. Z isthebranch set
K the node setand.A the incidence mappingf this graph.
The incidence map assigns to each braintie ordered pair
(v, w):=A(b) of its initial andterminal node Each branch
is orientedfrom its initial to its terminal node.

Let G=(Z, K, A) and G=(Z, K, A) be oriented graphs.
G is asubgraphof G if Z € 2, K € K, and A=A|Z.

If 2cZ, A=A|Z' and K’ = {v|3b e Z v initial or
terminal node ofb} thenGz = (2, K’, A) is denoted
as the subgraph ¢f generatecby Z’.

As in Reibiger (1997; Reibiger et al.(1999; Reibiger
(2003ab) we define anetwork A/ as an ordered pair
N=(C, V) of a skeleton and a constitutive relation. The
skeletonC is an ordered pai€=(Gy, G¢) of two oriented
graphs with the same branch and node set differing at mo
in their orientationsgG, andg; are denoted as theltageor
current graphof \V, respectively. Theonstitutive relatior
is a restriction compatible nonvoid sub3ébf the universal
signal set on the branch set@f andg.. For simplicity this
signal set is denoted as theiversal signal set af\/. Analo-
gously, the branch and node sets of the graphandg. are
denoted as those of .

The skeleton describes the topological structure of a net- (i) s, ={(u, i)|ueS.wAieSicA domu=dom},
work. The constitutive relation characterizes the physical

A. Reibiger: Auxiliary branch method and modified nodal voltage equations

For the computer-aided analysis of networks it is indis-
pensable to separate off the constitutive relation of a network
from the corresponding universal signal set, or an appropri-
ate subset of this set, by means of a constitutive equation. In
analogy towillems (1997); Poldermann and Willemd 999
the notion of a constitutive equation can be introduced as fol-
lows.

Let N'=:(C, V) be a network with universal signal st
If there exist a subse$’CS with VCS’', anequating set,
and two mappingd, g : S’— & such that the relationship

@)

holds, then the equatiofi(u, i)=g(u, i) is denoted as eon-
stitutive equationof A/. The right hand side of Eql) is
denoted as eepresentatiorof the constitutive relation of
by means of a constitutive equation.

Let AV be a network with universal signal sétand con-
stitutive relation). Because the universal signal set contains
a lot of very complicated signals, e.g. signals with nowhere
differentiable voltages and currents, etc., it is useful to intro-
duce in addition to the universal signal set some more spe-
cf‘ific signal sets. Of course, such a signal Sebf &' must

V={wi)eS|fui)=g,i)

%e a subset of its universal signal set and it must contain its

constitutive relation)VCS’cS. An important special case
of such a signal set is a signal set with a prescribed type of
branch signals.

Let R:Z—U be a linear bijection then a s&t € Uy cintr
UT xZI7 is denoted as &ranch signal typef it fulfills the
conditions:

where
Swvi={u|3; (u, i) eS8y}, Suci={i|3u (1, i)€S}.

properties assigned to the branch set of a network. The con-
stitutive relation is a set of ordered pairs of time functions (i) S,={(Roi, R ou)|(u,i) € Sy},
and it is therefore a binary relation in the sense of set theory.
In the standard case the constitutive relation of a network is(iil) 7 €sdS,, where s&,:={T |3, (u, i)eS, AT =donmu}.

properly restriction compatible. The treatment of linear time-
invariant networks by means of Laplace transform, where

only time functions defined on the interv@lll, +oo] are ad-
mitted, delivers typical examples of networks with trivially
restriction compatible constitutive relations.

Let A be a network with branch set. The elements of
the universal signal set ¢¥ are denoted asignals If («, i)
is a signal them is called the correspondingpltage on the
branch set ofA” andi is called the correspondirgyrrent in
the branch set of\/. For each signafu, i) and eacthe Z,
Z'C Z (Z'#0) the time functions, iy, uz/, andi z- are de-
noted as the correspondilhganch voltagebranch current
partial voltage onZ’, andpartial currentin Z’, respectively.

(V) Yu.nhes,Vremer T<domu=(u|T,i|T)€S;.

Typical examples of branch signal types are sets of or-
dered pairs of continously differentiable, piecewise conti-
nously differentiable functions, locally Riemann-integrable
functions, etc.

Let Z be a finite setS the universal signal set afi, and
S, a branch signal type. A s&'CS is called theS,-signal
seton Z if 8'={(u, i)e€S|Vpecz (up, ip) €Ss}.

Let AV be a network whose constitutive relation is repre-
sented by means of an equating&eind a constitutive equa-
tion f(u,i)=g(u, i) as a subset of some signal ¥t This
constitutive equation is denoted as a constitutive equation in

The orientations of the branches of the voltage and thegelevitch formif the following additional conditions are ful-

current graph determine theference directiongor branch

filled:

voltages and branch currents, respectively. The constitutive
relation and both of the Kirchhoff’s laws have reference to (i) The equating se€ is a subset ol J;cjnir (R™7,

these orientations.
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wherem is some natural number.
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(i) The function g is defined for all (u,i)eS’ by On this basis it is possible to introduce special kinds of
g(u, 1):=0gomu, Where Qom, denotes the zero function networks such amdependent voltagand current sources
of (R™ydomu, open and short circuits nullators and norators resistors

controlled sourcesgyrators inductors coupled inductors
The resulting constitutive equatiof(u, i)=0qom, is usually ~ capacitors etc.

simply written asf (u, i)=0. Elementaryn-poles deliver in some sense minimal mod-
In the standard case, forondegeneratedietworks, the  els of technical devices with terminals Reibiger(20033;
value ofm is equal to the number of branches of the network. Koenig et al.(1967), too). But it should be noted that in the
Constitutive equations in resistance, conductance, hybridgeneral case it is only possible to construct a minimal model
or chain form are special cases of constitutive equations irfor some real technical device if networks with sufficiently
Belevitch form. general constitutive relations are admitted. Otherwise one
The setH of all signals(«, i) of a network where: and has to try to synthesize an approximate realization by means
i fulfills Kirchhoff’s voltage or current law, respectively, is of an interconnection of networks with more restricted con-
denoted as thKirchhoff partof its universal signal set. The stitutive relations.
intersectionL:=HNV of Kirchhoff part and constitutive re- Let (M), be a family of networksA'=(C!, V')
lation is denoted as thieehavioror the solution setof that  \yith branch setsZ! and node sets<!. This fam-
network. ily of networks is denoted asinterconnectable if
Obviously, both Kirchhoff's laws lead for each network v, ;¢ 1 (Z¥NZ!=PAKFNZ! =g rsdF =saW).
to a finite system of homogeneous linear algebraic equations.
Therefore, if the constitutive relation ¢f is represented by

means of some system of constitutive equations, the probler‘ﬂ"3 unionK:=_,, k' of their node sets. Its skeleton is
— UleL :

g tt::: c(jj(Stt:rrrTilr?:':iI(())r?(;‘ftLhees?)(I)lIJLtjitcl)%nsZ(tagﬁﬁ:?egﬁI:ﬁdu;es(:e mthen defined by an identifiction of the elements of each of the
gsy quivalence classés' e/ ~equand its constitutive relation

of equations. Such a resulting system of equations is denoteﬁ : . !
- . v
as a system dfehavioral equationsf V. IS equal tof(u, ))€S| Vier (uz1, iz)€V'} wheresS denotes

. . . _ the universal signal sets Z!. For details seReibiger
Traditionally, matrix calculus is used for the formulation (2003 g Wy, g
of constitutive and behavioral equations of networks. Using S _ o . P i

a numbering of the branches of the network under considera- S°Metimes it is appropriate to usdamal interconnec-

tion it is always possible to transfer the representation of the'n ©f @ family of interconnectable networks. It is defined

elements of the universal signal set of a network into the lan.PY Méans of the identical refation on the union of their node

An interconnectionof such a family of networks can be
determined with the help of an equivalence relatiag, on

guage of matrix calculus. L& be the branch set of this net- sets.

work, z:=|Z|, and¢:{1, ..., z}— Z a bijection. The defini- Obviously, each network can be represented both as an in-
tionsul:=(ucqy, - ., trz) " andi:=(icqy, ..., ir) " as-  terconnection of elementary multipols and as an interconnec-
sign to each signal, i) of the universal signal set ofi its  tion of elementary multiports, too.

maitrix representationu? , i¢) with respect ta;. Elementary multipoles and multiports are usually denoted

Above we have introduced the notion of a projection of as network elements in the literature. But in our formaliza-
a subset of the universal signal set of a network generatetion of network theory they are itself networks (obviously,
by a subset of the branch set of this network. The following networks with very simple skeletons) and they can be sub-
definition makes an interesting use of this concept. networks of other, larger networks. Therefore we avoid to

Let AV and A/ be networks with branch seB and Z, re-  denote them aslements
spectively, and solution setS and £, respectively, where The notion of the terminal behavior of a network is of cen-
ZCZ. We say that\V generates the solution set of if  tral importance as well for the application of network theory
L=Lz. as for the further development of this theory, too. Indeed, a

A multipoleis a network with a distingushed subset of its lot of theorems of network theory deliver propositions about
node set whose elements are used as accessibiamalsfor the terminal behavior of some networks.

the interconnection with other networks. Let A/ be a given network with a prescribed subset of its
A multiportis a multipole whose terminal set is partitioned node set whose elements are denoted as terminals. The ter-
into terminal pairs minal behavior of\" has to characterize the behavior of this
Obviously, eacl-port can be identified with an2pole. network with respect to all interconnections of its terminals

A network withn nodes is called aslementary:-pole if with arbitrary admissible external netwotksin such a man-
its graphs are forests whose branches connect these nodes.n&r that after an exchange of the given netwbftky another
network with 2: nodes and: branches is called aglemen-  network A/ with the same terminal behavior this exchange
tary n-port if its graphs are forests with one-branch compo- can not be observed in all the external netwokkof these
nents only. interconnections.

www.adv-radio-sci.net/6/157/2008/ Adv. Radio Sci., 6, 16553- 2008



160 A. Reibiger: Auxiliary branch method and modified nodal voltage equations

For an introduction let us first assume th\atis a network The network\349is defined as a meshless multipole with
with at least two nodes where exactly two of its nodes arebranch setZ2'9 and terminal sek’ satisfying the following
distingushed aterminalsat which A/ can be interconnected conditions: The voltage and current graph/¢f!9 consist
with external networks\. Theterminal behaviorof A" can  of at least|Z| components and and each of these compo-
then be defined as the set of all ordered pairs of terminal painents includes at most one branchzf The subgraphs of
voltages and terminal currents corresponding to the solutiorthese graphs generated Byare equal to the corresponding
sets of all interconnections of the given netwdvkwith ar- graphs of\. Its constitutive relation can be represented by
bitrary external networks/. Obviously, each such ordered means of thes,-signal setS2"9 together with a linear bijec-
pair of terminal pair voltages and terminal currents is alsotion G:1/Z3—722 as the set of all signalg, i)€S29 obey-
compatible with the interconnection &f with a norator. Be-  ing the following constitutive equations in conductance form
cause this norator is an element of the set of all admissible
interconnections af\" with external networks, it suffices to izy =8z, uz,, Gouzg,), 4)
consider for the determination of the terminal behaviahof iz,=Gouz,, (5)
merely its interconnection with only one norator. The termi-
nal behavior of\/ is then essentially equal to the projection
of the solution set of this interconnection generated by the
e e e onoiigerissna | TTE0EM 1 The netionia’ and V™5 have the same

. : terminal behavior with respect f6.
geometrical proof of the Tévenin-Norton theorem.
the case of the determination of the terminal benavior off FOOF FOr & proofof this theorer we connektandr+s
. with a norator tree consisting ok|—1 branches such that
networks which are connected to external networks at MOTE, the resulting network exactly one branch of this norator
than two terminals. As it is shown iReibiger(1985 1986

) . . N network is parallel to a branch of and all these parallel
.20033’ Haa;e(1983 't. suffices in th|§ case to analy_se the connections are pairwise connected by means of one of the
interconnection of a given network with a tree (and in more

eneral cases with a forest) of norators connecting the termi[emaining norators.
9 9 Then both of these interconnections are analyzed. It

nals of the given network. These ideas are also applied iqs easy to see that the projections of the solution sets of
Claus et al(1999; Enge-Rosenblatt et 42007. these interconnections generated by the branch set of the

norator-tree are equal. That means,and V29 have the
same terminal behaviolr

iz =h(uz,uz, Gouz,). (6)

3 Central results

In this section we consider the relationship between four netRémark 1: Theorem 1 and both of the subsequent theorems,

works denoted a8/. Va9 N andAaug, too, can be generalized to the cage=0. Then the Eqs. (2)

For this purpose we assume that there are given a branc@nd (4) are to dglete and in the remaining equations the term
signal types, and four finite pairwise disjoint nonvoid sets %2 Must be omitted.]
Z1, 22, Z3, andKC with | Z2|=|Z3| and|K|=2|Z1UZ5|. The ) )
S.-signal sets onZ:=21UZ, and 239=2,UZ,UZ; are  Remark 2: Let (NM)er be a family of interconnectable el-
denoted withS and.SaY9, respectively. ementary multiports whose constitutive relations satisfy the
assumptions of Theorem 1. Then the formal interconnection
of these multiports is an elementary multiport, too, fulfilling
these assumptions likewisel

The network\ is defined as an elementary multiport with
branch setZ, node set, and a constitutive relation which
can be represented by means offliesignal setS as the set

of all signals(u, i)eS obeying the semi-implicit constitutive ) _ ]
Let ~¢qu denote an equivalence relation defined on the

equations c 1
terminal set ofA” and V249 The networks\V and N9 are
iz, =gluz, uz,,iz,), 2) tEen de_fincled by aln id;gtifliccation of the elements of each of
0= h(uzy, uz,. iz,) . @) theequivalence classtSe/C/ ~equ
where Theorem 2: The networkA2"9 generates the solution set of

N.O
glluz,, uz,,iz,)| w,i)eS}—liz | (u, i)eS}
Our proof of this theorem is based on the following lemma.
and Its proof follows directly from the fact that the branches of
Zz are notincluded in any mesh 4f249, For the formulation
hi{(uz,, uz,,iz,)|(u, i)eS}—>{iz,|(u, )eS"9). of this lemma we need some additional notations.

Adv. Radio Sci., 6, 157:63 2008 www.adv-radio-sci.net/6/157/2008/
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We setzi:=|Z1|, z2:=[22|, z3:=|Z3|, z:=|Z|=z1tz22. and therefore, together with Egs. (5) and (6), thal, u z,,
Nullity and rank of the graphs o\ are denoted by iz,, andiz, satisfy the Egs. (2) and (3). But the Egs. (2),
and r, respectively. M denotes a reduced mesh-branch (3), (9) and (10) are a system of behavioral equations of for
incidence matrix of the voltage graph.&f andK areduced N. That meansiu z, iz) is a solution of\/. O
node-branch incidence matrix of the current graph\6f

By definition, M is annxz and K an rxz matrix. The Let Kgat be an arbitrary chosen equivalence class of the
assignment of the columns of these matrices to the brancljuotient sefC/~¢quand letrya be that node oV and 249
set of V' is given by a bijective numbering:{1, ..., z}—>2Z corresponding to this equivalence class.

satisfyingc ({1, ..., z1})=21 and¢ ({z1+1, . .., z})=2>.

Theorem 3: If the branches o023 generate starlike subtrees
Lemma: Suppos€M; M) denote the natural partition of of the voltage and current graph 4f2“9with nqe; as center
the matrixM corresponding to the partitiof€:, 2;) of Z, node, then the system of nodal voltage equations\fét9
then there exists amx z3 zero matrix 0 such that with respect toigat as datum node is equivalent to a system

of modified nodal voltages fok/.
(M1 M2 0

is a reduced mesh-branch incidence matrix of the voltagd ROOF Our proof consists of two parts. o,
graph ofA/aug, Part 1: Analysis of ' by means of a system of-i-u

Analogously, if(K1 K») denotes the natural partion of €guations:
K corresponding to the partitiof21, Z») of Z, then there (uzl> _ <K1T) .0
exist appropriate zero matrices and a regulatzz matrix uz,) KzT ’
K3 such that

K1 K> O ' .
O 0 K3 lZl = g(”zl’ usz lZz) 9
0 =h(uz,, uz, iz, ,

(K1 K2) (ij) =0.

2

is a conformably partitioned reduced cut-branch incidence
matrix of the current graph of/349, [

PROOF OF THEOREM 2: For simplicity we identify in the
following the partial voltages and currents of each signalgjimination ofuz,, uz, andiz, delivers a system of modi-
(u, i) of the universal signal set ¢ “Icorresponding tothe a4 nodal voltage equations for:

branch sets£;, Z»2, and Z3 with column matrices of length

21, 72, andzs, resp. K1g(K{u® KJu® iz,) + Kziz, =0, (11)
Obviously, the constitutive Egs. (4), (5), and (6) deliver T g uT g .
together with h(Kju®, Kpu®, iz,) =0. (12)
Uz, Part 2. Analysis of a9 by means of nodal voltage equa-
(Ml M> 0) uz, | =0 @) tions:
Uz, Under the assumptions of Theorem 3 the branchezzof

generate starlike subtrees with the datum node as center

and i node. Therefore the submatriks of the node-branch in-
K1K> O l.Zl ~0 ®) cidence matrix ofA//39is equal to azzxz3 unit matrix E3
0 0 Kk3)|'* and it follows
iz,
a system of behavioral equations {89 Let (u,i) be a Uz, K] 0 4?
solution of /349 i.e., a solution of the system of the Egs. (4) uz, | =kJ 0 (M%> )
to (8). Then the Egs. (7) and (8) imply Uz, 0 Es 2
(b1 M) (Z) =0 (©) | _
MZZ ZZ]_ = g(uZ]_a usz lZz) )
and iz,=Gouzg,,
(K1 K2) @) =0 (10) 2, = hluzy uzpiz;).,
2
SinceK3 is regular, it follows from Eg. (8) that K1Ko O ;zl o
. —0 0 0 Ez) |
1z3 = Z3
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162 A. Reibiger: Auxiliary branch method and modified nodal voltage equations

Obviously,i z,=0. Elimination ofi z, andu z, yields or equivalently
Klg(KlTu'f, KZTug Go ug) + K2G o ug =0, (13) 0=Gouy, 0=Gouz—GoRyioi1,
T @ T @ %)
h(Kyuy, Kaup, G ouy) =0 (14 whereRy:Z—U is an arbitrary map anG:U/—7 is a lin-

. . . 7 o ear bijection. Therefore the associated netwdi®'9 can be
It is easy to see that the assignment, i z,)— (u7, us) defined by

defined byuf:=u® andu3:=G~! o iz, delivers a bijection
between the solution sets of the equation systems Egs. (11) Zi=0, Z,={1,2), Z3=(3, 4},
and (12), and Egs. (13) and (14).
i1=Gousz, i2=Goug, i3=Gousy

The modified nodal voltage Eqgs. (11) and (12) are set up
here under the assumption that the constitutive equations
of ' are the semi-implicit Egs. (2) and (3). However, in If Ry is a bijection, too, then it is possible to start from the
the literature it is for this purpose usually assumed that theequations

i4=Goups—GoRyfoiq .

constitutive equations are given in hybrid form. Observe, ilzRgflouz, 0=Gouj .
the constitutive equationg =0, i1=0 of a nullor are notin The associated networ(@19 can now be defined by
hybrid form.

Z1={1}, Z2={2}, Z3={3},
Examples
(2°) Nullor: A nullor is an elementary two-port. £:={1, 2} i1=R{rflou2 , i2=Gous, iz=Gouy.

denotes its branch set, then its constitutive relation can be

characterized by the equations
4 Concluding remarks

u1=0, i1=0
On the basis of some recent results on the foundations of
or equivalently network theory we have presented an algorithm for the con-
i1=0, 0=Gouq, struction of a multipole having the same all-pole terminal

behavior as an given elementary multiport whose constitu-
tive relation is defined by means of a system of semi-implicit
constitutive equations such that the constitutive relation of

where G:U{—Z linear bijection. Therefore the associated
network A28 can defined by

Z1=(1}, Z,={2}, Z3={(3}, the modified multipole can be represented by means of con-
stitutive equations in conductance form.
i1=0, i2=Gous, iz=Gous. A row of other applications of the auxiliary branch method

(2°) Independent Voltage Soutcén independent voltage tq circumvent restri(_:tiorjs of the input languages of circuit
source is an elementary one-port. 4f={1} denotes its Simulators can you find illaasg1983; Clauf? et al(1999;
branch set, then its constitutive relation can be together witHR€iPiger and Els{1983.

a prescribed voltage§eS, characterized by the equation
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