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Abstract. Ambient aerosol samples (TSP,n = 50) were col-
lected for 12 months at subtropical Okinawa Island, Japan,
an outflow region of Asian dusts in the western North Pacific
and analysed for organic carbon (OC), elemental carbon
(EC), water-soluble organic carbon (WSOC), water-soluble
total nitrogen (WSTN), water-soluble organic nitrogen
(WSON) and major ions to better understand the formation
and transformation of East Asian aerosols during long-range
atmospheric transport. Concentration ranges of these com-
ponents are; OC: 0.76–7.1 µg m−3 (av. 1.7± 1.0 µg m−3),
EC: 0.07–0.96 µg m−3 (0.28± 0.19 µg m−3), WSOC:
0.27–1.9 µg m−3 (0.73± 0.38 µg m−3), WSTN: 0.77
to 3.0 µg m−3 (0.58± 0.46 µg m−3) and WSON: 0.0–
2.2 µg m−3 (0.12± 0.23 µg m−3). Higher OC concentra-
tions were obtained in active biota seasons; spring (av.
2.4 µg m−3) and summer (1.8 µg m−3). EC and WSOC
concentrations maximized in spring (av. 0.41 µg m−3 and
0.95 µg m−3, respectively) followed by winter (0.70 and
0.90 µg m−3) whereas they became lowest in summer (0.19
and 0.52 µg m−3). In contrast, WSTN concentrations were
highest in winter (0.86 µg m−3) and lowest in summer
(0.37 µg m−3) and autumn (0.34 µg m−3). Concentrations of
WSON are higher in early summer (av. 0.26 µg m−3) due to
the emission from marine biota. The high ratios of OC / EC
(av. 7.6) and WSOC / OC (44 %) suggest a secondary
formation of organic aerosols. Strong correlation between
OC and MSA− (0.81) in spring suggests that springtime
aerosols are influenced by additional marine and terrestrial
biogenic sources. The positive correlation of Ca2+ and TSP
in spring (r = 0.81) demonstrates a significant contribution

of Asian dust whereas high abundances of NO−

3 and nss-
SO2−

4 in winter suggest an important contribution from
anthropogenic sources including biomass burning, vehicular
emission and coal combustion. NH4-N/WSTN ratios peaked
in winter (0.56), indicating a significant contribution of
biomass burning to WSTN in cold season. In contrast, higher
NO3-N/WSTN ratio in spring than winter suggests that the
atmospheric transport of vehicular emissions maximizes in
spring. Correlation analyses of major ions suggest that NH+

4
and Ca2+ play major role in the neutralization of acidic
aerosols forming NH4HSO4, (NH4)2SO4 and CaSO4.

1 Introduction

Aerosols affect the Earth’s radiative forcing directly by scat-
tering and absorbing light and indirectly by acting as cloud
condensation nuclei (Buseck and Posfai, 1999). The role of
atmospheric aerosols in radiative budget, however, has not
been well understood despite many studies (e.g. Ramanathan
et al., 2001). Carbonaceous aerosols play major role in cli-
mate change and health effect (Folinsbee, 1992). Although
EC is minor component in carbonaceous aerosols, it has pos-
itive radiative forcing at the top of the atmosphere (TOA) and
negative radiative forcing at the surface (Ramanathan et al.,
2001). Organic aerosols that contain water-soluble species
play an important role in climate forcing (Novakov and Pen-
ner, 1993) and cloud condensation nuclei (CCN) activity
(Saxena et al., 1995). Large amounts of water-soluble organic
compounds including dicarboxylic acids are present in the
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Fig. 1.Map showing the geographical region of Cape Hedo, Okinawa, where sampling was performed.

tropospheric aerosols from urban (Kawamura and Kaplan,
1987), rural (Limbeck et al., 2001), marine (Kawamura et al.,
2004), Arctic (Kawamura et al., 1996a, 2010) and Antarctic
regions (Kawamura et al., 1996b), supporting that they are
important chemical constituents in the atmosphere.

About one fourth of the global anthropogenic carbona-
ceous aerosols are emitted from China, 70 % of which are
originated solely from coal burning (Cooke et al., 1999).
Large amounts of low quality coal are used for house heating
and cooking purposes (Wang et al., 2006). Light absorbing
EC and light scattering OC have been abundantly reported in
Chinese aerosols (Ho et al., 2007; Cao et al., 2007), which
are subjected to long-range transport over the western North
Pacific. Okinawa Island is located in the outflow region of
Asian aerosols and on the pathway to the Pacific. Cape Hedo
is located on the northern edge of Okinawa and has been used
as a supersite of Atmospheric Brown Clouds (ABC) project
to study the atmospheric transport of Chinese aerosols and
their chemical transformation in East Asia (Takami et al.,
2007). In the Asian Pacific region, the East Asian monsoon
dominates in winter to spring, whereas the monsoon from the
Pacific Ocean dominates in summer to fall (Sato et al., 2009),
therefore, continental air masses from East Asian countries
including Russia, Mongolia, China, and Korea generally ar-
rive over Okinawa during winter and spring.

In this study, we report one-year observations of OC,
EC, WSOC, WSTN and major ions in ambient atmospheric
aerosols collected at Cape Hedo, Okinawa. We calculate
water-soluble organic nitrogen (WSON) based on the dif-
ference between WSTN and inorganic nitrogen (NO−

3 and
NH+

4 ). We discuss the seasonal changes of these components
and transformations of organic aerosol (OA) during the long-
range transport of Asian aerosols. Many studies related to the
atmospheric chemistry have been conducted at Cape Hedo

(Sato et al., 2009; Wang et al., 2009; Zhang et al., 2003;
Jaffe et al., 2005; Verma et al., 2011; Lun et al., 2009; Ya-
mamoto and Kawamura, 2011; Ueda et al., 2011; Arakaki
et al., 2006; Handa et al., 2010; Mochida et al., 2010). How-
ever, no studies were conducted for a long-term measurement
of OC, EC, WSOC, WSTN, WSON and major ions in atmo-
spheric aerosols from Cape Hedo, Okinawa Island.

2 Samples and analytical procedure

2.1 Sampling site and aerosol collection

Using a high-volume air sampler (Kimoto AS-810B) and
pre-combusted (450◦C, 4 h) quartz fiber filters (Pallflex
2500QAT, 20×25 cm), total suspended aerosol (TSP) sam-
ples (n = 50) were collected on weekly basis at Cape Hedo
Atmosphere and Aerosol Measurement Station (CHAAMS,
26◦9′ N, 128◦2′ E) from 2009 October to 2010 October. The
sampling period of each sample was 7 days. Figure 1 shows
a map of East Asia with the geographical location of Cape
Hedo in Okinawa. CHAAMS is located at the northwest-
ern part of Okinawa Island, Japan and it is surrounded by
subtropical forest (Yamamoto and Kawamura, 2011) where
local anthropogenic emissions are insignificant (Takami et
al., 2007). Aerosol filter samples were placed in a preheated
glass jar (150 mL) with a Teflon-lined screw cap and stored
in darkness at−20◦C until the analysis. Field blanks were
also collected at the site. Blank filter was placed in the fil-
ter cartridge of sampler without pumping air. After 10 s, field
blank filter was recovered from the cartilage. Quartz fiber
filters may adsorb organic vapours, causing positive artefacts
on OC measurements. However, due to the relatively long
sampling period (one week), we consider that the artefacts
may be minimal.
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2.2 Chemical analysis

Before the analysis, TSP mass was gravimetrically deter-
mined at room temperature of 20◦C and 50 % relative hu-
midity. However, the TSP mass may be overestimated due
to the water contained in the marine aerosol filters. OC and
EC were measured using a Sunset Laboratory carbon anal-
yser following Interagency Monitoring Protected Visual En-
vironments (IMPROVE) thermal/optical evolution protocol
(Wang et al., 2005). Presence of carbonate carbon is as-
sumed to be negligible, except for two spring samples, which
showed that the pH of the filter extracts were alkaline. A filter
disk (1.5 cm2 punch) was put in quartz boat inside the ther-
mal desorption chamber and stepwise heating was applied
in a helium flow at first and then after the initial ramp, he-
lium gas was switched to He/O2. The evolved CO2 during
the oxidation at each temperature step was measured with
non-dispersive infrared (NDIR) detector system. The trans-
mittance of light (red 660 nm) through the filter punch was
used for setting up OC / EC split point and thereby OC cor-
rection. The analytical errors in duplicate analysis of the filter
sample were less than 8 % for OC and 5 % for EC. OC and
EC concentrations reported here are corrected for the field
blanks.

WSOC and WSTN were determined using a Shimadzu
carbon/nitrogen analyser (TOC-VCSH ) (Miyazaki et al.,
2011). A filter disc (3.14 cm2) was extracted with organic-
free pure water under ultrasonication for 15 minutes. The
water extracts were filtrated on a syringe filter (Millex-GV,
0.45 µm, Millipore). Before the analysis, the extracts were
acidified with 1.2 M HCl and purged with pure air to remove
dissolved inorganic carbon and volatile organics. The analyt-
ical error in triplicate analysis of laboratory standards was
within 5 % (Miyazaki et al., 2011).

Major cations and anions were measured using an
ion chromatograph (761 Compact IC, Metrohm, Switzer-
land). A sample filter disc (20 mm diameter) was extracted
with organic-free pure water (10 mL) under ultrasonication
(15 min× 2 times). The extracts were filtrated using a mem-
brane disc filter (Millex-GV, 0.45 µm, Millipore) and injected
to IC for measuring major ions. Anions were separated on a
SI-90 4E Shodex column (Showa Denko, Tokyo, Japan) us-
ing a mixture of 1.8 mM Na2CO3 and 1.7 mM NaHCO3 at
a flow rate of 1.2 mL min−1 as an eluent and 40 mM H2SO4
for suppressor. For cation measurements, a Metrosep C2-150
(Metrohm) column was used by using a mixture of 4 mM tar-
taric acid and 1 mM dipicolinic acid as an eluent at a flow rate
of 1.0 mL min−1. The injection loop volume was 200 µL. The
analytical errors in duplicate analysis of the authentic stan-
dards were within 5 %. We determined total 11 ions including
methanesulfonate (MSA−). The detection limits for anions
and cations were ca. 0.1 ng m−3. The field blanks for Na+

and Ca2+ are 0.078 and 0.144 ng L−1, respectively, whereas
those for MSA−, Cl−, NO−

3 and SO2−

4 were 0.003, 0.01,

0.001 and 0.011 ng L−, respectively. Here, we report the con-
centrations of all species after the blank correction.

2.3 Estimate of organic matter and secondary organic
carbon

Abundances of organic matter (OM) in the atmosphere are
generally estimated by multiplying the measured OC concen-
trations with the conversion factor of 1.6± 0.2 for urban and
2.1± 0.2 for aged aerosols (Turpin and Lim, 2001). As men-
tioned above, our sampling site is located in the outflow re-
gion of East Asian aerosols and local anthropogenic activities
are negligible. During the atmospheric transport, aerosols are
subjected to aging processes to result in more oxygenated or-
ganic species (Kawamura et al., 2004; Kundu et al., 2010).
Thus, it is better to take 2.1± 0.2 instead of 1.6± 0.2 for the
Cape Hedo samples.

The contributions of the primary and secondary organic
carbon (SOC) to carbonaceous aerosols are calculated by
EC-tracer method. EC is used as a tracer of incomplete com-
bustions generated from primary sources (e.g. Turpin and
Huntzicker, 1991). The EC-tracer method assumes the rela-
tively constant OC / EC ratios for given area, season and local
meteorology because EC and primary OC (POC) typically
have the same sources (Pavuluri et al., 2011). Thus, we can
use the minimum OC / EC ratios to estimate the contribution
of SOC in the atmospheric aerosol for a specific region of in-
terest (Castro et al., 1999). This method is also applied in sev-
eral atmospheric researches (Turpin and Huntzicker, 1995;
Castro et al., 1999; Pavuluri et al., 2011) although it involves
some degree of uncertainty. In this study, the concentrations
of SOC and POC were calculated by the following equations

POC= EC × (OC / EC)min + k (1)

SOC= OCmeas− POC, (2)

where (OC / EC)min is the observed minimum OC / EC ra-
tio during the sampling period,k is a parameter for non-
combustion sources contributing to the POC that is assumed
to be negligible, and OCmeasis the measured OC concentra-
tion. The minimum OC / EC ratios in winter, spring, summer
and autumn are 3, 4, 5, and 3, respectively.

2.4 Estimate of sea salt and non-sea salt component

In order to determine whether it is oceanic or continental, sea
salt (ss) and non-sea salt (nss) concentrations were calculated
using Na+ as a reference element. The mass concentrations
of non-sea salt component X (Mnss−x) can be estimated as
follows (George et al., 2008).

Mnss-x= Mx − (X/Na)sw × MNa, (3)

whereMx andMNa mean the total mass loading of X and Na,
respectively. (X/Na)sw represents the mass ratio of species X
to Na in seawater. The ratios of X/Na for SO2−

4 , K+, Ca2+
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and Mg2+ are 0.25, 0.037, 0.038 and 0.12, respectively, as-
suming that sea salt is the only source of water-soluble Na+

(Berg and Winchester, 1978). By using above equation, the
mass concentrations of ss- and nss-SO2−

4 , K+, Ca2+, and
Mg2+ are calculated.

2.5 Estimate of chlorine loss

Chlorine depletion can be estimated using following formula
(Yao and Zhang, 2012).

Clloss(µg m−3) = 1.798· [Na+
]measured− [Cl−]measured

Clloss(%) = [Clloss]/1.798[Na+
]measured· 100,

where [Na+]measuredand [Cl−]measuredrepresent measured
concentrations of Na+ and Cl− in µg m−3, respectively. The
mass concentration ratio of Cl− to Na+ in seawater is 1.798
(George et al., 2008). The following two reactions are asso-
ciated with the loss process of Cl.

HNO3(g) + NaCl(p) = HCl(g) + NaNO3(p)

H2SO4(g) + 2NaCl(p) = 2HCl(g) + Na2SO4(p).

2.6 Backward air mass trajectory analysis

Hybrid Single-Particle Lagrangian Integrated Trajec-
tory (HYSPLIT4) model (http://www.arl.noaa.gov/ready/
hysplit4.html) was used to find the source regions of air
masses at Okinawa during one-year campaign (Draxler and
Rolph, 2003). 5-day back trajectory analysis at 500 m above
the ground was performed every day using the HYSPLIT
model. Figure 2 shows the 5-day air mass trajectories for
winter, spring, summer and autumn seasons. In spring and
winter, Cape Hedo was strongly influenced by continental
air masses (Fig. 2a and 2b). In contrast, in summer, the site
was covered with oceanic air masses (Fig. 2c) whereas in
autumn it was affected by both oceanic and continental air
masses (Fig. 2d). As described previously, the sampling
period is 7 days for each sample. Thus, each sample contains
mixed air masses from continent and ocean.

3 Results and discussion

3.1 Aerosols mass loading

The aerosol mass loading at Okinawa ranged from 19.2 to
286 µg m−3 with an average of 74.3 µg m−3 during one-year
observation period. Figure 3 shows the monthly averaged
aerosol mass concentrations at Okinawa with error bars de-
noting the standard deviation. The average mass concentra-
tion shows a peak (109± 69.9 µg m−3) during spring sea-
son (March, April and May) and decrease towards the sum-
mer (44± 36 µg m−3). The westerly winds are responsible
for such a high peak in spring, by uplifting the mineral dusts

from the arid regions in China and Mongolia followed by
a transport to the Pacific together with pollutants emitted
from Chinese cities. During the Asian dust outflow, crustal
elements (calcium, iron, aluminium, barium, etc.) are abun-
dant in dust particles and loess deposits (Nishikawa et al.,
2000). A good correlation between Ca2+ and TSP (r = 0.81)
in spring suggests that the spring aerosols are significantly
influenced by dust particles from arid regions in China and
Mongolia. During spring, Asian dust is the source of Ca2+.
Air mass back trajectories also demonstrated that in spring,
air masses mostly originated from the arid regions of the
Asian continent.

3.2 Seasonal variations of carbonaceous and
nitrogenous components

Table 1 gives the concentrations of carbonaceous compo-
nents with statistical summaries in the TSP samples (n =

50) collected from Cape Hedo, Okinawa. Their monthly
variations are shown in Fig. 4. The average concen-
trations of OC, EC, WSOC and WSTN ranged from
0.76 to 7.12 µg m−3 (av. 1.78µg m−3), 0.07-0.96 µg m−3

(0.28 µg m−3) 0.27-1.9 µg m−3 (0.73 µg m−3) and 0.07-
3.02 µg m−3 (0.58 µg m−3), respectively. Seasonally aver-
age concentration of OC was found highest in spring
(2.36 µg m−3) followed by summer (1.79 µg m−3) and win-
ter (1.53 µg m−3) whereas the lowest concentration was
observed in autumn (1.42 µg m−3). Similarly, the highest
concentrations of EC and WSOC were found in spring
(0.41 µg m−3 and 0.95 µg m−3) followed by winter (0.70
and 0.90 µg m−3). In contrast, the lowest concentrations
of EC and WSOC were obtained in summer (0.19 and
0.52 µg m−3).

OC showed higher concentration during winter in Chinese
aerosols (Wang et al., 2011; Cao et al., 2003, 2007; Ho et al.,
2007) because low quality coals are commonly used for heat-
ing and cooking purposes. Very high concentration of OC
was reported in winter than spring in urban regions of China
(Wang et al., 2011). In contrast, we found higher concentra-
tion of OC in spring although most of the air parcels came
from China, suggesting the additional contribution to OC
from biogenic sources because biogenic emissions are sig-
nificant in spring season (Pavuluri et al., 2010). The spring-
time maxima of OC (Fig. 4a) and WSOC (Fig. 4c) suggest
that they are formed by extensive photochemical oxidation
of various organic precursors emitted from fossil fuel com-
bustion and biomass burning as well as biogenic volatile or-
ganic compounds (BVOCs) from terrestrial plants. EC also
maximized in spring followed by winter, suggesting signifi-
cant contributions of EC from China through long-range at-
mospheric transport by westerly winds. Water-insoluble or-
ganic carbon (WIOC = OC− WSOC) showed the highest
concentration in spring (1.41 µg m−3) followed by summer
(1.27 µg m−3).

Atmos. Chem. Phys., 14, 1819–1836, 2014 www.atmos-chem-phys.net/14/1819/2014/
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(a) Winter (b) Spring 

(c) Summer (d) Autumn 

Fig. 2. Five-day backward trajectory analysis for four seasons;(a) winter (December, January and February),(b) spring (March, April and
May), (c) summer (June, July and August), and(d) autumn (September, October and November). Backward trajectories at 500 m above
ground level were drawn with the NOAA HYSPLIT model.

Table 1.Seasonal variations of mass concentrations of different organic components in aerosols from Cape Hedo, Okinawa.

Concentration in (µg m−3)

Winter Spring Summer Autumn
Components Range AV± SD Range AV± SD Range AV± SD Range AV± SD

OC 0.83–2.49 1.53± 0.51 1.04–7.12 2.36± 1.71 0.84–3.01 1.79± 0.56 0.76–2.52 1.42± 0.48
EC 0.14–0.59 0.70± 0.51 0.19–0.96 0.41± 0.24 0.07–0.54 0.19± 0.14 0.09–0.38 0.20± 0.09
WSOC 0.45–1.37 0.90± 0.29 0.53–1.88 0.95± 0.40 0.27–1.90 0.52± 0.42 0.29–0.70 0.55± 0.18
WIOC 0.08–1.12 0.63± 0.25 0.51–5.24 1.41± 1.34 0.57-2.29 1.27± 0.41 0.37–1.84 0.89± 0.51
OM 1.66–4.98 3.05± 1.02 2.07–14.2 4.72± 3.42 1.68–6.02 3.59± 1.12 1.52-5.04 2.85± 0.95
WSOM 0.90–2.74 1.80± 0.58 1.06–3.76 1.91± 0.81 0.54-3.80 1.05± 0.85 0.57-1.81 1.12± 0.41
WIOM 0.16–2.24 1.26± 0.51 1.02-10.4 2.82± 2.69 1.14–4.59 2.54± 0.82 0.75–3.69 1.73± 0.81
POC 0.63–1.17 1.08± 0.40 0.56-2.12 1.60± 0.98 0.35–2.71 0.93± 0.68 0.25–2.80 0.59± 0.28
SOC 0.17–0.71 0.44± 0.13 0.12–3.60 0.74± 0.93 0.30–1.36 0.86± 0.39 0.08–2.60 0.84± 0.57

EC and WSOC show similar seasonal variations (Fig. 4b,
c), suggesting that they are formed from similar sources.
The average highest concentration of primary organic car-
bon (POC) is found in spring followed by winter whereas the
higher concentration of secondary organic carbon (SOC) was
found in spring and summer, as shown in Fig. 4e and 4f. The
highest concentration of SOC was observed in March with
an increase toward July. The average highest concentration
of SOC in summer may be caused by photochemical oxida-
tion of organic precursors under a strong solar radiation as

well as emission of marine volatile organic carbon (Shaw et
al., 2010). The higher wind speed during spring may be re-
sponsible for higher POC concentration.

WSTN showed higher concentrations during winter
(0.86 µg m−3) followed by spring (0.77 µg m−3) although
the concentrations during spring months are almost constant
whereas they showed lower concentrations during summer
and autumn (0.37 and 0.34 µg m−3). The higher concentra-
tion of WSTN during winter suggests that WSTN is abun-
dantly present in polluted air. Meanwhile, concentrations
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Fig. 3.Average monthly variation of aerosol mass loading in ambi-
ent aerosols collected in Cape Hedo, Okinawa.

of water-soluble organic nitrogen (WSON = WSTN – NO3-
N–NH4-N) ranged from 0 to 2.2 µg m−3 (av. 0.11 µg m−3).
WSON comprised on average 18.9 % of WSTN. Marine or-
ganisms are probably the main sources of WSON. Terrestrial
and marine organisms emit nitrogenous components, which
contain certain amount of WSON (Wang et al., 2013a). Ma-
rine bacteria and degraded proteins are the sources of WSON
(Wedyan and Preston, 2008). Marine biota also can emit
amino acids, urea and proteins. WSON is emitted to the
atmosphere by bubble bursting process in the ocean sur-
face (Cape et al., 2011). We found the highest concentration
of WSON in summer (av. 0.21 µg m−3) followed by spring
(0.13) and autumn (0.07) and lowest concentration in winter
(0.06). The summertime maximum of WSON suggests that
they are emitted from marine biota.

We found that the contribution of OM to TSP is on av-
erage 6.27± 3.7 %. The highest average contribution of OM
to TSP was found in summer (9.5 %) followed by autumn
(5.31 %) and spring (4.85 %), and the lowest (4.48 %) in win-
ter (Fig. 5). The contribution of WSOM to TSP was found
highest in winter (2.71 %) followed by summer (2.60 %). In
contrast, the contribution of WIOM (water insoluble organic
matter) to TSP became highest in summer (6.9 %), suggest-
ing more emission of WIOM in summer probably from bio-
logical sources (Miyazaki et al., 2011). The average contribu-
tion of EC to TSP was found highest in winter (0.54 %), and
lowest in summer (0.42 %). In this study, a strong correla-
tion was found between OC and EC in winter (r = 0.93) and
spring (0.81), suggesting that they are formed from similar
sources (Turpin et al., 1991). However, such a strong relation
was not found in summer (0.44) (Fig. 6), indicating that OC
has at least two independent sources that distort the correla-
tion. During winter and spring, our sampling site is signifi-
cantly influenced by the outflow of polluted air masses from
East Asian countries, thus we obtained strong correlation be-
tween OC and EC. However, in summer, anthropogenic con-
tributions are negligible in Cape Hedo, hence the correlation
between OC and EC is rather weak.

Fig. 4. Seasonal variation in concentrations of(a) organic carbon
(OC), (b) elemental carbon (EC), (c) water soluble organic carbon
(WSOC),(d) water soluble organic nitrogen (WSON),(e) primary
organic carbon (POC), and(f) secondary organic carbon (SOC) in
ambient aerosols collected in Cape Hedo, Okinawa.
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Fig. 5.Average relative abundances (%) of water-soluble organic matter (WSOM), water insoluble organic matter (WIOM), elemental carbon
(EC), and major ions in ambient aerosols collected in Cape Hedo, Okinawa. UF is unanalysed fraction.

3.3 Seasonal variations of OC / EC and WSOC / OC
ratios

OC / EC ratio has been used to study the emission and trans-
formation characteristics of carbonaceous aerosols (Cao et
al., 2003). The OC / EC ratios exceeding 2.0 have been con-
sidered to indicate the contribution of secondary organic
aerosols (Cao et al., 2003). In our study, OC / EC ratios
ranged from 3.5 to 21 with average of 7.6± 4.7. The season-
averaged OC / EC ratios are 4.4 (winter), 5.7 (spring), 12.5
(summer) and 7.7 (autumn). Most of the world’s urban
OC / EC ratios range from 1 to 4 (Turpin et al., 1991). A
ratio of 4.0 is also assumed for emissions from fossil fuel
combustion (Koch, 2001). The average ratio is still higher in
spring than winter although EC showed higher concentration
in spring. The OC / EC ratios obtained in this study, except
for summer samples, are comparable to those from Mongo-
lia and Chinese cities (Jung et al., 2010; Cao et al., 2007).
Compared to the world’s urban OC / EC ratios, our summer
OC / EC ratio (12.5) is extremely high, suggesting an extra

source of OC from the ocean and/or secondary OC forma-
tion via the oxidation of BVOCs in summer. Tambunan et
al. (2006) showed that the emissions of isoprene and other
BVOCs maximize in Okinawa during summer. Generally,
their emissions are higher in summer (Kim et al., 2005).

Figure 7a shows the monthly variation of OC / EC ra-
tios. In November we obtained relatively high OC / EC ra-
tio. This may be caused by long-range atmospheric trans-
port of biomass burning plumes from Southeast Asia be-
cause biomass burning is very common in the region in au-
tumn (Wang et al., 2013b) and the air masses mostly came
from Southeast Asia including Philippines (Fig. 2d). OC / EC
ratios from biomass burning give higher values of 5 to 8
(Andreae and Merlet, 2001). We found a strong correlation
(r = 0.87) between OC and biomass burning tracer (nss-K+)
in autumn, indicating a significant influence of biomass burn-
ing on organic aerosols. The enhanced OC / EC ratios were
found in summer with a peak in July. The summer maximum
may be caused by the secondary formation of OC via the
oxidation of various VOCs during long-range atmospheric
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Fig. 6. Correlation analysis between elemental carbon (EC) and organic carbon (OC) in ambient aerosol samples collected from Cape Hedo
Okinawa.

transport. Cao et al. (2005) showed that aerosols from resi-
dential coal combustion contain high OC / EC ratio (12). The
average OC / EC ratios for winter (4.4) and spring (5.7) sam-
ples are comparable with the value (3.8) reported in 14 Chi-
nese cities (Cao et al., 2007), indicating that our sampling site
is significantly influenced by anthropogenic aerosols from
China.

WSOC to OC ratio is useful to discuss the potential
sources (Jung et al., 2010) and to understand photochem-
ical oxidation (Miyazaki et al., 2010b) and extent of gas
to particle formation of secondary WSOC (Hagler et al.,
2007). Figure 7b shows the monthly averaged variation of
WSOC / OC. The annual average ratio in Cape Hedo was
43± 15 % (range, 15 to 90 %). This value is lower than the
ratios reported in Mongolian aerosols (31–97 %, av. 53 %)
(Jung et al., 2010), Christchurch, New Zealand (48 %, Wang
et al., 2005) but similar to those from Sapporo, Japan (44 %,
Aggarwal and Kawamura, 2008) and from 14 Chinese cities
(summer 48 % and winter 40 %, Ho et al., 2007). How-
ever, lower WSOC / OC ratios were reported from Gosan,
Korea (30 %) during the ABC campaign (Miyazaki et al.,
2007), from New Delhi, India (25 %) in nighttime (Miyazaki
et al., 2009), and from Tokyo (summer 20 % and winter
35 %, Miyazaki et al., 2006). Mayol-Bracero et al. (2002)
reported higher WSOC / OC ratios (45–75 %) in biomass
burning aerosols over Amazonia. The smouldering biomass

Fig. 7.Monthly average variations of concentration ratios of(a) or-
ganic carbon (OC) to elemental carbon (EC), and(b) water soluble
organic carbon (WSOC) to organic carbon (OC) in ambient aerosols
collected from Cape Hedo Okinawa during October 2009 to Octo-
ber 2010.
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Table 2.Seasonal variations of ionic species in aerosols from Cape Hedo, Okinawa.

Concentration (µg m−3)

Winter Spring Summer Autumn
Ions Range AV± SD Range AV± SD Range AV± SD Range AV± SD

Anions

F− 0.00–0.01 BDL± BDL 0.00-0.01 BDL± BDL 0.00–0.01 BDL± BDL 0.00–0.01 BDL± BDL
MSA− 0.01–0.05 0.03± 0.01 0.01–0.05 0.04± 0.02 0.01–0.05 0.02± 0.01 0.01–0.05 0.02± 0.02
Cl− 4.63–26.2 13.9± 6.18 4.63–26.2 12.7± 9.89 3.31–12.1 6.95± 2.84 2.84–26.2 10.8± 8.13
NO−

2 0.00–0.00 0.00± 0.00 0.00–0.00 0.00± 0.00 0.00–0.00 0.00± 0.00 0.00–0.00 0.00± 0.00
Br− 0.00–0.01 0.00± 0.00 0.00–0.01 0.00± 0.00 0.00–0.02 0.01± BDL 0.00–0.02 0.01± BDL
NO−

3 0.86–3.90 2.11± 0.93 0.86–3.90 1.95± 1.42 0.17–3.84 0.79± 0.97 0.17–3.90 1.81± 1.35

PO3−

4 0.00–0.00 0.00± 0.00 0.00–0.01 BDL± BDL 0.00–0.01 BDL± BDL 0.00–0.01 BDL± BDL

SO2−

4 2.34–5.04 3.63± 0.82 0.01–5.04 2.37± 2.04 0.46–5.96 1.29± 1.47 0.01–5.96 2.54± 1.96
Total 7.84–35.2 19.7± 7.94 0.01–25.6 8.32± 7.15 1.67–12.0 4.14± 2.89 1.23–15.0 6.90± 4.08

Cations

Na+ 4.64–12.0 7.57± 2.40 0.01–12.0 5.34± 4.68 2.26–6.35 3.58± 1.30 0.01–12.0 5.19± 3.85
NH+

4 0.23–1.51 0.79± 0.41 0.20–1.51 0.74± 0.48 0.00–0.15 0.02± 0.05 0.00–1.51 0.51± 0.53
K+ 0.20–0.68 0.44± 0.16 0.01–0.68 0.31± 0.23 0.12–0.43 0.21± 0.09 0.01–0.68 0.30± 0.22
Ca2+ 0.30–1.35 0.70± 0.28 0.00–1.35 0.62± 0.49 0.09–0.37 0.18± 0.09 0.00–1.35 0.48± 0.45
Mg2+ 0.48–1.48 0.92± 0.32 0.00–1.48 0.60± 0.48 0.24–0.66 0.41± 0.14 0.00–1.48 0.60± 0.48
Total 5.85–17.0 10.4± 3.57 10.3–44.7 20.4± 10.7 6.26–18.2 10.1± 3.82 3.72–35.8 17.7± 9.17

Note: BDL means Below Detection Limit (0.001 µg m−3).

combustion produces WSOC abundantly (Andreae et al.,
1996). The higher WSOC / OC ratio in winter (Fig. 7b) sug-
gests that significant fractions of organic aerosols were de-
rived from biomass burning together with atmospheric oxi-
dation of fossil fuel combustion products.

Kawamura et al. (2010) reported an increase of WSOC/TC
ratios in the Arctic aerosols after polar sunrise due to ex-
tensive photochemical oxidation of organic precursors. The
enhanced WSOC / OC ratios (av. 81 %) were also reported
for summit Greenland aerosol (Hagler et al., 2007). We
found highest WSOC / OC ratios in winter (60 %) followed
by spring (45 %) and autumn (41 %). The lowest WSOC / OC
ratio was observed in summer (28 %). The low ratio in sum-
mer may be caused by the sea-to-air emissions of water-
insoluble organic compounds that are produced by marine
phytoplankton, because the summertime air masses are de-
rived from the oceanic region (Fig. 2c). The average summer-
time WSOC / OC ratio from Cape Hedo aerosols (28 %) is
slightly lower than that from Delhi aerosols (36 %). In sum-
mer, Delhi aerosols were also influenced by marine sources
(Aggarwal et al., 2013). Miyazaki et al. (2010b) reported
high abundance of WIOC in the western North Pacific during
summer. The highest ratios in winter (60 %) may be due to
the enhanced oxidation of primary organic compounds dur-
ing long-range atmospheric transport and/or gas-to-particle
conversion of anthropogenic semi-volatile polar compounds
(Kawamura et al., 2010).

The previous studies of East Asian aerosols often showed
wintertime maxima of OC. However, it is not the case in
our samples from Cape Hedo. Table 3 compares the con-
centration of OC and EC together with OC / EC ratios in
East Asia. The annual average concentration of OC in Cape
Hedo (1.78 µg m−3) is significantly less than those reported
in Mongolia during winter (Jung et al., 2010), Chinese cities
(Cao et al., 2007), Pearl Delta region, China (Cao et al.,
2003), Kaohsiung, Taiwan (Lin and Tai, 2001) and Seoul,
Korea (Park et al., 2002), and is also lower than that of Jeju
Island (Lee et al., 2001) where Asian outflow is important.
Based on these comparisons, we can insist that concentra-
tions of OC decrease during long-range atmospheric trans-
port via atmospheric dilution and/or dry and wet scavenging.
The major sources of carbonaceous components include in-
dustrial and vehicular emissions, fossil fuel combustions and
biomass burnings in East Asia (Wang et al., 2006).

3.4 Seasonal variations of inorganic species

The statistical summaries of water-soluble ionic species in
the marine aerosol samples from Okinawa are given in Ta-
ble 2. Their seasonal variations of cations and anions are
shown in Fig. 8. The dominant cation in our samples was
Na+ followed by Mg2+ and Ca2+. The annual average con-
centrations of Na+, Mg2+ and Ca2+ are 5.78, 0.71 and
0.66 µg m−3, respectively, whose relative contributions to to-
tal aerosol mass are 9.3, 1.1 and 0.8 %, respectively. The
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Fig. 8.Monthly average variations in concentrations of major ions(a) Na+, (b) Mg2+, (c) K+, (d) Ca2+, (e)NH+

4 , (f) MSA−, (g) Cl−, (h)

Br−, (i) NO−

3 , (j) PO3−

4 , and(k) SO2−

4 in the ambient aerosols collected from Cape Hedo, Okinawa.

dominant anion was Cl− followed by SO2−

4 and NO−

3 . Their
annual average concentrations are 10.8, 2.4 and 1.6 µg m−3,
respectively, whose relative contributions to total aerosol
mass were 17.1, 3.7 and 2.5 %, respectively. Similarly, the
contributions of Na+ and Cl− to total ions were on aver-
age 26.2 % and 47 %, respectively. Average concentration of
Cl− is 6 times higher than that of OC, suggesting that inor-
ganic loading is very important throughout the year. MSA−,
a tracer of marine biogenic sources, showed high concen-

tration in spring, suggesting the emissions from biogenic
marine sources. During the long-range atmospheric trans-
port, East Asian aerosols travelled over the marine regions
(the East China Sea, Sea of Japan and Pacific Ocean) and
resided over the marine atmosphere for 1 to 2 days. Dur-
ing the travelling, the aerosol from East Asia is mixed with
marine aerosols emitted from the ocean, which can be sup-
ported by individual backward trajectory. The summertime
concentration of MSA− in Cape Hedo is comparable with
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Table 3.OC and EC concentrations and OC to EC mass ratios in atmospheric aerosols from different locations in East Asia.

Location Period Size Concentrations (µg m−3) OC / EC References
OC EC

Mongolia 11/2007 to 01/2008 PM2.5 31.8 6.7 4.7 Jung et al. (2010)
Beijing Winter PM2.5 27.2 7.1 3.7 Cao et al. (2007)
Beijing Summer PM2.5 17.2 4.6 4.4 Cao et al. 2007)
Jinchang Winter PM2.5 23 5 4.5 Cao et al. (2007)
Jinchang Summer PM2.5 8.1 1.6 5.9 Cao et al. (2007)
Gangzhou Winter PM2.5 41.1 14.5 2.8 Cao et al. (2007)
Gangzhou Summer PM2.5 10.6 3.2 3.6 Cao et al. (2007)
Hong Kong Winter PM2.5 11.2 5.8 2 Cao et al. (2007)
Hong Kong Summer PM10 7.3 3.6 2.1 Cao et al. (2007)
Hong Kong, PU, China Nov–Feb, 2000–2001 PM2.5 12.0 6.86 > 2 Ho et al. (2003)
Hong Kong, KT, China Nov–Feb, 2000–2001 PM2.5 10.1 5.05 > 2 Ho et al. (2003)
Hong Kong, HT, China Nov–Feb, 2000–2001 PM2.5 5.52 1.36 > 3 Ho et al. (2003)
PRD regions, China 1–2/2002 PM2.5 14.7 6.1 2.4 Cao et al. (2003)
Taiwan 11/1998–04/1999 PM10 14.5 6.1 2.4 Lin and Tai (2001)
Seoul, Korea 11/27–12/09/1999 PM2.5 15.2 7.3 2.2 Park et al. (2002)
Gosan (Jeju Island) Dec 1996 PM2.5 4.41 0.43 10 Lee et al. (2001)
Gosan (Jeju Island) Mar 1996 PM2.5 2.97 0.32 9.3 Lee et al. (2001)
Gosan (Jeju Island) Jan-1997 PM2.5 3.31 0.23 14 Lee et al. (2001)
Gosan (Jeju Island) Sep 1997 PM2.5 3.56 0.42 8.5 Lee et al. (2001)
Gosan (Jeju Island) Dec, 1997 PM2.5 2.6 0.34 7.7 Lee et al. (2001)
Cape Hedo, Okinawa Oct 2009 to Oct 2010 TSP 1.78 0.28 7.7 This Study

Fig. 9. Linear regression plots between sum of cation equivalents
(neq) and anion equivalents (neq) in ambient aerosol samples col-
lected from Cape Hedo, Okinawa during October 2009 to October
2010.

those in the western North Pacific during summer (Miyazaki
et al., 2010a). Similarly, nss-K+, a tracer of biomass burn-
ing, showed a good correlation with OC in winter (0.72)
and spring (0.65). The stronger correlation in winter suggests
that biomass burning significantly contributes in winter than
spring. Most cations and anions showed the highest concen-
trations in winter months and the lowest in summer (Fig. 8).

Fig. 10.Scatter plot showing variation of Na+ and Cl− with respect
to sea water line in ambient aerosols collected from Cape Hedo, Ok-
inawa. The point within the bracket shows the maximum chlorine
loss.

The relative abundances of NO−

3 , SO2−

4 , NH+

4 in TSP
showed a maximum in winter. These results suggest that con-
tributions from fossil fuel combustion, industrial emission,
and biomass burning are significant (Kundu et al., 2010)
as well as animal excreta for NH3 (Pavuluri et al., 2011).
In contrast, relative abundances of Ca2+ in TSP maximized
in spring (Fig. 8d), suggesting a significant influence from
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crustal dust during spring. Concentrations of Ca2+ (a tracer
of crustal material) also maximized in spring.

3.4.1 Ion balance and correlations among major ions

Ion balance calculation is used to evaluate the ion deficit be-
tween cations and anions in aerosols (Pavuluri et al., 2011).
The following equations are used to derive the charge bal-
ance between cations and anions.

Cation equivalents = [Na+]/23 + [NH+

4 ]/18 + [K+]/39 +

2×[Mg2+]/24 + 2×[Ca2+]/40.
Anion equivalents = 2×[SO2−

4 ]/96 + [NO−

3 ]/62.04 +

[Cl−]/35.5+ [Br−]/79.9+ [MSA−]/95.1+ 3×[PO3−

4 ]/94.8.
Average equivalent ratios of total cations (Na+, NH+

4 , K+,
Mg2+, and Ca2+) to total anions (SO2−

4 , NO−

3 , Cl−, Br−,
MSA− and PO3−

4 ) were 0.96 with standard deviation of 0.14
(n = 50) as shown in Fig. 9. The slope (0.87) of less than
1 indicates that almost all of the ions had been quantified,
although CO2−

3 , HCO−

3 , H+ and organic anions were not de-
termined.

Because the concentration of the ions emitted from the
same source or similar reaction pathway should show a good
correlation, correlation analyses among the ions would pro-
vide important information for their sources. Tables 4, 5,
and 6 show the results of correlation analyses of major ions
for winter, spring, and summer, respectively. Throughout the
year, we found strong correlations among Na+, sea salt (ss)-
K+, ss-Ca2+, ss-Mg2+, ss-SO2−

4 and Cl−, indicating that
these ions are derived from the sea spray.

In winter, NO−

3 , a tracer of anthropogenic source, strongly
correlates with NH+4 , nss-K+, and well correlates with nss-
Mg2+ (Table 4), suggesting that they are derived from an-
thropogenic sources in the Asian Continent. In spring, we
did not find any significant correlation between Na+ and
NO−

3 (Table 5). However, nss-Ca2+, a tracer of crustal dust,
was found to well correlate with nss-K+ and nss-Mg2+, in-
dicating that they are derived from similar sources or reac-
tion pathways. There is no correlation between nss-Ca2+ and
Na+ in spring (Table 5). In summer, NO−3 showed a strong
correlation with nss-Mg2+ and nss-SO2−

4 (Table 6), suggest-
ing that they are formed from similar sources and/or reaction
pathways. Both NO−3 and nss-SO2−

4 are produced by photo-
chemical reactions in the atmosphere (Pavuluri et al., 2011).
It should be noted that ss-SO2−

4 showed good correlations
with NH+

4 and NO−

3 as well as other anthropogenic tracers
(nss-K+, nss-Mg2+) during winter and spring (Tables 4 and
5). NH3 and HNO3 probably react with sea salt in the marine
atmosphere.

3.4.2 Sea salt and non-sea salt ions

Sea salt is the major component in the marine and coastal
aerosols (George et al., 2008; Prospero, 2002). Na+ is used
as a tracer to evaluate the contributions of sea salt to aerosols.

The equivalent ratio of Cl− to Na+ is 1.16 in seawater. We
estimated equivalent ratios of Cl−/Na+ in each samples and
compared with seawater. Figure 10 presents scatter plots of
Na+ and Cl− concentration for different seasons. Through-
out the year, only few data points are found to locate be-
low the sea water line, indicating that the loss of Cl was in-
significant except for spring samples. Chlorine loss has been
observed in many coastal regions and open oceans (Meinert
and Winchester, 1977; George et al., 2008; Yao and Zhang,
2012). In some spring samples, estimated chlorine loss was
up to 50 %, indicating that vigorous reaction occurs between
gaseous HNO3 and H2SO4, and NaCl to emit gaseous HCl
(McInnes et al., 1994) in spring.

Ions such as SO2−

4 , K+, Ca2+, and Mg2+ have multiple
sources, i.e. oceanic and continental. Additionally, SO2−

4 has
another oceanic, but nss-source generated by the oxidation
of dimethyl sulphide (DMS) that is emitted from the phyto-
plankton in the sea surface (George et al., 2008; Savoie et al.,
1994). Figure 11 shows the monthly variation of ss- and nss-
species. ss-Mg2+ and K+ dominate over the nss forms. In-
terestingly, nss-Ca2+ dominated over the ss-Ca2+ until May
with maxima in March and April while after June it was re-
placed by the ss-Ca2+ (Fig. 11b). Major fraction of Ca2+

should be derived from Asian dusts in winter and spring
(Kawamura et al., 2004). The percentage of nss-Ca2+ to total
Ca2+ was found highest in winter (62 %) to spring (71.5 %)
and decreases towards summer (31.1 %). In spring, the air
masses uplift the crustal dust in East Asia and transport over
the sampling site. We found strong correlation between nss-
Ca2+ and TSP (r = 0.81) in spring, suggesting that crustal
dust from East Asia is the main source of TSP. Similar strong
correlation was found between nss-Ca2+ and TSP in Gosan
site, Jeju Island (Kawamura et al., 2004). However, for the
rest of the year, we did not find any good correlation between
nss-Ca2+ and TSP.

Similarly, the contribution of nss-K+ to total K+ was
found highest in winter (40.6 %) to spring (46.2 %) with a
decrease toward summer (37.1 %). K+ is a tracer of biomass
burning (Kundu et al., 2010) whereas EC is a tracer of in-
complete combustions of fossil fuel and biomass burning. We
found a strong relation between nss-K+ and EC (r = 0.80)
(Fig. 12), indicating that the major fraction of EC is formed
by biomass burning. The contribution of nss-Mg2+ to total
Mg2+ increased in winter (30.9 %) to spring (35.8 %) and
decreased in summer (27.4 %). Because Mg is also found in
the crustal dust (Wang et al., 2010), this study again indicates
that our sampling site is strongly influenced by Asian dust in
spring. Although all the air masses come from the ocean in
summer, the loading of sea salt components maximized in
winter and spring and became lowest in summer. In winter
and spring when westerlies became strong, continental air
masses that stayed over the ocean for few days were mixed
with marine aerosols according to the backward trajectory
analysis.
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Table 4.Correlation coefficients (r) of major ions in winter aerosols from Cape Hedo, Okinawa.

Na+ NH+

4 nss K+ ss K+ nssCa2+ ssCa2+ nssMg2+ ssMg2+ Cl− NO−

3 nssSO2−

4 ssSO2−

4

Na+ 1
NH+

4 0.54 1
nssK+ 0.63 0.94 1
ssK+ 1.00 0.54 0.63 1
nssCa2+ 0.16 0.26 0.30 0.16 1
ssCa2+ 1.00 0.54 0.63 1.00 0.16 1
nssMg2+ 0.92 0.64 0.73 0.92 0.37 0.92 1
ssMg2+ 1.00 0.54 0.63 1.00 0.16 1.00 0.92
Cl− 0.97 0.44 0.55 0.97 0.22 0.97 0.91 0.97 1
NO−

3 0.48 0.85 0.83 0.48 0.42 0.48 0.62 0.49 0.35 1

nssSO2−

4 −0.48 0.02 −0.05 −0.48 −0.34 −0.49 −0.54) −0.49 −0.62 0.11 1

ssSO2−

4 0.86 0.80 0.80 0.86 0.35 0.86 0.87 0.86 0.76 0.77−0.30 1

t test is < 0.01 for the correction wherer is ≥ 0.71
t test is < 0.05 for the correction wherer is ≥ 0.54 to 0.70

Table 5.Correlation coefficients (r) of major ions in spring aerosols from Cape Hedo, Okinawa.

Na+ NH+

4 nss K+ ss K+ nssCa2+ ssCa2+ nssMg2+ ssMg2+ Cl− NO−

3 nssSO2−

4 ssSO2−

4

Na+ 1
NH4+

−0.35 1
nssK+ 0.53 −0.16 1
ssK+ 1.00 −0.35 0.53 1
nssCa2+ 0.28 −0.38 0.76 0.28 1
ssCa2+ 1.00 −0.35 0.53 1.00 0.28 1
nssMg2+ 0.65 −0.26 0.87 0.65 0.79 0.65
ssMg2+ 1.00 −0.35 0.53 1.00 0.28 1.00 0.65 1
Cl− 0.91 −0.24 0.57 0.91 0.35 0.91 0.63 0.91 1
NO−

3 0.47 −0.47 0.43 0.48 0.22 0.48 0.27 0.48 0.51 1

nssSO2−

4 −0.33 −0.05 0.40 −0.33 0.70 −0.33 0.36 −0.33 −0.18 −0.26 1

ssSO2−

4 0.70 −0.14 0.85 0.70 0.53 0.70 0.71 0.70 0.81 0.69 0.05 1

t test is <0.01 for the correction wherer is ≥ 0.71
t test is <0.05 for the correction wherer is ≥ 0.54 to 0.70.

3.4.3 Anthropogenic aerosols and ionic composition

nss-SO2−

4 in the atmosphere is derived from many sources.
It can originate from mineral dusts from the desert/arid re-
gion, and combustion of fossil fuels. We found the highest
concentration of nss-SO2−

4 in winter (av. 1.74 µg m−3) fol-
lowed by spring (1.38 µg m−3) and the lowest value in sum-
mer (0.51 µg m−3). The higher nss-SO2−

4 concentration in
winter and spring suggest that the air quality of Cape Hedo is
strongly influenced by fossil fuel combustions and industrial
emissions in East Asia via a long-range atmospheric trans-
port. However, we also suspect a possible contribution of
shipping emissions of nss-SO2−

4 in the East China Sea to the
Cape Hedo site during winter and spring. NO−

3 is a tracer
of anthropogenic activities and is derived from coal combus-
tions, biomass burning and vehicular emissions (Kundu et
al., 2010). We found a positive correlation between NO−

3 and

biomass burning tracer (nss-K+) (r = 0.65) in winter, sug-
gesting that NO−3 is associated with biomass burning.

To better understand the sources of nitrogenous compo-
nents, we calculated NH4-N/WSTN and NO3-N/WSTN ra-
tios. We found that NH4-N/WSTN ratios maximized in win-
ter (0.56) followed by spring (0.42), suggesting that biomass
burning is important sources of WSTN in winter. Similarly,
NO3-N/WSTN showed higher ratios in spring (0.51) fol-
lowed by winter (0.44) and autumn (0.18). Lowest values
of NH4-N/WSTN (0.07) and NO3-N/WSTN (0.11) were ob-
tained in summer due to less chance for the continental out-
flow of polluted air masses.

3.4.4 Neutralization factor and ionic composition

The acid neutralization capacity of desired cation is esti-
mated by neutralization factor (NF). NO−3 and SO2−

4 , which
are formed by secondary oxidation of NO, NO2 and SO2, are
major acid-producing anions, whereas Ca2+, Mg2+, NH+

4
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Table 6.Correlation coefficients (r) of major ions in summer aerosols from Cape Hedo, Okinawa.

Na+ NH+

4 nss K+ ss K+ nssCa2+ ssCa2+ nssMg2+ ssMg2+ Cl− NO−

3 nssSO2−

4 ssSO2−

4

Na+ 1
NH4+ 0.23 1
nssK+

−0.09 0.02 1
ssK+ 1.00 0.23 −0.09
nssCa2+

−0.03 -0.07 0.90 −0.03 1
ssCa2+ 1.00 0.23 −0.09 1.00 −0.04 1
nssMg2+ 0.29 −0.06 0.86 0.29 0.79 0.291
ssMg2+ 1.00 0.23 −0.09 1.00 −0.04 1.000.29 1
Cl− 0.97 0.27 −0.17 0.97 −0.18 0.97 0.23 0.97 1
NO−

3 −0.20 0.07 0.93 −0.20 0.93 −0.21 0.77 −0.21 −0.32 1

nssSO2−

4 −0.28 −0.14 0.94 −0.28 0.93 −0.28 0.73 −0.28 −0.39 0.94 1

ssSO2−

4 0.79 0.05 0.32 0.79 0.47 0.79 0.56 0.79 0.65 0.27 0.23 1

t test is < 0.01 for the correction wherer is ≥ 0.71
t test is < 0.05 for the correction wherer is ≥ 0.54 to 0.70.

Fig. 11.Estimated mass concentration of sea salt (ss) and non-sea
salt (nss) component of(a) Mg2+, (b) Ca2+, (c) K+, and(d) SO2−

4
in ambient aerosols collected from Cape Hedo, Okinawa.

Fig. 12. Correlation analysis between nss-K and EC in ambient
aerosols collected from Cape Hedo, Okinawa.

and K+ are the cations that neutralize acids. The role of Cl−

in acid production is negligible because Cl− mainly comes
from the ocean as sea salt. We calculated NF and using fol-
lowing formula (Keene et al., 1986).

NF(Ca2+) = [nss− Ca2+
]/([NO−

3 ] + [nss− SO2−

4 ])

NF(Mg2+) = [nss− Mg2+
]/([NO−

3 ] + [nss− SO2−

4 ])

NF(K+) = [nss− K+
]/([NO−

3 ] + [nss− SO2−

4 ])

NF(NH+

4 ) = [NH+

4 ]/([NO−

3 ] + [nss− SO2−

4 ])

We found that NH+4 plays a major role in the neutralization of
acidic species. The order of NF is NH+

4 >Ca2+>K+>Mg2+.
The NF of NH+

4 and Ca2+ were found highest in winter
followed by spring, suggesting that all the acidic species
were neutralized with CaCO3, MgCO3 and NH+

4 . Ca2+ and
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SO2−

4 show positive correlation (r = 0.77), suggesting that
these ions mainly exist as CaSO4. The mean Ca2+ to SO2−

4
mass ratio in our samples is 0.53, being similar to the ionic
mass ratio of 0.41 in CaSO4. NH+

4 and SO2−

4 showed a good
correlation (r = 0.87) with the mean NH+4 to SO2−

4 ratio of
0.2, which lies in between the NH+4 to SO2−

4 mass ratios
(0.37) and NH+4 to HSO−

4 mass ratio (0.18). This result indi-
cates that NH+4 and SO2−

4 exist in the form of (NH4)2SO4 or
NH4HSO4 and/or the combination of the two forms. Among
these forms, the dominant composition may be NH4HSO4
because the measured mass ratios (0.2) is closer to the mass
ratio of NH4HSO4 rather than that of (NH4)2SO4.

4 Summary and conclusions

We conducted one-year observation of chemical composi-
tions in aerosol (TSP) samples collected in Okinawa Island,
which is located in an outflow region of Asian dusts. The
highest aerosol mass loading and highest concentration of
nss-Ca2+ in spring are caused by strong westerly winds,
which uplift the mineral particles from the arid regions in
China and Mongolia and then transport over the Pacific.

In contrast to East Asia (wintertime maximum), we found
higher concentration of OC in spring (av. 2.36 µg m−3)
than winter (av. 1.53 µg m−3). Higher concentration of OC
was obtained during active biota seasons; spring and sum-
mer (1.79 µg m−3). We also determined WSTN and WSON.
Higher concentrations of WSTN were found in winter and
higher WSON concentrations were found in summer, sug-
gesting more emissions of water-soluble organic nitrogen
from the ocean.

Springtime maxima of OC / EC ratios, MSA− and correla-
tion coefficients of OC and EC (r = 0.81), and MSA− (0.81)
showed an importance of terrestrial and marine biogenic
sources as well as anthropogenic sources in spring although
the contribution from biogenic source is less significant. Sim-
ilarly, moderate positive correlation between OC and nss-K+

was found in both winter (r = 0.72) and spring (0.65), sug-
gesting that biomass burning contribution is higher in winter
season followed by spring. We found an extremely higher
OC / EC ratio and strong correlation between OC and MSA−

(0.71) in summer, further suggesting a strong biogenic emis-
sion of OC coupled with photochemical formation of SOC
in hot season. The highest SOC concentration in July sug-
gests the oxidation of organic compounds under strong solar
radiation. Very high WSOC / OC ratios (0.6) found in winter
suggest an important contribution of biomass burning prod-
ucts from the Asian Continent as well as the active oxida-
tion of anthropogenic primary organic compounds emitted
from East Asian countries even in cold season during long-
range atmospheric transport, followed by the subsequent gas-
to-particle conversion.

The high concentrations of NO−3 and SO2−

4 , and enhanced
NH4-N/WSTN ratio in winter suggest that Cape Hedo is
strongly influenced by vehicular emission, biomass burning,
industrial emission and coal combustion in East Asia via a
long-range atmospheric transport. We found a strong corre-
lation between the biomass burning tracer (nss-K−) and EC
(r = 0.80), suggesting an important contribution of incom-
plete combustion of biomass to EC in the Asian outflow re-
gion.
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