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Abstract: In this paper the method for optimal control of a fermentation process is 

presented, that is based on an approach for optimal control-Neuro-dynamic programming. 

For this aim the approximation neural network is developed and the decision of the 

optimization problem is improved by an iteration mode founded on the Bellman equation. 

With this approach computing time and procedure are decreased and quality of the biomass 

at the end of the process is increased. 
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Introduction 
The optimal control of the Fermentations Processes (FP) usually depends  on the presence of 

complex, non-linear dynamic model of the system because of this is difficult to realize to 

working-out of the problem, which is very important to practical realize [7,9]. The problems 

of the optimization difficulties arise even in offline optimal control, especially when a model 

is a high dimensional, one with larger diapason of the investigations, lager composition of the 

variables also of technological and optimizations’ restrictions [10]. 

One approach for solving to -problem of dynamic optimization is Dynamic Programming 

(DP), and is successfully applied to fermentation processes [3,4,8]. However, the approach is 

largely considered impractical as analytical solution of resulting dynamic program is seldom 

possible and numerical solution suffers from the “curse of dimensionally” [3,4]. 
 

Neuro-Dynamic Programming (NDP) is suggested as a method to alleviation the “curse of 

dimensionally”. The name neuro-dynamic programming expresses the reliance of the methods 

of this article on both DP and neural network (NN) concepts [2]. The method is successfully 
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applied for optimal control of batch’s and continuous FP in the last years, as the computing 

time was decreased about 2/3 and increases of the quantity of the desired products was gotten 

[7,8]. 
 

In this paper an optimal control of a fed-batch FP process by NDP is presented and compared 

it with the DP optimal control. 
 

Formulation of the optimization problem 
The problem of dynamic optimization includes minimization of the following expression [8]: 
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for a given initial state x0 and a function constant input hihiuiu i ⋅+<τ≤⋅= )1()( , h is the 

sampling time, xi-represent the value of x at the stage ith (т.е. x(t) в t=h.i), φ-single state cost 

function and φ  is the terminal state cost function and whey are defined on the multitude of 

the real numbers, and f is continuous and differentiated function. 

Bellman Equation 
 
The DP involves stage-wise calculation of the cost-to-go function to arrive at the solution, not 

just for a specific x0 but for general x0. For (1), the cost-to-go at each stage is defined as [3]: 
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and the next step: 
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If we mark )),(( uxFLJ hi ⋅= , where Fh(x,u) is the resulting state after integrating the 

differential equation for one sample interval with the starting state of x and constant input of 

u, L is continuous and differentiated function, then: 
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In conformity with the “principle of the optimum” of Bellman [1] “The tail policy is optimal 

for the tail subproblem”, at each stage the calculation of the cost-to-go function can be done 

as: 

)),((),(min)( 1 uxFJuxxJ hiui −+φ= ,  (4) 

Equation (4) is calculated from i=1 to i=p 

Such as, the pertinent terminal needs to be imposed at each stage. Once received, the cost-to-

go function has optimal decision for a general state x0 according to “principle of the 

optimum” [1]. 

 

The objective of DP is to calculate numerically the optimal cost function J. This computation 

can be done off-line, i.e., before the real system starts operating. In very few cases can we 

solve the stage-wise optimization analytically to obtain a closed-form expression for the cost-

to-go function. An optimal policy, that is, an optimal choice of u for each i, is computed either 

simultaneously with J, or in real time by minimizing in the right-hand side of Bellman’s 

equation. It is well known, however, that for many important problems the computational 

requirements of DP are overwhelming, mainly because of a very large number of states and 

controls. In such situations a suboptimal solution is required. 

 

Cost-to-go Approximation 

The traditional approach to solving the Bellman equation involves gridding of the state space, 

solving the optimization (4) for each grid point, and performing the stage-wise optimization 

until convergence. Exhaustive sampling of state space can be avoided by identifying relevant 

regions of the space through simulation under judiciously chosen suboptimal policies. The 

policy improvement theorem states that a new policy that  is greedy with respect to the cost-

to-go function of the original policy is as good as or better than the original policy (the now 

policy is given when moment value of the cost-to-go function is least, i.e. the new policy is 

defined by expression: 

)),((),(minarg)( uxFJuxxu hiu
+φ= ), 

where ),,(arg ixuG  is arguments of the function∈ Rm+n+r, and u∈R m, x∈Rn and i∈Rr, and it is 

improvement of the original policy. When the new policy is as good as the original policy, the 

above equation becomes the same as Bellman optimality equation (4). When the iterations 
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converge, this off line-computed cost-to-go approximation optimal control calculation for the 

bioreactor. 

 

NDP Algorithm 

NDP method is suboptimal methods that center around the approximate evaluation of the 

optimal cost function J, possibly through the use of neural networks and/or simulation [2]. For 

description of the algorithm the next symbol is used: J-represents cost-to-go values, )(~ xJ -a 

function approximation relating J to corresponding state x, ()i iteration index for cost iteration 

loop, k-discrete time. Then it can be written: ))((~)(~ kxJkJ ≡ . 

If the system starts with a given policy (some rule for choosing a decision u at each possible 

state i), and its approximately evaluate the cost of that policy (as a function of the current 

state) by least-squares-fitting a scoring function )(~ kJ  to the results of many simulated system 

trajectories using that policy and simulation of the process with chosen suboptimal policies 

under all representative operating conditions. The cost-to-go function is calculated using the 

simulation data for each state visited during the simulation, as for each closed loop simulation 

yields us data x(0), x(1), …, x(N), where N is sufficiently large for the system to reach 

equilibrium, calculated of one-stage cost φ(k) for these points. Then cost-to-go is the sum of 

single stage costs from the next point - ∑
+=

φ=
N

1ki

ikJ )()( . This is step simulation. After we 

preparing of а NN to the data approximate the cost-to-go function – denoted as )(~0 xJ , as a 

smooth function of the states. The NN is chosen with dependent on number of system 

equation, Bellman’s equation and time. A new policy is then defined by minimization in 

Bellman’s equation, where the optimal cost is replaced by the calculated scoring function, and 

the process is repeated. To improve the approximation, perform the following iteration 

(referred to as the cost iteration) until convergence:  

• With the current cost-to-go approximation )(~ xJ i  is calculated )(~ 1 kJ i+  for the given 

points of x by following equation: 
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u
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which is based the Bellman equation. This step is approximation. 

Update of the policy. It may necessary to increase the coverage of the state space i.e. more 

suboptimal simulations with the updated policy with suboptimal policy for improvement of 
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cost-to-go approximation are used to increase the coverage or the number of data points in 

certain region of state space. 

 

Application of the NDP for optimal control of a fermentation process 

The process of a fed-batch fermentation of E. Coli is examined in this work. The fermentation 

is leaded in a bioreactor with mixing in mesophyle regime. The parameters of the process are 

showed in Table 1 [6, 7]. 

Table 1 Parameters of the process 

Parameter Value 

Temperature  35°C 

pH  6,8 

Gassing rate  275 1/h 

Oxygen around  35 % 

Glucose in Batch  2,5 g/L 

Volume  1,5 g/L 

Glucose in Feeding Solution  100 g/L 

Stirrer speed at start  900 rpm 

Stirrer speed at end  1500 rpm 

 

 
The Model of the Process 

The program was made for parametric identification and estimate of the parameter of the 

model on the basis of non-linear regression. On the basis of this program the following kinetic 

model was received [5]: 

V
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and X, S and V are continuous and differentiated functions, η- specific consummation rate of 

substrate, 1/h; µ- specific grown rate, 1/h; µmax- maximum specific grown rate, 1/h; V- 

volume, L; Y- yield coefficient, %; F- feeding rate, L/h; ks-Monod’s saturation constant for 

substrate, 1/L; S0-initial substratum concentration, g/L; X- concentration of biomass, g/L; S- 

concentration of substrate, g/L; km-inhibition constant, -. 

 

The initial conditions are: 

S(0)=2,6 g/L, X(0)=0,11657 g/L, V(0)=1 L. 

The parameters of the model have the next values [5]:  

km=-0,6015; µmax=0,4671; kS=0,0742; Y=0,4843. 

 

Formulation of the Problem Optimization 

As is well-known for fermentation process, relatively little a change in the speed of feed can 

take process to switch over toward undesired stability state (especially steeply disturbance in 

F). The control objective is, therefore, to drive the reactor from the low biomass steady state 

to the desirable high biomass yield state. It may be viewed as a step change in the setpoint at 

time t = 0 from the low biomass to the high biomass yield steady state. 

 

Working-out of the optimization problem: 

Simulation with Using of Suboptimal Control 

Four values of F=[0,0035,…,0,016] was examined, that can cover the possible rang of 

variation. For each of the parameter values, the reactor was started at three different x(0) 

values around the low biomass yield steady state. We obtained 100 data points for each run. 

Thus a total of 1200 data points were obtained. 

 

Approximation 

A functional approximation relating cost-to-go with augmented state was obtained by using 

neural network with five hidden nodes, six input and one output node. The neural network 

showed a good fit with mean square error of 10-3 after training for 1000 epochs. 

 

Improvement Through Bellman Iterations 

Improvement to the cost-to-go function is obtained through iterations of the Bellman equation 

(4). This method, known as cost iteration (or value iteration), is described in section 2.4. The 
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solution of the one-stage-ahead cost plus cost-to-go problem, results in improvements in the 

cost values. The improved costs were again fitted to a neural network, as described above, to 

obtain subsequent iterations )(~1 xJ , )(~2 xJ , and so on …, until convergence. Cost was said to 

be “converged” if the sum of absolute error was less than 5% of the maximum cost. The cost 

converged in 4 iterations for our system. 

 

Results 
The results are shown in Fig.1 and numerical comparison in Table 2. The method was tested 

for various F. Representative results for a single F value of 0,146 are shown. 

First two rows in the Table 2 represent the online performance of the two approaches, DP and 

NDP. In the Table 2, the last two columns show the comparison between the two schemes; the 

first four columns represent the control algorithm, the number of data points used in obtaining 

cost-to-go function, the number of cost-iterations and the number of hidden nodes in the 

neural network approximation of converged cost function. 

Table 2 The result of the optimization 

Method Number of data 
points 

Cost 
Iterations 

Number hidden 
nodes 

Total cost  
(at x(0)) 

Time, s

DP 1200 6 N. A. 26,7 1067,0 
NDP 1200 4 5 24,03 130,0 
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Fig.1 Concentration of the biomass, optimized with DP and NDP 
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Fig. 2 Concentration of the substrate, optimized with DP and NDP 
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Fig. 3 Feeding rate received with DP and NDP 
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Discussion 
From Fig.1, Fig.2 and Table 2. it is noticed: 

1. Great increase of quantity of the biomass at the end of the process is reached with 

using the method of NDP, comparison with method of the DP. When NDP is applied 

the biomass quality is 32.19%, when DP is applied the biomass quality is 24,19%. 

2. In Table 2 it shows that with NDP operation are decreased time for optimal control, 

comparison with method of the DP. When NDP is applied the optimization procedure 

finishes for 130,0 s, when DP is applied the optimization procedure finishes for 1067,0 

s. 

3. From Fig.2 it shows that the using quality feeding optimized with NDP is less than 

using quality feeding optimized with DP. In this way the substrate is better utilized, 

that decrease production cost price. 

4. From Table 2 and Fig.2 it shows that with using NDP the process should be stopped at 

10.30 hour and with that the process economical effectiveness is raised. 

 

Conclusion 
The special features and the characteristics of the FP essence make difficult its optimal 

control. In this paper a method for optimal control of FP is presented, that is based on the 

contemporary and effective approach for optimal control-NDP. The NDP expresses the 

reliance of the methods of this article on both DP and neural network concepts and it was 

proposed such as one methodic for alleviation of “curse of dimensionally”. For this aim the 

approximation neural network was developed and the initial approximation cost-to-go 

function is further improved by an iteration mode founded on the Bellman equation with that 

decreased computing time, increased quality of the product at the end of the process and 

decreased substrate utilization with comparison of DP method. 
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