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Abstract. Data assimilation is routinely employed in me- methods of data assimilation attempt to include the effects
teorology, engineering and computer sciences to optimallyof uncertainties explicitly in the estimation by taking proba-
combine noisy observations with prior model information for bilistic approachesKalnay (2003 defines data assimilation
obtaining better estimates of a state, and thus better forecastas a statistical combination of observations and short-range
than achieved by ignoring data uncertainties. Earthquakdorecasts. According t@Vikle and Berliner(2007), data as-
forecasting, too, suffers from measurement errors and parsimilation is an approach for fusing data (observations) with
tial model information and may thus gain significantly from prior knowledge (e.g., mathematical representations of phys-
data assimilation. We present perhaps the first fully imple-ical laws or model output) to obtain an estimate of the distri-
mentable data assimilation method for earthquake forecastisution of the true state of a process. To perform data assimi-
generated by a point-process model of seismicity. We testation, three components are required: (i) a statistical model
the method on a synthetic and pedagogical example of a refor observations (i.e., a data or measurement model), (ii) an
newal process observed in noise, which is relevant for thea priori statistical model for the state process (i.e., a state or
seismic gap hypothesis, models of characteristic earthquakgzocess model), which may be obtained through a physical
and recurrence statistics of large quakes inferred from paleomodel of the time-evolving system, and (iii) a method to ef-
seismic data records. To address the non-Gaussian statistifsctively merge the information from (i) and (ii).

of earthquakes, we use sequential Monte Carlo methods, a Both data and model are affected by uncertainty, due to
set of flexible simulation-based methods for recursively esti-measurement and model errors and/or stochastic model el-
mating arbitrary posterior distributions. We perform exten- ements, leading to uncertain state estimates that can be de-
sive numerical simulations to demonstrate the feasibility andscribed by probability distributions. Data assimilation is
benefits of forecasting earthquakes based on data assimil@herefore a Bayesian estimation problem: the prior is given
tion. by model output (a forecast from the past) and the likelihood
by the measurement error distribution of the data. The poste-
rior provides the best estimate of the true state and serves as
) initial condition for a new forecast. The essence of data as-
1 Introduction similation is to inform uncertain data through the model, or,

_ i equivalently, to correct the model using the data. The cycle of
In dynamical meteorology, the primary purpose of data asyyedicting the next state and updating, or correcting this fore-

similation has been to estimate and forecast as accurately 83 given the next observation, constitutes sequential data
possible the state of atmospheric flow, using all available apxggimilation (se®aley, 1991 Ghil and Malanotte-Rizzali

propriate information Talagrand 1997. Recent advanced 1991 Ide et al, 1997 Talagrang 1997 Kalnay, 2003 for in-
troductions to data assimilation afidrantola 1987 Miller
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Although data assimilation is increasingly popular in me- Carlo (SMC) methods, a set of simulation-based methods for
teorology, climatology, oceanography, computer sciencesrecursively estimating arbitrary posterior distributions, pro-
engineering and finance, only a few partial attempts, re-vide a flexible, convenient and (relatively) computationally-
viewed in Sect2.1, have been made within the statistical inexpensive method for assimilating non-Gaussian data dis-
seismology community to use the concept for seismic andributions into nonlinear/non-Gaussian modé&s(cet et al.
fault activity forecasts. But earthquake forecasting suffers2001; Durbin and Koopman2002;, Kiinsch 2001, Robert
from the same issues encountered in other areas of foreand Casella2004 Capge et al, 2005 2007). Also called
casting: measurement uncertainties in the observed data ammrticle filters, SMC filters have been particularly success-
incomplete, partial prior information from model forecasts. ful at low-dimensional filtering problems for the family of
Thus, basing earthquake forecasting on data assimilatiotlMMs or state-space models. The Kalmagvl filter (Sor-
may provide significant benefits, some of which we discussnette and 1de2001) provides an analytic solution extend-
in Sect.2.2 ing the Kalman filter for [evy-law and power-law distributed

There are perhaps two major challenges for developingnodel errors and data uncertainties. We present an overview
data assimilation methods for earthquake forecasts: seismi@f SMC methods in Sect8.3and3.4.
ity models differ from standard models in data assimilation, The main purpose of this article is to develop an imple-
and earthquake statistics are non-Gaussian. We briefly dismentable method for forecasting earthquakes based on data
cuss each of the two issues. assimilation. We test this sequential method on a pedagogical

First, seismicity models that are capable of modeling en-and synthetic example of a simulated catalog of “observed”
tire earthquake catalogs (i.e., occurrence times, locations andccurrence times of earthquakes, which are not the “true”
magnitude) generally belong to the class of stochastic poinevent times because of observational errors. We specifically
processes, which, loosely speaking, are probabilistic rulesise a point-process as our model of seismicity. To estimate
for generating a random collection of points (€@ley and  arbitrary posterior distributions of the “true” event times, we
Vere-Jones2003 for formal definitions). Examples of these use the SMC methods we just mentioned. To benchmark
seismicity models can be found in the works\re-Jones their performance, we compare the results against those ob-
(197Q 1995, Kagan and Knopoff1987), Ogata(1998, Ka- tained by a simple Kalman filter and an ensemble Kalman
gan and JacksofR000, Helmstetter and Sornett@002), filter.

Rhoades and Eviso(2004, and Werner et al.(2010ab). Our technique offers a step towards the goal of develop-
This class of models is different from the class that is usuallying a “brick-by-brick” approach to earthquake predictabil-
assumed in data assimilation, which is often cast in terms ofty (Jordan 2006 Jackson 1996 Kagan 1999, given the
discrete-time state-space models, or Hidden Markov modelgenormous difficulties in identifying reliable precursors to im-
(HMMs), reflecting the underlying physics-based stochasticpending large earthquakeSéller, 1997 Geller et al, 1997,
differential equationsQaley, 1991, Kalnay, 2003 Kiinsch Kagan 1997). With suitable adaptations and extensions, our
2001, Capye et al, 2005 Doucet et al.2001). An HMM is, approach should find its natural habitat in the general test-
loosely speaking, a Markov chain observed in noBeucet ing framework developed within the Regional Earthquake
et al, 2001, Durbin and Koopman2001, Kinsch 2001 Likelihood Models (RELM) Working GroupKield, 2007a
Robert and Casell&2004 Cappe et al, 2005 2007: an Schorlemmer et g12007, 2010 and the international Col-
HMM consists of an unobserved Markov (state) process andaboratory for the Study of Earthquake Predictability (CSEP)
an associated, conditionally independent observation proceggordan 2006 Werner et al.2010¢ Zechar et al.2010, in
(both processes being potentially nonlinear/non-Gaussiamyhich forecast-generating models are tested in a transparent,
see Sect3.1for precise definitions). The Kalman filter is an controlled, reproducible and fully prospective manner.
archetypical assimilation method for such a mod&lltnan The importance of data uncertainties in earthquake pre-
196Q Kalman and Bucy1961)). In contrast, earthquake cat- dictability experiments was highlighted by several recent
alogs have many features which make them uniquely distincstudies. Werner and Sornett2008 showed that measure-
from the forecast targets in other disciplines and hence thenent errors in the magnitudes of earthquakes have seri-
models are completely different from the noisy differential ous, adverse effects on short-term forecasts that are gener-
or finite difference equations decorated by noise of standardted from a general class of models of clustered seismic-
data assimilation methods. There seems to exist little statisity, including two of the most popular models, the Short
tical work that extends the idea of data assimilation or stateTerm Earthquake Probabilities (STEP) modaé¢stenberger
filtering to point processes, which model the stochastic point-et al, 2005 and the Epidemic-Type Aftershock Sequence
wise space-time occurrence of events along with their marks(ETAS) model QOgata 1988. Moreover,Werner and Sor-

The second challenge, that of non-Gaussian probabilitynette(2008 showed that the RELM evaluation tests are not
distributions, has been solved to some extent by recent Montappropriate for the broadened forecast distributions that arise
Carlo methods, at least for models with a small number offrom taking into account uncertainties in data and recom-
dimensions Evensen1994 Liu, 2001, Doucet et al.200%, mended that forecasts should be replaced by a full distribu-
Robert and Casell2004. In particular, Sequential Monte tion. Schorlemmer et a{2010 confirmed and supported this
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recommendation after examining first results from the five-distributed. Sectior.1 describes the set-up of the simula-

year RELM forecast competition. The methods used in thistions: we use a lognormal renewal process of which only

article for evaluating point-process forecasts when the obsemoisy occurrence times can be observed. In SE2iwe use

vations are noisy provide an alternative to the current forecasthe particle and Kalman filters to estimate the actual occur-

evaluation method used in RELM and CSEP. rence times, demonstrating that the filters improve substan-
Data and parameter uncertainties also play a crucial roldially on a forecasting method that ignores the presence of

in the ongoing debate about the relevance of the seismiclata uncertainties. In Se@.3 we show that parameter es-

gap hypothesisMcCann et al. 1979 Nishenkq 1991, Ka- timation via maximum (marginal) likelihood is feasible. We

gan and Jacksori991, 1995 Rong et al. 2003 McGuire, conclude in Secb.

2008, of models of characteristic earthquak&geEnousky

1994 Bakun et al. 2005 Scholz 2002 Kagan 1993 and of o o

recurrence statistics of earthquakes on a particular fault se? D@t assimilation and probabilistic earthquake

ment inferred from paleoseismic data recorBsaséi et al, forecasting

2002 Bakun et al. 2005 Davis et al, 1989 Rhoades et al.

1994 Ogata 1999 2002 Sykes and Menke2006 Parsons

2008. The data are often modeled using renewal processes,

and studies investigating data and parameter uncertainty CoRrhg general concepts of data assimilation or Hidden Markov
firmed that any model inference or forecast must take into acy, o qels (HMMs) state inference are relatively new to statis-

count uncertaintiesfavis et al, 1989 Rhoades et al1994 oo earthquake modeling. The few studies that are related
Ogata 1999 2002 Sykes and Menke2006 Parsons2008. .4 he separated into three categories/dijni (2005 2008

In this article, we focus on the class of renewal processegy died a HMM of seismicity, in which the (unobserved)
as models of seismicity. On the one hand, renewal procességate could be in one of three different states (a Poisson pro-
are extensively used to model paleoseismic data recordgess state, an ETAS process state and a stress-release pro-
characteristic earthquakes, seismic gaps and seismic hazargyss state) and the observational data were modeled accord-
as mentioned above. On the other hand, renewal processgs, 1o one of the three processes. Varini did not consider
are the point-process analog of Markov chains, thereby enm e 45 rement uncertainties of the data. Gijant and Gould
abling us to use sequential Monte Carlo methods developeglzooép proposed data formats and standards for the assimi-
for state-space models. In other words, renewal process§§ion of uncertain paleoseismic data into earthquake simu-
are the simplest class of point process models relevant 0 stgayors. van Aalsburg et al(2007) assimilated uncertain pa-
tistical seismology. By developing rigorously a data assimi- g 5seismic data into “Virtual California’, a fixed-geometry
lation procedure for renewal processes, we aim at providingarthquake simulator of large earthquakes: model runs are

the building blocks for more complicated models. In addition accepted or rejected depending on whether simulated earth-
to the obvious relevance to earthquake forecasts, we hopg ;kes agree with the paleoseismic record. Rifjoades

to generate interest among statisticians to tackle the generg); 5 (1994 calculated seismic hazard on single fault seg-

problem of state filtering for point processes, for which the nents by averaging the hazard function of a renewal process
Markovian state-space model framework seems to0 restriCqyer narameter and data uncertainties, achieved by sampling

tive. over many parameter and data sampl&gata(1999 pre-

The article is structured as follows. Secti2provides @  gented a Bayesian approach to parameter and model infer-
brief literature review of data assimilation in connection with ence on uncertain paleoseismic records, closely related to

statistical seismology and points out potential benefits of datg, approach. Data uncertainties were represented with ei-
assimilation to earthquake forecasting. Sec8antroduces  her 5 yniform or a triangular distribution. To compute the
the methods we believe are relevant in the seismicity ConteXtintegraIs, Ogata seems to have used numerical integration,
Section3.1provides the notation and basic Bayesian estima-, process that becomes increasingly difficult as the number
tion problem we propose to solve for renewal processes. SeGst events increases, in contrast to the particle filters that we
tion 3.2 defines renewal processes, which serve as our foreyqq belowSykes and Menké200§ assumed Gaussian data
cast models. Sectio.3 explains the basics of Sequential grors and uncorrelated recurrence intervals, also providing a
Monte Carlo methods. In Sed.4, we describe a particular  yayimum likelihood estimation procedure for the parameters
SMC filter. To perform model inference, we must estimate u¢ 5 |ognormal process based on a Monte Carlo integration
parameters, which is described in Se&6. In Sect.3.6,  5n5r6ach. Parsong200§ provided a simple but inefficient

we describe two more filters that will serve as benchmarks\jonte Carlo method for estimating parameters of renewal
for the particle filter: a simple deterministic Kalman filter processes from paleoseismic catalogs.

and an Ensemble Kalman filter. Sectidmlescribes numer-

ical experiments to demonstrate how earthquake forecasting
based on data assimilation can be implemented for a particu-
lar renewal process, where inter-event times are lognormally

2.1 Literature on probabilistic earthquake forecasting
and data assimilation
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2.2 Why base earthquake forecasting on data conditional distributionp(y;|x;) (the observations may also

assimilation? be vectors, in general of different dimension than the state).
The model can be summarized by

Data assimilation can be used as a framework for likelihood-

based model inference and development, fully accounting for Initial condition:  p(xo) (1)

uncertainties. The current surge in earthquake predictability Model forecast: p(x;+1]x;) >0 (2

experimentsKield, 20073 Jordan2006 Schorlemmeretal.  ~gnditional data likelihood: P(elxe) r>1 ©)

2007, 201Q Werner et al.2010¢ Zechar et al.2010 pro-

vides strong motivational grounds for developing earthquakewe denotexqg; = {xo,...,x;} and y1, = {y1,...,y:}. The

forecasting methods that are robust with respect to obserproblem statement is then as follows: the aim is to estimate

vational uncertainties in earthquake catalogs. Dealing withsequentially in time the posterior distributign(xo.;|y1.;).

observational errors is particularly important for operational We may also be interested in estimating the marginal dis-

earthquake forecasts (e.gordan and Jong2010), as obser-  tribution p(x,|y1.), also known as the filtering distribution,

vations are poorer and scarcer in real-time. Data assimilatiorand the marginal complete data likelihopdy;.;), which we

provides a vehicle for correcting an existing forecast withoutwill use for parameter estimation.

having to re-calibrate and re-initialize the model on the entire At any timet, the posterior distribution is given by Bayes’

data set. In its general formulation as a state and parameteheorem

estimation problem, data assimilation may also be viewed

as a method for estimating physical quantities (“states”) and, q, [y;.,,) = p(y1:1x0:) p(x0:)

model parameters, directly related to physics-based models,  ~  JP(yuelxos) p(xor)dxoy

such as rate-and-state friction and Coulomb stress-change . i ) _

models (see, e.gHainzl et al, 2009. In the future, the cou- A recursive or sequential formula can be denyed frqm (i) the

pled integration of several types of different data to constrainMarkov property of the state process and (ii) the indepen-

estimates of physical states is highly desirable. NumericaPf€Nnce of observations given the state:

weather prediction has a long history of integrating different

types of data — statistical seismology may be able to adapp (xo.r+1|y1:1+1) = p(x0:|y1:1)

these methods. Finally, the theory of point processes has so POr+alyLe)

far largely focused on exact data (el_ga_ley and Vere-Jones _wherep(y,41y1) is given by

2003. The development of the statistical theory and practi-

cal methodology for taking into account noisy observations

is therefore interesting for applications beyond earthquake? (Vi+11y1:) =/P(yt+1|Xt+1)P(xt+l|Xt)P(X0:t|y1:t)dX0:t+1

forecasting. ©)

The marginal distributiorp(x;|y1;—1) also satisfies the fol-
lowing recursion:

(4)

PYr+1lxe+1) p(xXetalxr) (

5)

3 Method: sequential Monte Carlo methods for renewal

processes
3.1 Bayesian data assimilation of state-space or Hidden pilyri-1) = /p(x’|x’_1)p(xt_1|y1”_1)dxt_1 ™
Markov Models (HMMSs) pelxs) p(xelyre—1)
p(xelyse) = (8)

X Xe|y1r—1)dx
In this section, we state the general problem of Bayesian data SOl pilyre-1dx

assimilation that will be solved for specific model and obser-Expressions{) and @) are the essential steps in sequen-
vation assumptions in Sedt. The presentation borrows from tial data assimilation. Using the last update (the posterior,
Doucet et al.(200Q 2001) and Arulampalam et al(2002 also often called analysis) as initial condition, the Chapman-
(see alsoKiinsch 2001, Robert and Casell®2004 Capre Kolmogorov (prediction) Eq.7) is used to forecast the state
et al, 2005 2007 Wikle and Berliner 2007, and references at the next time step. When observatiopnsbecome avail-
therein). able, they are assimilated into the model forecast by the up-
We use the class of Hidden Markov Models (HMMs), date Eqg. 8). This cycle constitutes sequential data assimila-
i.e. Markovian, nonlinear, non-Gaussian state-space models¢ion of state-space models. The problem appears in other
The unobserved signal (the hidden stafes),~1 is modeled  research fields under different guises, e.g. Bayesian, opti-
as a Markov process (in this articlg,is a scalar). The initial ~mal, nonlinear or stochastic filtering, or online inference and
statexg has initial distributionp(xg). The transition fronx; learning Doucet et al.2001; Capye et al, 2005.
to x;+1 is governed by a Markov transition probability distri-  In general, there may be unknown parameters in the model
bution p(x;11]x;). The observation§y, };>1 are assumed to forecast distribution that need to be estimated. We assume
be conditionally independent given the proces$; -1 and of  that the parameters of the conditional data likelihood are
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known, since they.should pe characterlgeq by the measures ;1. _1) = p(t — ti_1) = p(1) (10)
ment process and its associated uncertainties. Several param-

eter estimation techniques exist; we will focus on maximiz- wherer is the interval between events. The time of the event
ing the marginal complete data likelihood, the denominatory, corresponds to the model statein data assimilation. Re-

in Bayes’ theorem: newal point processes provide prior information for the anal-
ysis, which we will discuss in the next section.
py1e) = fp(yhlmz) p(xo:)dxo: ) The class of renewal processes is widely used in seismol-

ogy and seismic hazard analysis. For examipield (20073

Equation @) provides a measure of how successfully a par-summarized how the Working Group on California Earth-
ticular model is explaining the data. The marginal com- quake Probabilities (WGCEP), mandated to provide the offi-
plete data likelihood is the analog of the traditional likelihood cial California seismic hazard map, estimates the occurrence
function, but generalized to noisy observational data. Thisprobability of large earthquakes on major faults in the region
in turn, implies that different models may be compared andby using various recurrence models, including the lognormal
tested for their consistency with observed data, while explic-pdf. While physics-based models of seismicity certainly ex-
itly acknowledging data uncertainties. In other words, (earth-ist, the models are non-unique, the physics is far from fully
quake) forecasts may be evaluated based on this measure. understood, and we lack basic measurements (e.g. of the state

Only in very special cases are the prediction and updatef stress) to properly calibrate such models. As a result, most
Egs. ) and @ amenable to analytical solutions. In the seismic hazard analyses are either entirely time-independent
case of a linear Gaussian state-space model, the widespredice., they use an exponential pdf), an approach pioneered by
Kalman filter Kalman 196Q Kalman and Bucy1961) cal- Cornell (1968 that remains state-of-the-art in many regions.
culates exactly the posterior distributions. Much of filtering Or alternatively, only the probabilities of large earthquakes
theory and data assimilation has been concerned with idenen major fault segments are estimated with renewal models
tifying useful, suitable and computationally inexpensive fil- calibrated with paleoseismological and more recent instru-
ters for a variety of particular problems. For instance, themental data. To infer the most appropriate pdf, seismologists
extended Kalman filter performs a local tangent lineariza-use likelihood-based inference of renewal models.
tion of nonlinear model and observation operators for non- Renewal models can also be motivated by the elastic re-
linear problems. The Kalmanévy filter (Sornette and Ide  bound theory proposed bigeid (1910. According to the
2007 generalizes the Kalman filter tcelry-law and power-  theory, large earthquakes release the elastic strain that has
law distributed model and data uncertainties. In other casedyuilt up since the last large earthquake. Some seismologists
numerical integration may be possible, or approximate grid-deduce that the longer it has been since the last earthquake,
based methods, e.g. HMM filters, may be convenient. Thethe more probable is animminent event (&lgshenkg 1991,
ensemble Kalman filtelHvensen1994 Tippett et al, 2003 Sykes and Menke2006), while others contend that the data
is a Monte Carlo approach to the nonlinear extension of thecontradict this view (e.gDavis et al, 1989 Sornette et aJ.
Kalman filter by introducing an ensemble of particles with 1996 Kagan and Jacksori995. Renewal models are of-
equal weights, each evolved individually, to approximate dis-ten used to quantitatively demonstrate that earthquakes either
tributions. The general, nonlinear, non-Gaussian, sequentiatluster or occur quasi-periodically.
Bayesian estimation problem, however, seems best solved
with sequential Monte Carlo methods whenever the model's3.3  Sequential Monte Carlo methods
dimensionality is small (usually less than several dozen ac-

cording toSnyder et al.2008). Earthquake statistics often violate Gaussian approximations
in terms of their temporal, spatial and magnitude occur-
3.2 Renewal processes as forecast models rences, so much so that approximate algorithms based on

Gaussian approximations (e.g. the traditional Kalman filter)
Data assimilation is an iterative method that involves two are unlikely to produce good results. Furthermore, the con-
steps, forecasf and analysis®), in each cycle. To formu-  tinuous state space of seismicity rules out methods in which
late the data assimilation problem for earthquakes, we usghat space is assumed to be discrete (such as grid-based meth-
a renewal point process as the model in the forecast. Reods). This leaves us with numerical integration techniques
newal point processes are characterized by intervals betweeshd Monte Carlo methods. The former are numerically accu-
successive events that are identically and independently disate but computationally expensive in problems with medium
tributed according to a probability density function that de- to high dimensionality.
fines the processDaley and Vere-Jong2003. Examples Sequential Monte Carlo (SMC) methods bridge the gap
of such a probability density function (pdf) include the log- between these cost-intensive methods and the methods based
normal, exponential, gamma, Brownian passage time angn Gaussian approximations. They are a set of simulation-
Weibull pdf. The time of the next event in a renewal pro- hased methods that provide a flexible alternative to com-
cess depends solely on the time of the last event: puting posterior distributions. They are applicable in very
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general settings, parallelisable and often relatively easy taCarlo method is therefore that the rate of convergence of the
implement. SMC methods have been applied in target trackMC estimate is independent of the dimension of the inte-
ing, financial analysis, diagnostic measures of fit, missinggrand. This stands in contrast to any deterministic numeri-
data problems, communications and audio engineering, popeal integration method, whose rate of convergence decreases
ulation biology, neuroscience, and many more. Good in-with the dimensionality of the integrand.

troductions were provided bprulampalam et al(2002),

Capye et al.(2005 2007, Doucet et al(200Q 2007), Kiinsch
(2009, Liu (2007, Liu and Chen(1999 and de Freitas
(1999 Chapter 6).

Unfortunately, because the posterior distribution is usually
highly complex, multi-dimensional and only known up to
a normalizing constant, it is often impossible to sample di-
rectly from the posterior. One very successful solution for

Sequential Monte Carlo filters use the techniques of Montegenerating samples from such distributions is Markov Chain
Carlo sampling, of (sequential) importance sampling and ofMonte Carlo (MCMC). Its key idea is to generate samples
resampling, which we describe briefly below before definingfrom a proposal distribution, different from the posterior, and
a particular particle filter which we will use for our numerical then to cause the proposal samples to migrate, so that their fi-
experiments. nal distribution is the target distribution. The migration of the
samples is caused by the transition probabilities of a Markov
chain (see, e.g., Appendix D dk Freitas1999. However,
MCMC are iterative algorithms unsuited to sequential esti-
mation problems and will not be pursued here. Rather, SMC

& a set _ " (or samples) - methods primarily rely on a sequential version of importance
xg, are drawn identically and independently from a distribu- sampling.

tion, say, a posterigp (xo.;|y1). Then, an empirical estimate
of the distribution is given by

3.3.1 Monte Carlo sampling

In Monte Carlo (MC) simulation L(iu, 2001 Robert and
Casella2004), a set ofN weighted “particles’

3.3.2 Importance Sampling (IS)

Importance Sampling (IS) introduced the idea of generating
samples from a known, easy-to-sample probability density
function (pdf) ¢(x), called the importance density or pro-
where&xm (xo,) denotes the Dirac mass Iocatedxéf. The posal density, and t_hen “correcting” the weights of each sam-
R L - . ple so that the weighted samples approximate the desired
essential idea of Monte Carlo sampling is to convert an IN-gensity. As long as the support of the proposal density in-

tegral into a discrete sum. One is often interested in SOM@,,des the support of the target density, one can make use of
function of the posterior distributions, say, its expectation, i, s pstitution

covariance, marginal or another distribution. Estimates of

A 18
P (o y1) = leaxg; (x0:) (12)

i i (xo; 1)
such functiond (f;) can be obtained from (o Y1) = :(xstll;)iz) (0 ly1) (15)
1 it
. 1Y i
IN(fi) = / Fr@oun) v (xos|yr)dxon = -3 fi(xg)) (12)  to obtain the identity
. ' v )dxo.
This estimate is unbiased. If the posterior variancé 6fo.) I(fy)= fﬁ(XO_t)w(on;)q(XO_tIy;_t) 0 (16)
is finite, saya]%, then the variance ofy(f;) is equal to Jw(xo)q (xos|yre)dxo;
o%/N. From the law of large numbers, wherew (xg;) is known as the importance weight
I~ 1(f) (13)  w(xgy) = L) (17)
N—o00 q(x0:1y1:1)

where a.s. denotes almost sure convergence. That is, thenerefore, if one can generaté independently and iden-

probability that the estimatéy (f;) converges to the “true”  yioq)y gistributed samples!) from the importance density
. . . . .. O:l
valuel (f;) equals one in the limit of infinite number of par-

xo:|yo:), @ Monte Carlo estimate df( f;) is given b
ticles. Furthermore, if the posterior variantjé[ < oo, thena 9(x0uly01) (fi)lsg y
central limit theorem holds: 1N (@)
NZi ft(xO:t

N -
% Zj w (x(():jt))

@)
0:¢

N

in(f= W) S GDya (18)

Ny (f)=1(f) === N (0.0%) (14)

A . N where the normalized importance wei are given b
where oo denotes convergence in distribution and P ghx‘,é g y
— 00

N(O,a%) is the normal (Gaussian) distribution with mean B —
zero and variance%. The advantage of this perfect Monte

w(xg,

N
j:lw(x

(j)) (19)
O:t

2z
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Thus, the posterior density function can be approximated arto approximate the posterior density functi@) (or some
bitrarily well by the point-mass estimate function thereof) sequentially in time without having to draw
samples directly from the posterior. All that is required is
(i) sampling from the importance density and evaluating it
up to some constant, (ii) evaluating the Iikelihopdy,|x,(’))

up to some proportionality constant, (iii) evaluating the fore-
In summary, the advantage that IS introduces lies, firstly, inCaStp(x,(i)Ixt(i)l) up to some constant, and (iv) normalizing
being able to easily genergte samples from the importancrtane importance weights ViZN:ﬂD;(j)- The SIS thus makes
density rather than a potentially complex target density, and J

. . . sequential Bayesian estimation feasible.
secondly, in only needing to correct the weights of the sam- q 4

ples from the ratio of the target and importance densities3 3.4 Choice of the importance density and resampling
eliminating the need to calculate normalization constants of

N
p(xosly1s) = IZIIJI(Z)SX((){) (x0:¢) (20)

the target density. The problem encountered by the SIS method is that,ias
_ . creases, the distribution of the importance weights becomes
3.3.3 Sequential Importance Sampling (SIS) more and more skewed. For instance, if the support of the

importance density is broader than the posterior density, then

In its S|mpLest form, 1S Ids notbadequate f_(l)r;equenUal eC;S‘t"some particles will have their weights set to zero in the up-
mation. W enever new daia become available, one needs j44q stage. But even if the supports coincide exactly, many
to recompute the importance weights over the entire state sg)

ol i i yarticles will over time decrease in weight so that after a
quence. Sequential Importance Sampling (SIS) modifies 1S, time steps, only a few lucky survivors have significant
so that it becomes possible to compute an estimate of th

: . g . . ' Miyeights, while a large computational effort is spent on propa-
posterior without modifying the past simulated trajectories.

) hat the i densi 4 gating unimportant particles. It has been shown that the vari-
It requires that the importance densityxo, |y1,) at timez ance of the weights can only increase over time, thus it is im-

admiFs as marginal disFribution at time- 1 the importance possible to overcome the degeneracy probléong et al,
functiong (xo;—1/y1:-1): 1994. Two solutions exist to minimize this problem: (i) a
good choice of the importance density and (ii) resampling.

q(x0:1y1:0) = g (x0:0— 11 y1:0—1)q (X | X0:1 1, Y1:1) (21)
) . . — Importance density: The optimal importance density
After iterating, one obtains: is given by:
t
q(x0:1y1:0) = q(x0) | [ g (xalxox—1. y1x) (22) Gopt (Xt X0:1 -1, Y1) = p(XzIXo:z—l_, Y1) .
k=1 _ POl x P D p ) (26)
Assuming that the state evolves according to a Markov pro- p(y,|xl(i)1)
cess and that the observations are conditionally independent
given the states, one can obtain because it can be proven to minimize the variance of the
importance weights (sel€ong et al, 1994 and Chap-
! ter 6 of de Freitas 1999. However, using the opti-
p(xo) = P(XO),l—[lp(xkka—l) (23) mal importance density requires the ability to sample
B from p(x,|xt(l_)l, y¢) and to evaluate the integral over the
and new statep(y, |xt(i)1) (Arulampalam et a}2002 Doucet
' et al, 2001 de Freitas1999. In many situations, this is
p(V1elxosr) = Hp(yk|xk) (24) impossible or very difficult, prompting the use of other
k=1 importance densities. Perhaps the simplest and most
Substituting Eqs.22), (23) and @4) into Eq. (19) and us- tclfgpr:}gz choice for the importance density is given by
ing Bayes’ theorem, we arrive at a recursive estimate of the
importance weights q (i x01—1, y1:) = p (e xi—1) (27)
~() (D) PGl pa1x D) which, although resulting in a higher variance of the
Wy XW; g OGO (25) Monte Carlo estimator, is usually easy to implement.
q (e Ixg; 1 Y10) Many other choices are possiblarglampalam et aJ.
() 2002 Doucet et al.200%; Liu, 2001).

where the normalization is provided tﬂjj.v:lw, . Equa-
tion (25) provides a mechanism for sequentially updating the — Resampling Even the optimal importance density will
importance weights. In summary, SIS provides a method lead to this “degeneracy” of the particles (few important
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ones and many unimportant ones). One therefore in- The SIR particle filter is characterized by choosing the
troduces an additional selection or resampling step, inprior p(x;|x;—1) as the importance density:

which particles with little weight are eliminated and

new particles are sampled in the important regions ofq (x¢|X0:1—1, y1.1) = p(x¢|x;—1) (30)

the posterior. De Freitas(1999 and Arulampalam
P (1999 P It can be shownArulampalam et a).2002 that the SIR can

et al. (2002 provide an overview of different resam-
(2002 p be reduced to the pseudo-code given by Algorithrwhere

pling methods. X :
L . , . the weights are given by:
Resampling introduces its own problems. Since parti-
c!es are ;ampled from dlscrgte a.lpprom.matlons to d?”'wf’) o wt(flp(yzlxt(')) (31)
sity functions, the particles with high weights are statis-

ticall_y selected many ti_mes. This leads to a loss of di_- Whel‘ep(y,|xl(i)) is simply the likelihood and the weights are
versity among the particles as the resultant sample will, 5 malized by

contain many repeated points. This is known as “sam-

ple impoverishment”Arulampalam et a).2002 and is . w®

. ~ (i) _ t 32
severe when the model forecast is very narrow or de-W: = 5~ 5 (32)
terministic. The various methods that exist to deal with Zj=lwf

this problem will not be necessary here because of thel.his filter. called the *

: ; bootstrap” filter b t et al.
broad and highly stochastic model forecast. ootstrap® filter bdoucet et a

(200)), is simple and easy to implement. If the likelihood

Because of the additional problems introduced by re-has a much narrower support than the importance density,
sampling, it makes sense to resample only when the&hen the weights of many particles will be set to zero so that
variance of the weights has decreased appreciably. Aonly few active particles are left to approximate the poste-

suitable measure of degeneracy of an algorithm is therior. To counteract this particle death, a resampling step is
effective sample siz&/es introduced byLiu and Chen  included.

(1998 and defined by

N
Neff= ——— 28 - - -
eff 1+var(w) (28)  Algorithm 1 SIR particle filter.

wherew}’ = p(xt(i)|y1;t)/q(x,(i)|xt(i_)l,y,) is referred to L w1 ) =S|R[{xt(’_)1,wt(fl}{":1,yz]
as the true weight. This may not be available, but
an estimateVes can be obtained as the inverse of the

so-called Participation RatidV{ézard et al.1987) (or

for i=1toN do '
Drant(l) ~ p(xelx;_q)
(@)

Herfindah! index Polakoff and Durkin 1981; Lovett, eng\?cS)irgn the particle a weight,, , according to Eq.31)
1989): Calculate total weightW =SUM{w{}Y ]
A 1 for i=1toN do :
Nett = W (29) Normalize:w " = w1y

i=1\%r end for

. _ . o1

Thus, resampling can be applied wheg falls below CalculateNeft = SN w2
a certain threshol&inres if Neff < Nihresthen

Resample using Algorithr:
[, wy N 1=RESAMPLE {x{"),w"1N ]
end if

3.4 Numerical algorithms of the Sequential Importance
Resampling (SIR) filter

In this section, we define the Sequential Importance Re-

sampling (SIR) particle filter, which uses the prior given

by Eq. €7) as the (sub-optimal) importance density and in- There are many methods to resample from the posterior
cludes a resampling step to counteract the degeneracy ¢Doucet et al. 2001, de Freitas1999 Arulampalam et aJ.
particles. The prior is obtained by random draw for indi- 2002. The basic idea is to eliminate particles that have small
vidual particles using the forecast model, i.e. the renewaleights and to concentrate on particles with large weights.
point process defined by Eql@. The presentation and It involves generating a new set of particles and associated
the pseudo-codes in this section closely follamalampalam  weights by resampling (with replacemenf)times from an

et al. (2002. More information on other particle filters can approximate discrete representation of the posterior. The re-
be found inArulampalam et al(2002), de Freitas(1999, sulting sample is an independently and identically distributed
Doucet et al.(200Q 2001, Liu (2001, and Capge et al.  sample so that the weights are reset t&/1 The method of
(2005 2007). choice ofArulampalam et ali2002) is systematic resampling
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since “it is easy to implement, take®(~N) time and mini-

mizes the Monte Carlo variation.” Its operation is described

in Algorithm 2, whereU [a, b] is the uniform distribution on
the intervalla, b].

Algorithm 2 Systematic resampling.

[ w YY1 =RESAMPLE(x, w1 ]

Initialize the CDF:c1 =0

for i=2 toN do )
Construct CDFe; =c;_1+ wz(l)

end for

Start at the bottom of the CDF=1

Draw a starting pointuy ~ U[0, N™1]

for j=1toN do
Move along the CDFz ; =u3 +N~1(j — 1)
while u j > ¢; do

i=i+1

end while
Assign samplex
Assign weightaw /) = N~1

end for

G0 _

3.5 Parameter estimation

Parameter estimation techniques within sequential Monte

Carlo methods are discussed by, e@pucet et al(2001),
Kiinsch(2001), Andrieu et al (2004 andCappe et al.(2005

57

Po (V| youk—1)

= //pe(yk|xk)P0(xk|Xk—1)179(Xk—l|y01k—1)dxk—1dxk

(35)

ST i,0

~ Zw,ﬁl;l) / o ilxe) po (il dxy (36)
i=1
N .

~ 3wl (37)
i=1

Wherew,(f’e) are the unnormalized weights at th& time

step. Expression2b) is used to go from the second to the
third approximate equality.
The log-likelihoodt (9) is therefore given by

t
€6) = log(L(®|y1.)) =log [1‘[ Po (yk|yo:k_1>]
k=1
t
= log[pe (elyox-—1)]
k=1

N
~ i log [Z w,ﬁi’e)]
k=1 i=1

Maximizing the sum of the unnormalized weights given by
expression38) with respect to the parameter getesults in
the maximum likelihood estimater.

t N
6 =arg ma{Zlog (Zw,ﬁ'ﬂ))}
k=1 \i=1

(38)

(39)

Doucet et al.(2001), Andrieu et al.(2004), Capge et al.
(2005 2007 andOlsson and Ry@n (2008 consider the es-

2007). The methods are either online-sequential or offline-timator's statistical properties. To find the maximum of the
batch methods. For simplicity, we will restrict this section log-likelihood in Eq. 89), one may use the standard opti-

to one particular technique, based on the offline or batchyization algorithms, such as gradient-based approaches, the
technique of maximizing (an MC estimate of) the complete expectation-maximization algorithm, or random search al-

marginal data likelihood defined in Eq)( The presentation
follows Doucet et al(2007).

gorithms such as simulated annealing, genetic algorithms,
etc. (see, e.gSambridge and Mosegaar2D02). In our pa-

Eq. @), depends on an unknown, static parameter vegtor
Moreover, we assume the marginal likelihoddd|yi.,) =
po(y1:) admits a sequential formulation:

1
L©ly1) = po(yi) = po(yo) [ | po Gl yor-1) (33)

k=1

where the individual predictive likelihoods are defined as

po klyok—1) = / Po (Vi Xk | yok—1)d xk (34)

These can be estimated from the weighted particle

[0 [,0
(P w ) ciew as

www.nonlin-processes-geophys.net/18/49/2011/

combination of a coarse direct grid-search method and a pat-
tern search method to refine the coarse estintdteke and
Jeevesl961; Torczon 1997 Lewis and Torczon1999.

3.6 Kalman filters

To provide benchmarks for the SIR particle filter, we use
two Kalman filters. The first is a very simple, determinis-
tic Kalman filter (DKF) based on the approximation that all
distributions are GaussiatKélman 1960. The second is
the Ensemble Square Root Filter (EnSRF) proposedify
pett et al(2003, a popular instance of the ensemble Kalman

Silter (Evensen1994. The EnSRF approximates priors and

posteriors with an ensemble of unweighted particles and as-

sumes the measurement errors are Gaussian. This section
defines the filters and derives the relevant equations that we

implemented numerically.

Nonlin. Processes Geophys., 7182491
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3.6.1 Deterministic Kalman Filter (DKF)

M. J. Werner et al.: Earthquake forecasts based on data assimilation

3.6.2 Ensemble Square Root Filter (EnSRF)

The forecast of the deterministic Kalman filter for time step Tippett et al (2003 discussed the Ensemble Square Root Fil-

t is given by a Gaussian distribution with mea;r)f) and
varianceP,f which are determined by
() = () + (dx])

P/ =Pt +0/ (40)

where (x/' ;) and P ; are the mean and variance, respec-

ter (EnSRF), a particular instance of the Ensemble Kalman
Filter (EnKF) invented byEvensen(1994. The EnKF
uses ensemble representations for the forecast and analy-

sis error covariances. Starting with an unweighted ensem-
ble {xf;(i)};”:l of m members that represent the analysis of

the previous time step, the (potentially) non-linear and non-
Gaussian dynamics of the modptxt|xt(i_)1) is applied to

m

i=1

step, anddx/) and 0/ are the mean and variance, respec- The ensemble representation of the forecast produces any re-

tively, of the forecast model, which in our case is the renewal

process defined in EqLQ).

The analysis of the DKF is also given by a Gaussian, with

mean(x;') and variance’/ determined by

= (x5 )+ Ko — ()

P =@1-Kk)P/ (41)

wherey, — (x,f) is often called the innovation or measure-
ment residual and the Kalman gaif is determined by

2

Kj=—"1—
P/ +Ro

(42)

whereR? is the variance of the observation error distribution.

As for the particle filter, we will use the marginal complete
likelihood function @), i.e. the denominator of Bayes’ theo-

rem, to estimate the parameters of the forecast model. Th

likelihood is given by

po(yelyor-1) = /p(yt|xt)p(xt|y0:t—l)dxt

_ / NOn RON (), P dx, (43)

whereN (a,b) denotes the normal distribution with mean
and varianceb. Using expressionsA(Q) and @1), Eq. @3)
reduces to

1

po(elyor—1) =
V2r, /P +Qf+RO

a fy_ 2
exp[_(<x,_1>+<dx ) }

2(Pt—l+ Qf + RO)
where(dx/) andQ/ are explicit functions of any parameters

X

(44)

quired statistics such as meanf) =1/md " x,“”, covari-
anceP,f or the full pdf of the forecast can be obtained from a

kernel density estimate. The forecast ensemﬁi@ is thus
obtained from

O = O 4 gyl (45)
X0 2 SO (46)
m
1 £@)?
=) o

i

Once an observation is available, the mégf) of the anal-
ysis is obtained from

) = )+ Ko (e — () (48)
where the Kalman gairk, is obtained as in the classical
Kalman filter from

P/

K=——"—
P/ + RO

(49)

whereR?° is the covariance of the observation error distribu-
tion.

To obtain the full pdf of the analysis rather than just the
mean, and in the case of observations being assimilated one
by one serially;Tippett et al.(2003 show (their Eq. 10) that
the perturbati0n§(f’(i) of the analysis ensemble about the
analysis meafx;) are given by
x¢ O =xOa-pp) (50)
whereg; = (Dl+\/R°_Dt)_1, andD, = Ptf + RO is the in-
novation (co-)variance.

0 of the renewal process. As above, we sum over the loga- As before, we also derive the expression for the complete
rithms of each individual likelihood and maximize the joint marginal joint log-likelihood. The observational error dis-
log-likelihood to estimate parameters. tribution is characterized solely by the covariank®, i.e.

The DKF only requires two parameters to be tracked, thethe EnSRF implicitly assumes Gaussian measurement errors.
forecast mean and variance, making it a very simple andn contrast to the Gaussian model forecast of the DKF, the
cheap filter. However, all distributions are assumed to beENSRF approximates the model forecast with thenem-
Gaussian. ber ensemble or Monte Carlo representaybgﬁmxﬁyo:,_l) ~
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Pm(x) = (1/m)"13"8 ) (x;). The likelihood is given by 25 25
i O @ \ [ ® 4
1
2 Lognormal model kernel |:
Po(yelyou—1) = | p(yelxe) p(xelyo—1)dx; = = = Observational error distribution Ty
. 15 #Exact event time . !
= f N (e, RO p/ (eilyos-1dx, (651) 3 Observed event fime '
o n !
1 1 g
To evaluate Eq.51), we use Monte Carlo integration (ex- N
pressiornl?2) to obtain: 0.5 0.5 , .
' R
1)~ | Ny, R®) b,y (x,)dx 0 — ’ >
Po(yelyou—1) / O ) Pm (X1 )dx; o - ]f 5 3 00 . ]T 5
ime of Next Event Time of Next Event
N 1 m (1)
~ EZP()& %) (52) " Fig. 1. visual comparison of the mode transition kernel of the (un-
1

observable) true occurrence times (solid black curves) and the con-

wherep(y, _xt(i)) is the normal distributioV (y;, R) evalu- ditional likelihood functions of the noisy observed occurrence time

0) . . .. i given the true occurrence time (dashed magenta li@@)Jniform
ated atx; . As before, we maximize the marginal joint log error distribution. (b) Gaussian mixture error distribution. Also

likelihood, i.e. the sum over the logarithms of the individual ghown are a sample true occurrence time (black square) and a sam-
likelihood functions, to estimate the parameteréset ple observation (magenta star).

The EnSRF is thus a Monte Carlo method that allows for
non-Gaussian and non-linear model dynamics to produce ar-
bitrary forecast pdfs. However, unlike the SIR, itis only con- mal renewal process as our forecast model. The lognormal
cerned with the variance of the observational error distribu-renewal process has a long tradition in modeling the recur-
tion during the analysis. rences of earthquakes (see, eNishenko and Buland 987,
Ogata 1999 Biasi et al, 2002 Sykes and Menke2006
Field, 20078. According to the lognormal process, the in-

4 Numerical experiments and results tervalst between subsequent earthquakes are distributed ac-
. . . . cording to:
In this section, we present a simple, pedagogical example
of earthquake forecasting based on data assimilation. Our, 1
d J Tiogn(z: 12.0) = exp(—(logr —p)?/20%)  (53)

model is the one-dimensional, temporal lognormal renewal 2o
process (Sect.1.]): the simplest point process, which nev-
ertheless draws much interest in earthquake seismology an\t%
seismic hazard, as mentioned above. We assume the pro-
cess is observed in noise, i.e., the unobservable true occufy
rence times are perturbed by (additive) identically and in-
dependently distributed noise (Se¢tl.2. The aim of this O 1 %

section is to show an example of how data assimilation pro- o (tx — ti—1)V 270

vides better forecasts, as measured by the likelihood gain,

than a forecast (“the benchmark”) Whicgignores the datg er- exp(— (log(t — ti-1) — “)2/202) (54)

rors (assumes the observed times are the true times). We Wilfo mimic a realistic process, we use parameters taken from
compare the performance of the SIR particle filter with thatihe study byBiasi et al.(2009, who fit the lognormal pro-

of the deterministic and ensemble Kalman filters and meatess to a paleoseismic data set from the San Andreas fault in
sure their skills against the benchmark (Séd). Finally, in  cglifornia:

Sect.4.3we will use maximum likelihood estimation to ob-

tain parameter estimates using both the filters and the benctit =—0.245 and ¢ =0.7 (55)
mark. The results in this section thereby demonstrate thajyhere we obtainegt by normalizing the average recurrence
data assimilation can help make earthquake forecasting anghterval to one, without loss of generality. Figurshows the
forecast validation robust with respect to observational datgognormal distribution (solid black curve) with these param-
errors. eter values.

here the parametersando may need to be estimated. In
e notation of Secf3, using a physically meaningfuj for

e state variable instead gf, the lognormal distribution of
e intervals is the transition kernel defined in E): (

4.1 Experiment design 4.1.2 The observations: noisy occurrence times

4.1.1 The forecast model: lognormal renewal process We suppose that the-th observed occurrence timg is a

. . . L noisy perturbation of the “true” occurrence tinje
Motivated by its relevance to paleoseismology, seismic haz-

ard and the characteristic earthquake debate, we use a lognaf: = 7 + ¢, (56)
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wheree is an additive noise term distributed according to that the observation period ends with the last observed event
some distributiorp (¢). For our numerical experiments be- 2 =5. This assumption can be relaxe@gata(1999 pro-

low, we choose two different distributions: a uniform distri- vided the relevant equations.

bution and a Gaussian mixture model. The uniform distribu-

tion was chosen to mimic measurement errors that are poorlf-1.4  Simulation procedure

constrained, so that only a fixed interval is provided without ) ) ) ) )
knowledge of the distribution (e.@gata 1999. The Gaus- In this entirely simulated example, we begin by generating
sian mixture model (GMM), on the other hand, is an illus- e “true” (unobservable) process. We genevat@ndom
trative example of better-constrained uncertainties that givesamMples from the lognormal distribution given by Es)(to

rise to more complex distributions with bi- or multi-modal ©Ptain the sequence of true event tinfgf$o<i<n. Next, we
structures (e.gBiasi et al, 2002. simulate the observed process by generatingndom sam-

The uniform distribution is given by: ples from either the uniform or the Gaussian mixture condi-
tional likelihood given by Eqs.58) and 60) to obtain the

1 A A i
puni(€) = —H(e+ =) H( = —e¢) sequence of observeq evept tm%é}ogklsn'.. '
A 2 2 To perform the particle filtering, we initializ& = 10 000
_ % —% <e= +% (57) particles at the exactly knowp= 0. To forecast;, we prop-
0 otherwise agate each particle through the model kerbd).(Given the

observatiorr} and the model forecast, we use the SIR par-
ticle filter described in Sec8.4 to obtain the analysis af.
The approximation of the posterior is then used to foregast
according to Eq.%). This cycle is repeated until the posteri-

whereH (-) is the Heaviside step function. Substituting:
t°— ¢! gives the density (conditional likelihood) of the data
given the true occurrence time, defined by Ej: (

poniter) = pRlty) = p(iR—1p) ors of alln occurrence times are computed.
1 fA 0y A The Kalman filters are implemented similarly. Like the
={ AO gthe?w_is