
e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

Two Hemisphere Model Driven Approach for
Generation of UML Class Diagram

in the Context of MDA

Oksana Nikiforova∗
∗Faculty of Computer Science and Information Technology, Riga Technical University

oksana.nikiforova@rtu.lv

Abstract
The Model Driven Architecture (MDA) separates the system business aspects from the system
implementation aspects on a specific technology platform. MDA proposes a software development
process in which the key notions are models and model transformation, where the input models
are platform independent and the output models are platform specific and can be transformed
into a format that is executable. In this paper principles of MDA and model transformations are
applied for generation of UML class diagram from two hemisphere model, which is presented in the
form of business process model related with concept model. Two hemisphere model is developed
for the problem domain concerned with an application for driving school and UML class diagram
is generated using the approach offered in the paper.

1. Introduction

One of the modern research goals in software
engineering is to find a software development
process, which would provide fast and quali-
tative software development. Most of currently
proposed methodologies and approaches try to
make the development process easier and still
more qualitative. For achievement of this goal
the role of explicit models becomes more and
more important. Lately, the most popular ap-
proach is Model Driven Architecture [18]. MDA
is the central component in the OMG’s strat-
egy for maximizing return on investment, reduc-
ing development complexity and future-proofing
against technological change [29]. MDA tools
do not support the complete code-generation
capabilities from the initial business infor-
mation, and the most problematic stage is
system modelling based on knowledge about
problem domain [22].

The main idea of MDA is to achieve for-
mal system representation at the highest level

of abstraction. Nowadays MDA tools support
translation of platform independent system pre-
sentation into software components and code
generation and researchers try to “raise” it as
high as possible to fulfill the main statement
of the MDA [13]. One of the most important
and problematic stages in MDA realization is
derivation of PIM elements from a problem do-
main and PIM construction in the form that
is suitable for the PSM. It is necessary to find
the way to develop PIM using formal represen-
tation, so far keeping the level of abstraction
high enough. PIM model should represent sys-
tem static and dynamic aspects. Class diagram
shows static structure of the developed system.
But UML is a modelling language and does not
have all the possibilities to specify context and
the way of modelling, which is always required
to be defined in a methodology. Therefore, the
construction of class diagram has to be based
on well defined rules for its elements generation
from the problem domain model presented in the
suitable form.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26937876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

60 Oksana Nikiforova

Class diagram discussed in the paper con-
tains classes, relations among them, attributes
and operations of classes. Dynamic aspects,
which are another meaningful component of sys-
tem presentation at the platform independent
level is not the object of the current research.
To obtain the class diagram the initial busi-
ness knowledge represented with two hemisphere
model may be used. The transformation of this
model into class diagram is discussed in the pa-
per. The transformation should be defined in
formal way and should be acceptable for use in
transformation tool. The structure of a transfor-
mation tool is discussed in [13] with definition of
models, necessary for transformation and transi-
tion between these models. Transformation tools
take a source model as an input, and create
another model, called target model, as an out-
put [13]. Therefore, implementation of transfor-
mation needs well-defined set of notational ele-
ments of source and target models and definition
for transformation of elements of one model into
elements of another one. The paper describes
class diagram development based on two hemi-
sphere model. Therefore, according to Kleppe’s
definition source model is defined in terms of two
hemisphere model (business process and concept
model) and target model is defined in terms of
UML class diagram [28]. The structure of the
paper is as follows. The next section presents
main principles of model driven architecture, de-
fines models to be developed within it, describes
transformations to be formalized to be able to
develop the tool for support of that transforma-
tions. Section 3 presents an information about
using of two hemisphere model to fulfil the main
statement of MDA corresponds to formal trans-
formations between models. An essence of two
hemisphere model is shown in several aspects
of its historical evolution and refinement and
transformations of two hemisphere model into
elements of class diagram are described accord-
ing to the present state of author’s investiga-
tions. The transformations presented in the pa-
per are verified in section 4, where the approach
offered in the paper is applied for several prob-
lem domains. Due to limitations on volume of
the paper the section shows only general results

on these applications. Section 5 concludes on the
research presented in the paper and gives several
remarks on author’s future work in the area of
model transformations.

2. Main Principles of Model Driven
Architecture

MDA introduces an approach to system specifi-
cation that separates the views on three different
layers of abstraction: high level specification of
how system is working (Computation Indepen-
dent Model or CIM), the specification of system
functionality, i.e. of what the system is expected
to do (Platform Independent Model or PIM) and
the specification of the implementation of that
functionality on a specific technology platform
(Platform Specific Model or PSM). In OMG
Model Driven Architecture these models are pri-
mary artefacts in software developments process
and all the activities are concentrated on going
from CIM to PIM, from PIM to PSM and from
PSM to code. The very important role there is
played by the quality of PIM, i.e. its capability
to adequately represent system under develop-
ment [18].

2.1. Models within the MDA

CIM presents the requirements for the system
to be modelled in a platform independent model,
describing the situation in which the system will
be used. Such a model is sometimes called a do-
main model or a business model. It may hide
much or all information about the use of au-
tomated data processing systems. A CIM is a
model of a system that shows the system in
the environment in which it will operate, and
thus it helps in presenting exactly what the sys-
tem is expected to do. It is useful, not only as
an aid to understanding a problem, but also
as a source of a shared vocabulary for use in
other models [18]. PIM is describing that part
of information system specification, which is
close to code, but is independent of platform
specific features. PIM is representing informa-
tion system in that way that will remain un-

Two Hemisphere Model Driven Approach for Generation of UML Class Diagram in the Context of MDA 61

changed on any programming platform. Never-
theless PIM usually is accommodated to spe-
cific architecture style [18]. Platform Indepen-
dent Model is the model that resolves busi-
ness requirements through purely problem-space
terms and it does not include platform specific
concepts. The PIM provides formal specifica-
tion of the structure and functionality of the
system that abstracts away technical details.
There has to be rules for PIM checking if it
defines all problem domain concepts in the cor-
rect way [18]. Platform Specific Model is a so-
lution model that resolves both functional and
non-functional requirements through the use of
platform specific concepts. The platform def-
inition can include wide range of conceptions
in the context of MDA. It can be operation
system, programming language, any technolog-
ical platform, such as CORBA, Java 2 Enter-
prise Edition, also any specific vendor platform
(for example, Microsoft .NET) [18]. Platform
can imply any of engineering and technologi-
cal characteristics, which are not important for
program unit fundamental business functional-
ity [18].

2.2. Model Transformations
within the MDA

Generally, system model refinement and evolu-
tion in the framework of MDA is presented in
Figure 1.

CIM presents specification of the system at
problem domain level and can be transformed
into initial elements of PIM. PIM provides for-
mal specification of the system structure and
functions that abstracts from technical details,
and thus presents solution aspects of the sys-
tem to be developed. Development of the solu-
tion domain model is based on derivation of all
the necessary elements from problem domain de-
scription (Transformation 1 in Fig. 1). The PIM
received as a result of Transformation 1 has to
be refined (Transformation 2 in Fig. 1) to get
a form suitable for PSM generation, i.e. PIM-
refined enables model transformation (Transfor-
mation 3 in Fig. 1) to the platform level, named
Software Domain in Figure 1.

An MDA idea is promising – raising up the
level of abstraction, on which systems are devel-
oped, we could develop more complex systems
more qualitatively. Core of solution domain de-
velopment strategies focuses on the transforma-
tion of system model from the aspects of busi-
ness level into the application level (Transfor-
mation 2 in Fig. 1). The main idea of MDA is to
achieve formal system representation at the as
high level of abstraction as possible. Nowadays
MDA tools support translation of solution el-
ements into software components (Transforma-
tion 3 in Fig. 1) and code generation (Trans-
formation 4 in Fig. 1), and researchers try to
“raise” it up as high as possible to fulfil the main
statement of the MDA [18].

Transformations 1 and Transformation 2 are
defined within different solutions [33], [36], [16],
[30], [12], but there is no any solution, where
complete transformation CIM → PIMinitial →
PIMrefined would be defined [22].

One of the most important and problematic
stages in MDA realization is derivation of PIM
elements from a problem domain, and PIM con-
struction in the form that is suitable for the
PSM. Solutions that are focused on Transfor-
mation 1 can’t insure that a PIM contains all
the necessary information, and that the presen-
tation of the PIM is formal enough to be able
to transform it into the correct PSM, that is to
support already the Transformation 3 [22]. It is
necessary to find the way to develop PIM using
formal representation, so far keeping the level
of abstraction high enough, i.e. to implement
Transformation 2 in formal way. The central ele-
ment of PIM is the presentation of system struc-
ture, which would be independent from further
implementation and usually is presented in the
form of class diagram in UML notation [28], as
well as adequate presentation of system dynam-
ics. Different modelling tools are used for that.
The paper discusses the class diagram develop-
ment aspects, which satisfies the main statement
of MDA and are based on transformation from
two hemisphere model into elements of class di-
agram defined in UML.

Currently, transformations between UML
models are still a subject of intensive investiga-

62 Oksana Nikiforova

Definition of MDA principles in terms of 2HMD

approach for software architecture development

Process model and conceptual model of

problem domain

Selected processes and their

information flow structure

Derivation of automated processes from process

model and definition of structure of their information

flow based on concepts in conceptual model

Application of 2HMD transformation algorithm

for defined processes and concepts

Elements of class diagram generated based on

application of 2HMD transformation algorithm

Problem

domain

Software

domain

CIM

PSM

Transformation 1: Derivation of solution

elements at business level from problem

domain

Transformation 3: Transformation of solution

elements at application level into software

elements at platform level

Presentation of problem domain elements

suitable for further transformation

Presentation (and required transformations)

of solution elements at application level

Presentation (and required transformations)

of software elements at platform level

Definition of MDA principles in terms of MDA

Solution

domain

PIM initial

Transformation 2: Transformation of solution

elements at business level into solution elements

at application level

Presentation (and required transformations)

of solution elements at business level

PIM refined

Business

level

Application

level

Platform

level

Implementation

level

Presentation (and required transformations)

of software components

Transformation 4: Transformation of software

elements at platform level

into software elements at implementation level

Code

Specification

level

Figure 1. General structure of model transformation in the framework of MDA

tion. Principles of simple language for transfor-
mations are presented in [13]. Several propos-
als [6] are made in response to OMG request
for proposals to MOF Query/View/Transforma-
tion [6]. The great attention is devoted to UML
class diagram development, because class dia-
gram in UML-based CASE systems serves as
a main source of knowledge for development of
software system: database specification, graphi-
cal user interface, application code, etc. [35].

Class diagram is the most often used
model for visual representation of static as-
pects of classes [35]. Class diagrams in
object-oriented software development are typ-
ically used: as domain models to explore do-
main concepts; as conceptual/analysis mod-
els to analyse requirements; as systems de-
sign models to depict detailed design of
object-oriented software [1]. But UML is
a modelling language and does not have
all the possibilities to specify context and
the way of modelling, which is required al-
ways to be defined in a methodology. There
fore the construction of class diagram has
to be based on well defined rules for its

elements generation from the problem do-
main model presented in the form suitable
for that.

2.3. Structure of a Tool for Model
Transformation

The MDA process shows the role that the var-
ious models, PIM, PSM, and code play within
the MDA framework. A transformation tool
takes a PIM and transforms it into a PSM.
A second (or the same) transformation tool
transforms the PSM to code. These transforma-
tions are essential in the MDA development pro-
cess. The transformation tool takes one model
as input and produces a second model as its
output. There is a distinction between the trans-
formation itself, which is the process of gener-
ating a new model from another model, and the
transformation definition. The transformation
tool uses the same transformation definition
for each transformation of any input model.
A transformation is defined in [13] as the auto-
matic generation of a target model from a source
model, according to a transformation definition.

Two Hemisphere Model Driven Approach for Generation of UML Class Diagram in the Context of MDA 63

Target modelSource model

Process Model Concept Model Class

Diagram

Transformation

definition

Transformation

tool
Two-hemisphere model

Figure 2. Schema of model transformation tool

And a transformation definition is defined in [13]
as a set of transformation rules that together de-
scribe how a model in the source language can be
transformed into a model in the target language.

The recent tendency of automation of infor-
mation handling process is essential in industry
of information technology [9]. It gives a possi-
bility to spare human and time resources. The
implementation of tool, which automates trans-
formation into class diagram, gives a possibility
to receive static structure of the system with-
out spending of a lot of time on design. For
any transformation the initial data and needed
result should be defined before. A transforma-
tion tool or approach takes a model on input, so
called source model, and creates another model,
so called target model, on output, see Fig. 2 [13].
The two hemisphere model has been marked
as input with mapping rules, the class diagram
and transformation trace has been received on
output. Transformation trace shows the plan
how an element of the two hemisphere model
is transformed into the corresponding element
of the class diagram, and which parts of the
mapping are used for transformation of every
part of the two hemisphere model [18]. Figure 2
shows how a transformation tool takes input –
the two hemisphere model and receives output
– the class diagram. Therefore implementation
of model transformation (in our case transfor-
mation from two hemisphere model into class
diagram) needs well-defined set of notational el-
ements of source model, well-defined set of no-
tational elements of target model and definition
for transformation of elements of one model into
elements of another one.

According to key notes of the paper the lan-
guage for description of source model is defined
as a notation for construction of two hemisphere
model [21] and the language for description of

target model is defined as a notation for con-
struction of UML class diagram (see Fig. 2).

3. Models and Model Transformations
in terms of Two Hemisphere Model

According to [32] the significant aspect of real
world behaviour seen from the process point of
view, where process is understood as the col-
lection of actions, chronologically ordered and
influencing objects and is more then “just an
amorphous heap of the action”. Similarly to the
structural modelling of the real world [32]. Two
hemisphere model corresponds to both funda-
mental things – functional aspects of the sys-
tem defined in terms of business processes and
the structural ones defined in terms of concept
model. The details in the right column of the
table in Figure 1 correspond to the two hemi-
sphere approach, which addresses the construc-
tion of information about problem domain by
use of two interrelated models at problem do-
main level, namely, the process model and the
conceptual model. The conceptual model is used
in parallel with process model to cross-examine
software developers understanding of procedural
and semantic aspects of problem domain.

3.1. Essence of Two Hemisphere Model

Two hemisphere model driven approach [21] pro-
poses using of business process modelling and
concept modelling to represent systems in the
platform independent manner and describes how
to transform business process models into UML
models. For the first time the strategy was pro-
posed in [20], where the general framework for
object-oriented software development had been
presented and the idea about usage of two in-
terrelated models for software system develop-

64 Oksana Nikiforova

ment has been stated and discussed. The strat-
egy supports gradual model transformation from
problem domain models into program compo-
nents, where problem domain models reflect two
fundamental things: system functioning (pro-
cesses) and structure (concepts and their rela-
tions). The title of the proposed strategy [21]
is derived from cognitive psychology [2]. Hu-
man brain consists of two hemispheres: one is
responsible for logic and another one for con-
cepts. Harmonic interrelated functioning of both
hemispheres is a precondition of an adequate
human behaviour. A metaphor of two hemi-
spheres may be applied to software develop-
ment process because this process is based on
investigation of two fundamental things: busi-
ness and application domain logic (processes)
and business and application domain concepts
and relations between them. Two hemisphere
approach proposes to start process of software
development based on two hemisphere problem
domain model, where one model reflects func-
tional (procedural) aspects of the business and
software system, and another model reflects cor-
responding concept structures. The co-existence
and inter-relatedness of these models enables use
of knowledge transfer from one model to an-
other, as well as utilization of particular knowl-
edge completeness and consistency checks [21].
Figure 3 shows the essence of two hemisphere
model for an example of an application for driv-
ing school.

A notation of the business process model,
which reflects functional perspectives of the
problem and application domains, is optional,
however, it must reflect the following compo-
nents of business processes: processes; perform-
ers; information flows; and information (data)
stores [21]. For current research is used busi-
ness process model constructed with GRAPES
[11] notation. Current functional requirements
always are present in the business process model
that helps to maintain their consistency. As a re-
sult sophisticated models are used without dis-
turbing software developers’ and business ex-
perts’ natural ways of thinking [21]. Some recent
surveys show that about 80 percent of compa-
nies are engaged in business process improve-

ment and redesign [10]. This implies that many
companies are common with business process
modelling techniques [10] or at least they employ
particular business process description frame-
works [31]. On the other hand practice of soft-
ware development shows that functional require-
ments can be derived from problem domain task
descriptions even about 7 times faster than if
trying to elicit them directly from users [17].
Both facts mentioned above and existence of
many commercial business modelling tools are a
strong motivation to base software development
on the business process model rather than on
any other soft or hard models [21]. The concept
model (graph G2 in Fig. 3) is used in parallel
with business process model to cross-examine
software developers understanding of problem
and platform independent models. According to
Larman [16] real-world classes with attributes
relevant to the problem domain and their rela-
tionships are presented in concepts model. It is a
variation of well known entity relationship (ER)
diagram notation [4] and consists of concepts
(i.e. entities or objects) and their attributes. Ap-
plication of two hemisphere model for generation
of class diagram gives a possibility to avoid rela-
tions between classes in concept model at busi-
ness level (of problem domain). Due to transfor-
mation of process model into elements of object
communication expressed in terms of UML com-
munication diagram it becomes possible to de-
fine the relations between classes already accord-
ing system realization at software level (of imple-
mentation domain). Therefore relations between
concepts are not shown in concept model in
Fig. 3). The notational conventions of the busi-
ness process diagram gives a possibility to ad-
dress concepts in concept model to information
flows (e.g. events) in process model (see Fig. 3).
All elements of the two-hemisphere model stated
as source model in Figure 2 are as follows:
– Business process diagram/ Process – busi-

ness process usually means a chain of tasks
that produce a result which is valuable to
some hypothetical customer. A business pro-
cess is a gradually refined description of a
business activity (task). Task is an atomic
business process unit, which actually de-

Two Hemisphere Model Driven Approach for Generation of UML Class Diagram in the Context of MDA 65

form group

(director)

blanks of available groups

look for appropriate group

add applicant to group

apply for learning

(applicant)

applicant data

appropriate groupapplicant data

group blank with applicant data

assign start date of learning

assign teacher for group assign instructor for applicant

group blank

with applicant data

group blank with applicant data

and teacher

group blank

with applicant data
teacher data

form list of instructors

(director)

form list of teachers

(director)

instructor data

driving card

prepare group register

assign learning dates

group register for submission

driving card

with learning dates

learn driving

(pupil)

learn theory

(pupil)

group register

with learning dates

Applicant data Group blank

Teacher data Instructor data

Group register

pupil

examination data

teacher

group data

learning dates

Driving card

pupil

examination data

instructor

learning dates

name

load

car

name

ID

address

time

address

name

load

Business process model Concept model

Figure 3. Example of two hemisphere model (application for driving school)

scribes some step or function and is done by
a Performer [11].

– Business process diagram/Performer – per-
former is an attribute of a task of business
process and serve as a resources required to
perform the activities [11].

– Business process diagram/Event – events are
an input/output object (or more precisely –
the arrival of an input object and departure
of an output object) of certain business pro-
cess. These objects can be material things or
just information [11].

– Concept model/Concept – conceptual classes
that are software (analysis) class candidates
in essence. A conceptual class is an idea,
thing, or object. A conceptual class may be
considered in terms of its symbols – words
or images, intensions – definitions, and ex-
tensions – the set of examples [16].

– Concept model/Concept/Attribute – an at-
tribute is a logical data value of an object [16].

The investigation of two hemisphere model
driven approach under the MDA framework in
[25] shows that approach could be applied for
generation of several elements of class diagram.
This paper shows the strategy of two hemisphere
model application for generation of UML class
diagram in a more precise way. The elements
of the class diagram stated as target model in
Figure 2 are as follows (only the main elements
of the class diagram are listed here):
– Class diagram/Class – a class is the descrip-

tor for a set of objects with similar structure,
behaviour, and relationships [28].

– Class diagram/Actor – an actor specifies a
role played by a user or any other system
that interacts with the subject [28].

– Class diagram/Class/Attribute – an at-
tribute is a logical data value of an ob-
ject [28].

– Class diagram/Class/Operation – an opera-
tion is a specification of a transformation or

66 Oksana Nikiforova

G1

G3

Process Model Concept Model

G2

Intermediate model

G4

G5

Communication diagram

Class Diagram

Figure 4. Transformations from two hemisphere model into class diagram
under two hemisphere model driven approach

query that an object may be called to exe-
cute [28].

– Class diagram/Relationship – a relationship
between instances of the two classes. There
is an association between two classes if an
instance of one class must know about the
other in order to perform its work [28].

It is necessary to find the way how source model
elements can be transformed into target model
elements according to the definition of transfor-
mations in the framework of MDA.

3.2. Description of Transformations
between Models within Two
Hemisphere Model Driven Approach

The two hemisphere model driven approach
[20], [21], [27] proposes to apply transformations
from business process model into scenarios for
object interactions by using so called intermedi-
ate model, which is received in a direct trans-
formation way from process model. Appropriate
interacting objects are extracted from concept
model. Class diagram is based on concept model
and is formed according to information about
object interaction. All defined transformations
from two hemisphere model into elements of
class diagram are shown in Figure 4. The schema
presents the way how elements of business pro-
cess model (graph G1 in Fig. 4) and concept

model (graph G2 in Fig. 4) are transformed into
elements of class diagram (graph G5 in Fig. 4),
using intermediate model (graph G3 in Fig. 4)
and UML communication diagram (graph G4 in
Fig. 4) [25].

Analysis of two hemisphere model proposed
in [22] and application of two hemisphere model
for knowledge architecture development in the
task of study program development presented
in [22] makes to think that notational conven-
tions of UML communication diagram is more
suitable for definitions of formal transformations
of two hemisphere model into object interac-
tion and then into class diagram, than using of
UML sequence diagram. Although the aspect of
time sequence, which is a component of UML se-
quence diagram and is not shown in communica-
tion diagram, is missed in this case. And author
of the paper now is investigating the possibility
to save time aspect in transition from two hemi-
sphere model into class diagram through the de-
fined transformations [26].

Intermediate model (graph G3 in Fig. 4 and
Fig. 5) is used to simplify the transition between
business process model and model of object in-
teraction, which is presented in the form of UML
communication diagram (graph G4 in Fig. 4 and
Fig. 5).

Intermediate model is a graph generated
from business process models using methods of

Two Hemisphere Model Driven Approach for Generation of UML Class Diagram in the Context of MDA 67

event1Perform action 1 /

Performer 1
Perform action 2 Perform action 3

Perform action 5 /

Performer 5

Perform action 4 /

Performer 4

event3

event2

event4

Process model

G1

Perform

action1
Perform
action2

Perform

action4

Perform
action2

Perform
action3

Perform

action5

Intermediate model

Performer 1=

Actor1

Performer 4=

Actor4
Performer 5=

Actor5

event1

event3 event4

event2

G3

Figure 5. Transformations from business process model into intermediate model

DataTypeA

(AKA ConceptA)

attribute a1

attribute a2

DataTypeB

(AKA ConceptB)

attribute b1

attribute b2

Concept model

G2

Perform

action1
Perform

action2

Perform
action4

Perform

action2
Perform

action3

Perform

action5

Intermediate model

Performer 1=

Actor1

Performer 4=

Actor4
Performer 5=

Actor5

event1

event3 event4

event2

G3

Communication diagram

Actor1

Actor4 Actor5

Event1:ClassA

Event3:ClassB Event4:ClassB

Event2:ClassA

perform

action1()

perform action2() perform

action3()

perform

action2()

message

{perform action4}

message

{perform action5}

G4

Figure 6. Transformations from intermediate model and concept model
into object communication diagram

direct graph transformations based on principles
of graph theory [8]. The nodes of the graph G1
in Figure 5 are transformed into the arcs of the
graph G3 of Figure 5, and the arcs of the graph
G1 in Figure 5 are transformed into the nodes
of the graph G3 of Figure 5 [25].

In a case of abstract names of arcs andnodes of
graphs in Figure 5 business process “perform ac-
tion 1” is transformed into an arc “perform action
1” of intermediatemodel (graphG3onFig. 5) and
events are transformed into nodes of intermediate
model. Constructed intermediate model serves as
a base for communication model. The communi-
cation diagram is represented as a graph G4 in
Figure 4 and Figure 6.

The next transformation defines the method
“perform action 1()” in communication diagram
(graph G4 on Fig. 6) from the same arc of inter-

mediate model, where the class-receiver of this
method is defined as ClassA, because ConceptA
defines a data type for event1 in concept model.
Therefore if each process is examined as a mes-
sage, and each data flow as an object, a draft
communication diagram could be received by
replacing all events of intermediate model with
concerned class exemplars and the actions of in-
termediate model with messages or operations.

The last transformation of this business pro-
cess defines the responsible class of this method
in class diagram (graph G5 in Fig. 4 and Fig. 7)
based on information that the type of the event
“event 1” is defined by class in. The element “per-
former 1” is transformed as a node of interme-
diate model, and as “actor 1” of communication
model. This element is defined as “actor 1” in
class diagram. Data types for elements “event 1”

68 Oksana Nikiforova

ClassA ClassB

attribute a1

attribute a2
attribute b1

attribute b2

perform action2()

perform action3()
Class

diagram

Actor1

Actor4

Actor5

G5

perform action1()

perform action2()

DataTypeA

(AKA ConceptA)

attribute a1

attribute a2

DataTypeB

(AKA ConceptB)

attribute b1

attribute b2

Concept model

G2

Communication diagram

Actor1

Actor4 Actor5

Event1:ClassA

Event3:ClassB Event4:ClassB

Event2:ClassA

perform

action1()

perform action2() perform

action3()

perform

action2()

message

{perform action4}

message

{perform action5}

G4

Figure 7. Transformations from intermediate model and object communication diagram into class diagram

G1

G3

Process Model Concept Model

G2

Intermediate model

G4

G5

driving card

group blank

with applicant data

Communication diagram

Class Diagram

assign instructor for applicant

group blank

with applicant data

driving card

Group blank

time

address

Driving card

pupil

examination data

instructor

learning dates

assign instructor for applicant

: Driving_card

: Group_blank

assign_instructor_for_applicant ()

Group_blank

time

address

Driving_card

pupil

instructor

learning_dates

examination_data

assign_instructor_for_applicant ()

Figure 8. An example of transformation of process and concept elements into class elements

and “event 3” is defined as “DataType A” or
“Concept A” of concept model.

These transformations are based on the hy-
pothesis that elements of the class diagram
(graph G5 in Fig. 7) can be received from the
two hemisphere model by applying defined tech-
niques of graph transformation [8]. The next step
of transition is a class diagram. Here all messages
of object communication (graph G4 in Fig. 7) are
encapsulated as operations of classes using main
principles of class diagram development based

on information of object communication and all
events and concepts defined as objects in graph
G4 are defined as classes in class diagram (graph
G5 in Fig. 7). Class diagram presents the set of
attributes based on attributes defined in concept
model.

In a very simple example, transformation de-
scribed above looks like it is shown in Figure 8,
where transformation of fragment of two hemi-
sphere model for driving school into a fragment
of the exact class is represented.

Two Hemisphere Model Driven Approach for Generation of UML Class Diagram in the Context of MDA 69

There is one process “assign instructor to ap-
plicant”, which has an input event “group blank
with applicant data”, where concept “Group
blank” with its attributes defines data type for
the event, and an output event “driving card”,
where concept “Driving card” with its attributes
defines data type for the event. These interre-
lated elements define a two hemisphere model,
which serve as a base for transformation into
intermediate model, with the same names of el-
ements, but different position – arcs of process
model are transformed into nodes of interme-
diate model, and nodes of business process are
transformed into the arcs of intermediate model.
Intermediate model allows to define communi-
cation diagram, where initial process “assign in-
structor to applicant” is defined as a method.
And object-sender and object-receiver are de-
fined in accordance with discussion above. Based
on a communication of objects defined, it is pos-
sible to construct class diagram according to
rules of object-oriented system modelling [20].

Experiments with different combinations of
of incoming and outgoing arcs in the model of
business process and a variety of different data
types defined in a concept model, where the data
type can be the same for incoming and outgoing
events or different, give a possibility to define
different types of relationships between classes.
The results of full investigations of all the possi-
ble combinations of two hemispheremodel, which
gives a possibility to define relationships between
classes, are shown in [24]. The paper has a discus-
sion of a possibility to share class responsibilities
and to encapsulate class attributes and methods
according defined transformations from arcs and
nodes of two hemisphere model. The paper of-
fers the description of tool for the usage of two
hemisphere model for class diagram generation
based on the defined transformations.

4. Verification of Transformation
within Two Hemisphere Model
Driven Approach

When the structures of input and output data
are known, it is possible to automate a pro-

cess of input data transformation into output
data.Class diagram generation should consist of
four steps according to the application of two
hemisphere model (see Fig. 9):
1. construction of two hemisphere model;
2. generation of model elements and their in-

terrelations in some structured form;
3. application of the transformation rules de-

fined (processing algorithm);
4. definition of class specification in well struc-

tured form suitable for class diagram con-
struction (for example, XML format).
One of the tools for business process mod-

elling, which gives a possibility to construct two
interrelated models (business process and the
concept ones), is GRADE [7]. Indeed, GRADE
generates text descriptions of model with per-
manent structure, therefore it is chosen as a tool
for development of two hemisphere model and
further generation of textual files. It defines all
the elements of themodel and their relations from
one into another. Generated text files serves as
an input information into the tool developed and
described in [27] in order to support the pro-
cessing algorithm and XML file, which contains
structure of the class diagram required. XML
format of class specification gives a possibility
to receive visual representation of class diagram
in any tool, which supports import from XML
for class diagram development. An ability to de-
velop an automated tool for generation of class
structure in XML format demonstrated in [27]
proves, that transformations discussed in the pa-
per are enough formal for programming. The tool
is applied for generation of class diagram from
two hemisphere model developed for problem do-
main of pupil application for learning in a driving
school shown in Figure 3. Classes, attributes, op-
erations and relations among classes, which could
be determined from the business process diagram
and the data structure, were defined applying
discussed transformations from business process
and conceptmodel to class diagram. Figure 9 rep-
resents the structure of class diagram obtained.

One of the limitations of the approach is an
impossibility to define the full specification of
methods with its arguments. This could be one
of the potential directions for future investiga-

70 Oksana Nikiforova

Applicant data

name

ID

address

Group blank

time

address

Teacher data

Instructor data

Group register

pupil

teacher

group data

learning dates

examination data

Driving card

pupil

instructor

learning dates

examination data

name

load

name

load

car

apply_for_learning()

add_applicant_to_group()

form_group()

look_for_appropriate_group()

add_applicant_to_group()

assign_start_date_of_learning()

assign_teacher_for_group()

form_list_of_teachers()

form_list_of_instructors()

assign_instructor_for_applicant()

assign_learning_dates()

prepare_group_register()

assign_learning_dates()Applicant

Director

Figure 9. Initial structure of class diagram defined based on transformations from two hemisphere model

tion of application of two hemisphere model for
generation of class diagram elements. In order to
verify the transformations offered in the paper,
the transformations defined for two hemisphere
model driven approach in addition to an exam-
ple of driving school are applied in some more
examples: (1) problem area of hotel room reserva-
tion, where initial business process model is con-
structed in GRAPES notation [11] with CASE
tool GRADE [7], the two hemisphere model is
developed by authors and results of these exper-
iments are shown in [23]; this case approve the
possibility to define class diagram by applica-
tion of the transformations offered in the paper;
(2) problem area of insurance system, where ini-
tial model is constructed in GRAPES notation
with CASE tool GRADE [7], the two hemisphere
model is constructed by developers of GRADE
tool as demo example and results of these ex-
periments are shown in [25]; this case approve
an independence of the transformations offered
in the paper from the constructor of two hemi-
sphere model. The problem area of hotel room
reservation also is approbated by construction of
initial business process model in IDEF0 [14] no-
tation with CASE tool BPWin. Unfortunately, it
does not provide construction of concept or object
model. Therefore attributes of classes, received
for hotel room reservation system with initial in-
formation in IDEF0 notation are missing in the
class diagram. Even in this case automation of
distributing methods among classes is important
contribution within software development. Ex-

periments on applying discussed transformations
from two hemisphere model into class diagram
in different problem domain prove that transfor-
mations are independent from problem domain.
Experiments on applying transformation from
two hemisphere model, constructed in various
CASE tools and notations, prove that transfor-
mations from two hemisphere model into class
diagram are independent from used notation of
business process modelling, as well as CASE tool,
used for initial model creation.

5. Conclusion

The Model Driven Architecture is the central
component in the OMG’s strategy for maximis-
ing return on investment, reducing development
complexity and future-proofing against tech-
nological change [29]. But still the “complete
code-generation capabilities” are no supported
in MDA tools and the more problematic stage is
exactly platform independent system modelling
based onknowledge about problemdomain. Since
beginning of eighties a numerous accounts of
model generated software systems have been of-
fered to attack problems regarding software pro-
ductivity and quality [3]. CASE tools developed
up that time were oversold on their “complete
code-generation capabilities” [15]. Nowadays,
similar arguments are exposed toObjectManage-
ment Group (OMG) Model Driven Architecture
(MDA) [34], using and integrating Unified Mod-

Two Hemisphere Model Driven Approach for Generation of UML Class Diagram in the Context of MDA 71

elling Language (UML) models [28] at different
levels of abstraction. Manipulation with models
enables software development automation within
CASE tools supported by MDA [5], [13], [19].
The paper discusses abilities on usage of prob-
lem domain knowledge presentation in terms of
two hemisphere model, which contains two in-
terrelated models of system aspects – process
and concept presentation. The proposed trans-
formations are applied to two hemisphere model
of application for driving school and classes with
attributes and different kinds of relationships are
identified based on elements of process and con-
cept models. The ability to define all the types
of transformations in a formal way gives a pos-
sibility to automate the process of class diagram
development from correct and precise two hemi-
sphere model. On one hand, it enables knowl-
edge representation in a form understandable for
both business users and systemanalyst,moreover
cover complete and consistent presentation of dif-
ferent system aspects. And on the another hand,
it supports the formal transformations of model
elements into elements of UML class diagram,
which often is a starting point during software
development by using nowadays CASE tools, es-
pecially in the ones following an idea of MDA.
The central hypothesis of this research is that it
is possible to apply the graph theory technique for
model transformation in the framework of MDA,
where the source model is defined in terms of a
business process model, associated with a con-
cept model, and the target model is defined in
terms of a class diagram. Analysis of the system
models presented as a set of graphs developed on
the basis of the initial two hemisphere model en-
ables derivation of the class diagram, which is the
central component of PIM and is sufficiently de-
tailed in order for the PSM to be generated. Two
hemisphere model gives a possibility to define
classes with attributes and operations they have
to perform, as well as different types of relations
can be defined between classes, based on analysis
of different combinations of type definition for
incoming and outgoing flows of processes of two
hemisphere model. At the moment authors try to
investigate the possibility of exact definitions of
method’s arguments based on information in two

hemisphere model and to investigate abilities of
usage of two hemisphere model for dynamic com-
ponent of platform independent model expressed
in terms of object interaction and state transi-
tion. A deeper analysis of notational conventions
of nowadays available notations for business pro-
cess modelling is required and could be stated as
one of further researches directions.

Acknowledgements The research reflected
in the paper is supported by the research grant
No. FLPP-2009/10 of Riga Technical University
“Development of Conceptual Model for Tran-
sition from Traditional Software Development
into MDA-Oriented.” And partially the research
reflected in the paper is supported by Grant of
Latvian Council of Science No. 09.1245 “Meth-
ods, models and tools for developing and gover-
nance of agile information systems”.

References

[1] S. Ambler. The Elements of UML Style. Cam-
bridge University Press, 2003.

[2] J. Anderson. Cognitive Psychology and Its Im-
plications. W.H. Freeman and Company, New
York, 1995.

[3] R. Balzer. A 15 year perspective on automatic
programming. IEEE Transactions on Software
Engineering, 11(11):1257–1268, 1985.

[4] P. Chen. The entity relationship model – to-
wards a unified view of data. ACM Transactions
on Database Systems, 1(1):9–36, 1976.

[5] D. Frankel. Model Driven Architecture: Apply-
ing MDA to Enterprise Computing. Woley Pub-
lishing, Inc., Indianapolis, Indiana, 2003.

[6] T. Gardner and C. A. Griffin. Review of OMG
MOF 2.0 Query/Views/Transformations Sub-
missions and Recommendations Towards the Fi-
nal Standards. Object Management Group.
OMG documents ad/03-08-02, available at http:
//www.omg.org.

[7] GRADE Development Group. GRADE tools.
[8] J. Gross and J. Yellen. Graph Theory and Its

Applications. Discrete Mathematics and Its Ap-
plications. Chapman and Hall/CRC, 2nd edi-
tion, 2006.

[9] M. Guttman and J. Parodi. Real-Life MDA:
Solving Business Problems with Model Driven
Architecture. San Francisco, CA: Morgan Kauf-
mann Publishers, 2007.

72 Oksana Nikiforova

[10] P. Harmon. Business process management.
In Lecture Notes in Computer Science, volume
5240/2008. Springer Berlin/Heidelberg, 2008.

[11] INFOLOGISTIK GmbH. GRADE Business
Modeling, Language Guide, 1998.

[12] I. Jacobson, G. Booch, and J. Rumbaugh.
The Unified Software Development Process.
Addison-Wesley, 2002.

[13] A. Kleppe, J. Warmer, and W. Bast. MDA Ex-
plained: The Model Driven Architecture – Prac-
tise and Promise. Addison Wesley, 2003.

[14] Knowledge Based Systems Inc. IDEF Inte-
grated Definition Methods. Available at http:
//www.idef.com/.

[15] J. Krogstie. Integrating enterprise and is de-
velopment using a model driven approach. In
Proceedings of 13th International Conference on
Information Systems Development-Advances in
Theory, Practice and Education, pages 43–53.
Springer Science+Business media, New York,
2005.

[16] C. Larman. Applying UML and Patterns: An
Introduction to Object-Oriented Analysis and
Design. Prentice Hall, New Jersey, 2000.

[17] S. Lausen. Task descriptions as func-
tional requirements. IEEE Software, 20:58–65,
March/April 2003.

[18] MDA Guide Version 1.0.1, June 2003. Available
at http://www.omg.org/docs/omg/03-06-01.
pdf.

[19] S. Mellor and M. Balcer. Executable UML.
A Foundation for Model-Driven Architecture.
Addison-Wesley, Boston, 2002.

[20] O. Nikiforova. General framework for object-ori-
ented software development process. Scien-
tific Proceedings of Riga Technical University,
13:132–144, 2002.

[21] O. Nikiforova and M. Kirikova. Two-hemisphere
driven approach: Engineering based software de-
velopment. Advanced Information Systems En-
gineering, pages 219–233, June 2004.

[22] O. Nikiforova, M. Kirikova, and N. Pavlova.
Principles of model driven architecture in
knowledge modeling for the task of study pro-
gram evaluation. Databases and Information
Systems IV, pages 291–304, 2007.

[23] O. Nikiforova and N. Pavlova. Development
of the tool for generation of uml class dia-
gram from two-hemisphere model. Proceed-
ings of The third International Conference on
Software Engineering Advances, International
Workshop on Enterprise Information Systems,
pages 105–112, October 2008.

[24] O. Nikiforova and N. Pavlova. Foundations
on generation of relationships between classes

based on initial business knowledge. Proceeding
of the 17th International Conference on Infor-
mation Systems Development, Information Sys-
tems Development: Towards a Service Provision
Society, August 2008. In press.

[25] O. Nikiforova and N. Pavlova. Open work
of two-hemisphere model transformation defini-
tion into uml class diagram in the context of
mda. Preprint of the Proceedings of the 3rd
IFIP TC 2 Central and East Europe Conference
on Software Engineering Techniques, CEE-SET
2008, pages 133–146, October 2008.

[26] O. Nikiforova and N. Pavlova. Modeling of
object interaction with two-hemisphere model
driven approach. 2009. Submitted to the
13th East-European Conference on Advances in
Databases and Information Systems.

[27] O. Nikiforova, N. Pavlova, and J. Grigorjevs.
Several facilities of class diagram generation
from two-hemisphere model in the framework
of MDA. Proceedings of 23rd IEEE Interna-
tional Symposium on Computer and Informa-
tion Sciences, pages 1–6, 2008. Available at
http://ieeexplore.ieee.org/.

[28] Object Management Group. Unified Model-
ing Language Specification. Available at http:
//www.omg.org.

[29] T. Pokorny. The Model Driven Architecture: No
Easy Answers, 2005.

[30] T. Quatrany. Visual Modeling with Rational
Rose 2000 and UML. Addison-Wesley, second
edition, 2000.

[31] C. Raistrick, P. Francis, J. Wright, C. Carter,
and I. Wilkie. Model Driven Architecture with
Executable UML. Cambridge University Press,
2004.

[32] V. Repa. Modelling business processes in public
administration. Advances in Information Sys-
tems Development. Bridging the Gap between
Academia and Industry, 1:107–118, 2006.

[33] J. Rumbaugh. Omt: The developing process.
Object Oriented Programming, (8):14–18, 1995.

[34] J. Siegel. Developing in OMG’s Model-
Driven Architecture, 2001. OMG document
omg/01-12-01. Available at http://www.omg.
org/mda/papers.htm.

[35] T. Skersys and S. Gudas. Class model devel-
opment using business rules. Advances in In-
formation Systems Development. Bridging the
Gap between Academia and Industry, 1:203–216,
2006.

[36] D. Tkach, W. Fang, and A. So. Visual mod-
eling technique: object technology using visual
programming. Addison Wesley, 1996.

