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Abstract. Very low and low radio frequency (VLF/LF) prop-
agation responds sensitively to the electron density distribu-
tion in the lower ionosphere (upper mesosphere). Whereas
propagation paths crossing subpolar and polar regions are
frequently affected by forcing from above by particle precip-
itations, mid- and lowlatitude paths let forcing from below
be more prominent. Our observations (2009–2011) show,
that the low frequency propagation conditions along the mid-
latitude path from Sicily to Germany (52◦ N 8◦ E) using the
NSY 45.9 kHz transmitter (37◦ N 14◦ E) prove to be a good
proxy of mesosphere planetary wave activity along the prop-
agation path. High absorption events with VLF/LF propaga-
tion correlate to the well known winter time D-layer anomaly
observed with high frequency (HF) radio waves. VLF/LF
propagation calculations are presented which show that the
radio signal amplitude variations can be modeled by plane-
tary wave modulated collison frequency and electron density
profiles. The other way around wave pressure amplitudes can
be inferred from the VLF/LF data.

Keywords. Ionosphere (Ionosphere-atmosphere interac-
tions)

1 Introduction

Planetary waves are disturbances in the atmosphere (with re-
spect to wind and pressure, but also temperature variations)
with zonal wavelengths at the scale of the earths radius. They
can be forced in the troposphere for example by topogra-
phy or land-sea temperature differences but can also exist as
free resonant traveling waves. These waves are strongly re-
lated to global weather (formation of cyclones, anticyclones,
mid-latitude depressions) and their variability is suggested
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to be a signature of possible climatic changes (Pogoreltsev
et al., 2009). Under certain conditions which for the sta-
tionary wave case are approximated by the Charney-Drazin
criterion (Charney and Drazin, 1961): not too strong east-
ward background winds and long horizontal wavelengths)
planetary waves vertically penetrate to the stratosphere and
also up to the mesosphere where they can affect the iono-
sphere (Lastovicka et al., 1994; Borries et al., 2007; Brown
and John, 1979; Haldoupis and Pancheva, 2002; Haldoupis et
al., 2004). During the Northern Hemisphere winter months
planetary wavenumber one is large and variable in the meso-
sphere and we found further hints that the D-layer winter
anomaly (unusually strong absorption of radio waves in the
ionosphere, not related to solar activity (Appleton and Pig-
gott, 1954; Lauter and Schaening, 1970; Lauter et al., 1984;
Taubenheim, 1971), is correlated to planetary wave activity.

In the next section we describe the data related to planetary
wave activity and later on the low frequency radio propaga-
tion model. The last chapter presents the main conclusions.

2 The data correlating with planetary wave activity

Very low and low frequency propagation responds sensitively
to electron density and collision frequency profile changes
in the mesosphere/ionosphere especially in the 70–80 km
height range. In addition to forcing from above (day-night
solar flux variation, X-rays and particle precipitations) the
plasma conditions in this height range are also subject to
forcing from below.

For remote sensing the mesosphere and lower ionosphere
we monitor the signal amplitude of (very) low frequency
MSK (Minimum Shift Keying) transmitters. The transmit-
ter station with call sign NSY (45.9 kHz) at Niscemy, Sicily
(37.13◦ N 14.44◦ E, L = 1.4) usually transmits continously
with few dropouts.
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Fig. 1. Forcing from below: winter anomaly (strong absorption)
during daytime for VLF/LF and HF radio waves; top: VLF/LF
log amplitude (signal to noise ratio, dB), 45.9 kHz, (NSY-52N8E,
red: 27 November 2010) cp. to nearby day with low absorption
(blue 2 December 2010); bottom:fmin (minimum frequency of
ionogram echoes) for the same days from the ionosonde (URL:
http://digisonde.oma.be) at Dourbes, Belgium (50.1◦ N, 4.6◦ E),
highfmin indicating strong HF absorption.

We monitor at a midlatitude location (52◦ N, 8◦ E, L =

2.2) with a great circle distance to the transmitter of 1730 km.
The receiver uses a coil with a ferrite core as sensor for the
horizontal magnetic field component of the radio signal. The
broadband preamplified signal is fed via a soundcard into a
computer, where the transmitter signal is extracted via Fast
Fourier Transform (FFT) and further analysed.

The blue traces in Fig.1 show the VLF/LF signal from
NSY (top) and (bottom) the minimum ionogramm echo fre-
quencyfmin from the Dourbes ionosonde (Belgium, 50.1◦ N,
4.6◦ E) at a low absorption winter day (2 December 2010),
the red traces a day over anomaly (strong absorption) con-
dition a few days earlier (27 November 2010) we relate to
“forcing from below” (see below). Just to illustrate a typical
“forcing from above” situation Fig.2 shows 2 signal traces
with the red curve displaying a night time particle precipita-
tion event on the propagation path from the NRK transmitter
(Iceland, 37.5 kHz) to (52◦ N 8◦ E), for details seeSchmitter
(2010).

Fig. 2. Forcing from above: subauroral particle precipitation dur-
ing nighttime (red: 27 November 2010) cp. to (blue: 28 November
2010). Path: NRK, Iceland – 52◦ N 8◦ E.

Because temperature variance can be used as a proxy
for atmospheric wave activity we use mesosphere kinetic
temperature data from the SABER (Sounding of the At-
mosphere using Broadband Emission Radiometry) instru-
ment as a correlation reference (LEVEL2A data product
from saber.gats-inc.com). SABER was launched onboard the
TIMED (Thermosphere-Ionosphere-Mesosphere-Energetics
and Dynamics) satellite in 2001. Vertical profiles of kinetic
temperature are derived from broadband measurements of
CO2 15 µm and 4.3 µm limb emission (Mertens et al., 2004).

The upper trace in Fig.3 is the plot of the NSY signal
log. amplitude difference between local noon and midnight
(in each case averaged over 2 h) for one and a half years
from 1 August 2009 to 31 March 2011. Below that we see
the SABER mesosphere kinetic temperature (70–80 km av-
erage) for the region 47–52◦ N, 6–12◦ E which contains the
receiver oriented half of the NSY propagation path. We note
the larger variations on a days to weeks scale during winter
time (days 60–200: October 2009–February 2010 and days
400–560: October 2010–February 2011) compared to sum-
mer time. This is more prominently seen with the kinetic
temperature but also clearly present in the VLF/LF data.

Whereas our main point for the whole time range is the in-
creased variance in both data sets (VLF, 70–80 km averaged
kinetic temperature) during winter time, within the second
winter period we find some remarkable common trends (1
October 2010–31 December 2010), cp. Fig.4.

The 2 marks in Fig.4 (top) refer to the VLF/LF signal am-
plitude plots in Fig.1. The bottom trace of Fig.4 displays
HF absorption data from the Dourbes ionosonde (Belgium,
50.1◦ N, 4.6◦ E). Plotted is (4 Mhz –fmin), with fmin being
the minimum ionogramm echo frequency which is large dur-
ing strong absorption. Its course shows common trends of
VLF/LF and HF absorption time ranges. Examining the ge-
omagnetic Ap index for the time period in question (Fig.3,
bottom) shows no significant correlation to geomagnetic ac-
tivity, endorsing “forcing from below” for the time range in
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Fig. 3. Top: NSY log amplitude difference midday-midnight (2 h
averages); Note the larger variations on a days to weeks scale dur-
ing winter time (days 60–200: October 2009–February 2010 and
days 400–560: October 2010–February 2011) compared to sum-
mer time – more prominently seen with the kinetic temperature but
also clearly present in the VLF/LF data. Middle: SABER meso-
sphere kinetic temperature: 70–80 km average for the region 47–
52◦ N, 6–12◦ E (containing the Rx oriented half of the propagation
path) within 1 August 2009–25 April 2011. Bottom: The Ap-index
for the same time range exhibits no significant correlation to the
VLF/LF or kinetic temperature data.

question. It may be expected however that geomagnetic in-
fluence will increase with the ongoing solar cycle.

To quantify our propositions Fig.5 contains the Fourier
spectra of the data in Fig.4 which we discuss with regard
to periods>5 days. With the VLF data the peaks at 7, 7.5
days period are a consequence of weekly transmitter drop
outs (presumably maintenance). Clearly visible are 13–14
days as well as 20 and 26 days periods. With the SABER
temperature data we find periods of 12.5 and 15 days as well
as a broad maximum at 22–25 days period. The Dourbesfmin

Fig. 4. Top: NSY log amplitude difference midday-midnight (2 h
averages); the 2 marks refer to the radio signal amplitude plots in
Fig.1. Middle: SABER mesosphere kinetic temperature: 70–80 km
average for the region 47–52◦ N, 6–12◦ E (containing the Rx ori-
ented half of the propagation path) during winter 1 September–31
March 2011. Note some correlating trends. Bottom: HF absorption
data from the Dourbes ionosonde (Belgium, 50.1◦ N, 4.6◦ E). Plot-
ted is (4 Mhz –fmin), fmin: minimum ionogramm echo frequency;
fmin is large during strong absorption events.

absorption data show periods of 13, 20 and 26 days (broad
maximum).

With regard to the common range of periods between
about 13 and 15 days a relation to quasi 16 day period plan-
etary waves seems likely. For the latter there is a sound body
of observational evidence (Madden, 1978; Mitchell et al.,
2002).

We note that high radio wave absorption correlates to low
temperature in the 70–80 km height range. With regard to
radio wave propagation modeling (next chapter) we also note
that lower temperature corresponds to higher neutral density
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Fig. 5. Fourier power spectra of the data in Fig.4. Looking at
periods longer than 5 days we note: With the VLF data (top) the
peaks at 7, 7.5 days period are a consequence of weekly transmitter
drop outs (presumably maintenance). Clearly visible are 13-14 days
as well as 20 and 26 days periods. With the SABER temperature
data (middle) we find periods of 12.5 and 15 days as well as a broad
maximum at 22–25 days period. The Dourbesfmin absorption data
(bottom) show periods of 13, 20 and 26 days (broad maximum).

Fig. 6. Undisturbed electron-density profiles for midnight (blue;
D-layer parameters:h′

= 87 km, β = 0.5) and noon (red; D-layer
parameters:h′

= 74 km,β = 0.3).

which amounts to increased electron collision frequency (see
below).

3 Long radio wave propagation modeling

For the propagation model calculations we use the Long-
Wavelength Propagation Capability (LWPC) code (Fergu-
son, 1989) complemented by our electron density and col-
lision frequency profiles and a suitable day-night transition
scheme.

Electron density up to 95 km height is parametrized for
the ionosphere D-layer according toWait and Spies(1964)
by ne(h) = 1.43 × 107exp(−0.15h′)exp((β − 0.15)(h −

h′)) cm−3 and above that by interpolating to a 2-layer Chap-
man profile, cp. Fig.6. D-layer parameters for midnight are
h′

= 87 km,β = 0.5 andh′
= 74 km,β = 0.3 for noon. All

parameters defining the electron density profile are interpo-
lated between the midnight and noon values using a power of
cos(sun zenith angle) and an asymmetric night-day/day-night
transition (Fig.8). This parametrization proves sufficient for
the calculation of mean day and night signal levels as well as
the terminator positions.

The collision frequencies (s−1) used in our model
have been taken fromKelley (2009): νin = 2.6 ×

10−9nnA
−1/2 for the ion-neutral collision frequency,νe =

5.4×10−10nnT
1/2
e + (34+4.18ln(T 3

e /ne)) neT
−3/2
e for the

sum of the electron-neutral and electron-ion collision fre-
quency.nn, ne are the neutral and electron densities per cu-
bic centimeter,A is the mean neutral molecular mass and
Te the electron temperature in Kelvin. Figure7 shows a
plot of the undisturbed collision frequency height profiles.
The day-night difference ofνe above about 120 km height
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Fig. 7. Undisturbed collision frequency profiles. With these profiles
(and those displayed in Fig.6) modulated by the atmospheric waves
(see text) the signal amplitudes in Fig.9 have been computed.

Fig. 8. Interpolation function for the electron density profile
night/day parameters.

results from the electron-ion collision part dominating at
greater heights – however, merely relevant for low frequency
propagation. Below 120 km electron-neutral collisions dom-
inate day and night. In the lower ionosphere electron neu-
tral collision frequency isνe = 5.4× 10−10nnT

1/2
e and the

neutral number density can be expressed by the pressurep

and the neutral temperatureTn using the ideal gas equation:
nn × 106

= pNA/(RTn) with universal gas constantR and
Avogadro constantNA to yield: νe = 3.9× 107pT

1/2
e /Tn.

Using p(h) = 1.013× 105e−0.145h (Pascal) for the average
pressure profile and assuming thermal equilibrium, i.e.T :=

Te = Tn the electron neutral collision frequency profile can
be calculated.T = 210 K has been used as averaged temper-
ature value (cp. SABER temperatures) for the relevant height
range 65–85 km.

Fig. 9. VLF data and (cp. Fig.1) and propagation modeling (dot-
ted lines) with LWPC: radio signal amplitude with low (day over)
absorption condition (blue, low day-night difference; 20 % reduced
collision frequency amplitude and 5 % increased electron density
amplitude between 65 and 85 km height with respect to undisturbed
electron density and collision frequency profiles (see text)) and high
(day over) absorption condition (red curve, high day-night differ-
ence; 30 % increased collision frequency amplitude and 5 % re-
duced electron density amplitude between 65 and 85 km height).

Atmospheric waves above a given location modulate den-
sity (and pressure) as a function of time and height and there-
fore directly modulate the collision frequency profile. Fol-
lowing Lastovicka et al.(1994) this takes place mainly in
a height range of 65-85 km and we take this into account
by modifying the electron collision frequency according to:
fc(t,h) = fc(h)(1+dccos(2π t/P )sin(π(h−65)/(85−65))
with fc(h) the undisturbed profile,dc the relative disturbance
amplitude (typicallydc = 0.15− 0.3, i.e. 15–30 %) andP :
planetary wave period. A high neutral density phase caus-
ing high collision frequency and high radio absorption val-
ues is related to a low temperature phase and vice versa.
This is in agreement with the observations (Fig.4). We as-
sert that the maximum temperature amplitudes in Figs.3 and
4 are of the order of 10–20 %. The neutral density varia-
tion indirectly can modulate also electron density. Using an
electron density profile modified between 65–85 km height
according tone(t,h) = ne(h)(1− decos(2π t/P )sin(π(h−

65)/(85− 65)) with de = 0.05, i.e. 5 %, increases the ef-
fects caused by the collision frequency modulation. Larger
de-values in the model diminish quantitative concordance
with our observational results. Note that electron density
and collision frequency are out of time phase bei 180 de-
grees. This is in accordance with the findings ofLastovicka
et al. (1994). Reasons for reduced electron density during
periods of increased neutral density in the height range in
question are: less ionization because of larger opacity and
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increased recombination rates. With respect to increasing
opacity we note that the ionization rate of the most relevant
ionizing process in the D-layer, NO-ionization by solar Ly-
man α radiation, drops exponentially with increasing total
content of molecular oxygen along a fixed vertical line of
sight (Kockarts, 2002). Figure9 illustrates model calcula-
tions for two rather extreme situations as with 27 November
and 2 December 2010 (cp. Fig.1) overlayed to the recorded
VLF/LF data (cp. Fig.1). Computed are the radio sig-
nal field strengths for 45.9 kHz propagation along the path
(NSY-52N8E), 1 December, and scaled to the receivers sig-
nal to noise ratio (SNR(dB)). We see the results for the low
(day over) absorption condition (blue, low day-night differ-
ence; 20 % reduced collision frequency amplitude and 5 %
increased electron density amplitude between 65 and 85 km
height with respect to base ionosphere parameters (undis-
turbed profiles) as described earlier) and for the high (day
over) absorption condition (red curve, high day-night differ-
ence; 30 % increased collision frequency amplitude and 5 %
reduced electron density amplitude between 65 and 85 km
height). The results are consistent with our recordings and
sensitive to variations of the given percentages. The mean
day and night levels are modeled quantitatively. Detailed
fluctuations can not be captured by the model and overshoots
at the terminators are artifacts of the algorithm.

4 Conclusions

We found correlations between VLF/LF-signal amplitudes
and planetary wave activity (mainly with quasi 16 day pe-
riod) in the NW European midlatitude range especially dur-
ing winter time and with respect to variances during the
whole time window under consideration (September 2009 to
April 2011). An averaging area of about 600 km squared and
centered at 49.5◦ N 9◦ E is encompassed. Our VLF/LF ob-
servations as well as ionosonde HF recordings endorse the
idea that planetary wave activity is a major driving force for
winter time D-layer absorption effects affecting VLF, LF and
HF radio waves.

Based on the results ofLastovicka et al.(1994), Lauter et
al. (1984) and Taubenheim(1971) with respect to the role
of electron density and collision frequency profiles during
winter anomaly events we are able to quantify the variation
amplitudes of these profiles by fitting them to our VLF data.

Our recordings can be modeled with collision frequency
profiles with a typical 20–30 % – variation amplitude and out
of time phase electron density modulation with an up to 5 % –
amplitude in the mesosphere height range of 65–85 km. This
result relates VLF/LF absorption variation to neutral density
and pressure variations via the electron collision frequency.

Comparing the time course of our VLF/LF absorption
data, especially its seasonal variance, with kinetic temper-
ature data, suggests that we see the effect of planetary waves.
Usingp = constνe T 1/2 and accordingly1p/p = 1νe/νe +

1/21T/T (with temperatures from SABER data) yields the
relative pressure amplitudes. For our (rather extreme) ex-
ample (27 November 2010 vs. 2 December 2010) using our
model results and SABER temperature data we infer a 15 %
pressure drop during low absorption and a 28 % pressure in-
crease during high absorption. As increasing collision fre-
quency goes in parallel with dropping temperature, the two
contributions to1p/p are counteractive, with1T/T play-
ing the minor role and estimates can be gained without it. To
sum up, from the day-night difference of the VLF/LF signal
levels using our propagation model we get the deviation of
the collision frequency between 65 and 85 km height from a
standard profile which in turn is directly proportional to the
pressure deviation in this height range on a day to day base.

We conclude that sensing the lower ionosphere using
VLF/LF transmitters proves as a useful and inexpensive
proxy for atmospheric wave activity including pressure am-
plitude estimation in the upper mesosphere height range.

Further work will be done to confirm observational results
over longer time periods and to advance models of the de-
tailed atmospheric wave-plasma interaction (wave transfor-
mation) in the upper mesosphere.
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