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Abstract. A numerical model for unsteady shallow water
flow over initially dry areas is applied to a case study in a
small drainage area at the Spanish Ebro River basin. Sev-
eral flood mitigation measures (reforestation, construction of
a small reservoir and channelization) are simulated in the
model in order to compare different extreme rainfall-runoff
scenarios.

1 Introduction

Many problems of flood routing, river management and civil
protection consist of the evaluation of the maximum water
levels and discharges that may be attained at particular loca-
tions during the development of an exceptional meteorologi-
cal event. There is another category of events of catastrophic
nature whose effects also fall into the civil protection area. In
all cases it is the prevision of the scenario subsequent to the
appearance and transport of a great volume of liquid onto a
lower water stream. The situation can also include the case in
which the stream is originally dry. There are works based on
scaled physical models of natural valleys, but they represent
efforts that were too expensive and not devoid of difficulties.
Therefore, there is a necessity to develop adequate numerical
models that are able to reproduce situations originated by the
irregularities of a non-prismatic and sometimes dry bed. It is
also necessary to trace their applicability considering the dif-
ficulty of developing a model capable of producing solutions
of the complete equations despite the irregular character of
the river bed.

Several methods exist, accepted as standard procedures,
that are able to model the rainfall-runoff process. In gen-
eral, they use data from precipitation records and soil phys-
ical characteristics to estimate the rainfall excess leading to
surface runoff. Assuming that surface runoff eventually con-
centrates at the watershed outlet, provided that the effective
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rainfall duration is longer than the basin time of concentra-
tion, those techniques supply a surface discharge flow hy-
drograph as the response of the system to the storm. The
hydrograph, representing the variation of the discharge at a
point with respect to time, can then be routed along a valley
(river or creek), to estimate the possible flooding occurrence
at downstream points.

Hydrograph or flood routing has usually been treated, as-
suming that only the main direction is relevant of the valley.
For many practical applications, it is accepted that the un-
steady flow of water in a one-dimensional approach is gov-
erned by the shallow water (or St. Venant) equations. These
represent the conservation of mass and momentum along the
direction of the main flow. In a simple approach, some mod-
els are based on steady-state assumptions (HEC-RAS), lead-
ing to the backwater profile calculation for every value of
the discharge. Dynamic routing involves the unsteady flow
assumption and the resolution of the full dynamic equations.
In the field of computational hydraulics, where the modelling
can be dominated by the effects not only of source terms, but
also of quantities, which vary spatially yet independently of
the flow variables, it has traditionally been difficult to have
only one method that is able to reproduce automatically any
general situation. The numerical modelling of unsteady flow
in rivers is a complicated task and the difficulties grow as the
pretensions increase to obtain better quality or more general
solutions.

Good methods exist, developed to deal with Gas Dynamics
problems (Euler equations), that are able to cope with com-
plex systems of discontinuities and shock waves (Toro, 2001;
Roe, 1981). Among them, flux difference splitting methods
are widely used for the numerical approximation of homoge-
neous conservation laws where the flux depends only on the
conservative variables. Many upwind schemes have been re-
ported successfully for flow in channels. However, their ap-
plication to river flow is not so common in the literature and
their adaptation to river hydraulics is hindered by the irreg-
ular topography (Garcı́a-Navarro et al., 1999). The presence
of extreme slopes, high roughness and strong changes in the
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irregular geometry represent a difficulty that can lead to im-
portant numerical errors presumably arising from the source
terms of the equations. The extension of the basic techniques
to cope with these two situations maintaining their original
properties is not straightforward but has been addressed in
previous works (Garćıa-Navarro et al., 1999; Burguete and
Garćıa-Navarro, 2001) and is applied here.

In this paper, the main focus is on the application of a nu-
merical technique to the simulation of the stream flow gener-
ated by the dynamical routing of a discharge hydrograph on a
dry valley. The intention of this paper is to highlight the suit-
ability of the numerical technique as an efficient hydraulic
flow forecasting tool, even in difficult cases of transcritical
flow over dry bed.

The hydrologic problem will first be outlined. Then, the
equations governing overland flow motion will be described
and some ideas concerning the numerical method applied
will be presented. The results obtained in the form of pre-
visions under different flood hypothesis, helping to support
the decision of risk managers, will finally be shown.

2 The hydrologic problem

The examples selected to show the applicability of the nu-
merical technique used in this work belong to a wider hy-
drologic/hydraulic numerical study performed on a series of
creeks draining a rural area which was being transformed
into an irrigated agriculture area. The study was carried out
to analyze the feasibility of several remediation strategies in-
tended to reduce the damage that overflow in the creeks due
to extreme rainfall events could cause on the near fields. The
necessary investment for the works and launching of pressure
distribution and irrigation systems required an estimation of
the risk due to flood events associated with rains likely to
occur in the amortization period.

For that purpose, historical hydrologic data were collected
and the rainfall-runoff events corresponding to a return pe-
riod of 10 years were characterized. Two methods were
used to define the subsequent discharge at the watershed out-
let points: The Rational Method, producing maximum dis-
charge values, and the Unit Hydrograph Method, allowing
the construction of discharge flow evolution in time, i.e., dis-
charge hydrographs (Chow et a., 1994). Looking for risk
analysis in the worst scenario, the Unit Hydrograph Method
was used in the present study for two main reasons: since sig-
nificantly higher discharge peak values were predicted and
because the lagging time between additive peak values was
considered a key factor in the study.

The main characteristics of the draining system analyzed
in this paper are displayed on the sketch shown in Fig. 1.
Valdecarro can be identified as the main creek (about 12 km
long), running from right to left in the figure, draining the
upstream part and carrying rain waters to the downstream
Arba de Luesia River. Five secondary and relatively short
tributary creeks can also be identified.

3 The mathematical model

The dynamic open channel flow equations (shallow water
equations) of practical application in Hydraulics can be writ-
ten as the following 1D hyperbolic systems with source terms
(Chow et al., 1994; Toro, 2001):

∂u(x, t)

∂t
+

dF (x, u)

dx
= H (x, u) (1)

where

u =

(
A

Q

)
, F =

(
Q

Q2

A
+ gI1

)
,

H =

(
qL

g
[
I2 + A(S0 − Sf )

])
and whereQ is the discharge,A is the wetted cross section,
qL is the lateral discharge,g is the acceleration of gravity and
S0 is the bed slope.I1 andI2 account for hydrostatic pressure
forces

I1(x,A) =

∫ h(x,A)

0
[h(x, A) − z] σ(x, z)dz,

I2(x,A) =

∫ h(x,A)

0
[h(x, A) − z]

∂σ(x, z)

∂x
dz

(h being the water depth andσ being the channel width at a
positionz from the bottom)Sf is associated with bed fric-
tion and represented by the empirical Manning law (Chan-
son, 1999):

Sf =
n2Q2P

4
3

A
10
3

,

wheren is the Manning coefficient of bed roughness, here
assumed in SI units, andP is the wetted perimeter.

From the equations in conservative form (1), it is possible
to pass to an associated non-conservative form using

dF (x, u)

dx
=

∂F (x, u)

∂x
+

∂F (x, u)

∂u

∂u

∂x

=
∂F (x, u)

∂x
+ J(x, u)

∂u

∂x
,

whereJ =
∂F
∂u

is the Jacobian matrix of the original system.
Redefining the source term as

H ′(x, u) = H (x, u) −
∂F (x, u)

∂x

the non-conservative form is obtained:

∂u(x, t)

∂t
+ J(x, u)

∂u(x, t)

∂x
= H ′(x, u). (2)

In the shallow water system of equations the following holds
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and the Jacobian and new source terms of the non-
conservative formulation (2) are

J =

(
0 1

c2
− v2 2v

)
,

H ′
=

(
0

gA
[
S0 − Sf −

dh
dx

+
1
B

dA
dx

]) (3)

with B the width at the free surface,c =

√
g A

B
the celerity

of infinitesimal surface waves andv =
Q
A

the mean fluid
velocity.

It is convenient to develop the characteristic form of the
equations, important for the correct formulation of upwind
schemes and boundary conditions. This form is obtained
from a diagonalization of the Jacobian in (2). CallingP and
P−1 the matrices that make diagonalJ,

J = P3P−1, 3 = P−1JP.

The diagonal matrix3 is formed by the eigenvalues ofJ,
andP is constructed with its eigenvectors. Letw be the set
of variables (characteristic variables) that verify

du = Pdw, dw = P−1du.

Then,

∂w(x, t)

∂t
+ 3(x, w)

∂w(x, t)

∂x
= P−1(x, w)H ′(x, w). (4)

For the shallow water equations, the above matrices are

P =

(
1 1

v + c v − c

)
, P−1

=
1

2c

(
c − v 1
c + v −1

)
,

3 =

(
v + c 0

0 v − c

)
.

4 Numerical method

The conservation law (1) contains an important physical
meaning. An spatial integration∫ L

0

(
∂u

∂t
+

dF

dx

)
dx =

∫ L

0
Hdx ⇒

∫ L

0

∂u

∂t
dx

= F 0 − FL +

∫ L

0
Hdx (5)

expresses that the time variation of the conserved variable
in a given volume is equal to the difference between the
incoming and the outgoing fluxes plus the contribution of
the source term. When discretizing a conservation law of
this kind, incorrect numerical approximations can lead to
bad behaviour in the solution and unacceptable errors, which
makes them useless techniques. Schemes properly approxi-
mating the conservation equation (5) are called conservative
schemes (Toro (2001)).

A numerical fluxF T
i and a numerical source termH T

i can
be defined at the grid nodes. The difference in the flux be-
tween two nodes can be decomposed into parts affecting the

nodes on the left and right. Schemes built in such a manner
follow

δF T

i+ 1
2

= F T
i+1 − F T

i = δFR

i+ 1
2

+ δFL

i+ 1
2

1un
i

1t
= H T

i −
1

δx
(δFR

i+ 1
2

+ δFL

i− 1
2
) (6)

and will be conservative (Burguete and Garcı́a-Navarro P.,
2001) since they produce a good approximation of (5), can-
celling the contributions of the flux at the grid interfaces,
since the global variation of the conserved variable is due
only to the source terms and to the flux at the boundaries.1

will be used for time increments1f n
i = f n+1

i − f n
i , andδ

for spatial incrementsδf n

i+ 1
2

= f n
i+1 − f n

i .

N∑
i=1

1un
i

1t
δx =

1

1t

N∑
i=1

un
i δx ≈

∂

∂t

∫ xN

x1

udx

N∑
i=1

[
H T

i δx −

(
δFR

i+ 1
2

+ δFL

i− 1
2

)]

=

N∑
i=1

[
H T

i δx
]
+ F T

1 − F T
N ≈ F 1 − FN +

∫ xN

x1

Hdx

In addition, and following evidences from previous works
(LeVeque, 1998; Garcı́a-Navarro and V́azquez Cend́on,
2000; V́azquez-Cend́on, 1999), we consider a non-centered
contribution of the source terms

H T

i+ 1
2

= HR

i+ 1
2

+ HL

i+ 1
2

so that the following formulation for the conservative scheme
is proposed

1un
i

1t
=

(
H −

δF

δx

)L

i− 1
2

+

(
H −

δF

δx

)R

i+ 1
2

. (7)

DefiningG as

Gi+1/2 ≡

(
H −

δF

δx

)
i+ 1

2

≡

(
H ′

− J
δu

δx

)
i+ 1

2

(8)

1un
i

1t
= GL

i− 1
2

+ GR

i+ 1
2
, (9)

where the decomposition in the left and right parts has to be
defined in every numerical scheme.

For the applications presented in this work, a second order
in space and time upwind TVD scheme has been used. The
choice is justified by a previous numerical study on the per-
formance of a series of methods, which gave as a conclusion
that this scheme was the one providing the best performance
for unsteady flow over irregular valleys. In this scheme, the
above decomposition is identified with left (G−) and right
(G+) moving contributions:
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G
i+ 1

2
=
(
G−

)n
i+ 1

2
+
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J±
= P

(
1±sign(v+c)

2 0
0 1±sign(v−c)

2

)
P−1J

G±
= P

(
1±sign(v+c)

2 0
0 1±sign(v−c)

2

)
P−1G.

Making an implicit treatment of the source term, neces-
sary to avoid the numerical instabilities produced by domi-
nant source terms, the scheme is:

(
1 − Kn

i

1t

2

)
1un

i = 1t

[(
G+

)n
i− 1

2
+
(
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(10)

+
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(
1 +
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i+ 1
2

−

[
9−
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1 +

1t

δx
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)
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2

}

with K the Jacobian of the source term and9 the limiting
function matrix necessary to avoid numerical oscillations.
For more details on this scheme, see Burguete and Garcı́a-
Navarro P. (2001).

4.1 Numerical boundary conditions

The theory of characteristics supplies a rigorous rule for the
numerical treatment of the boundary conditions at the up-
stream and downstream ends. In case of subcritical flow, at
every boundary, one external or physical boundary condition
is required and the numerical scheme must provide another
one. On the other hand, if the flow is supercritical, two ex-
ternal boundary conditions need to be imposed at the inlet
(upstream), whereas the numerical scheme will provide two
numerical boundary conditions at the outlet (downstream).

In the case study considered in this work, the discharge
hydrograph from the hydrologic analysis of the rainfall rep-
resents one physical boundary condition to be imposed up-
stream. For the physical properties at the downstream end
of the creek, no representative physical boundary condition
was known. The Arba de Luesia is a river of highly vari-
able regime, hence no representative water level could be
specified at the junction point. This, together with the fact
that the torrent is usually dry, led us to the option of mod-
elling the torrent downstream point as a free-flowing section.
The method proposed here always supplies two conditions at
the outlet and one condition at the upstream end so that both
subcritical and supercritical flows can be dealt with appropri-
ately.

The method is based on a very important physical prin-
ciple: the increment of mass in the whole system in a time
interval is the result of the entering mass flow minus the leav-
ing mass flow during that period of time. When using a con-
servative numerical scheme, this physical principle provides
a way to reach two objectives: first, to allow for a null mass
balance error and second, to supply numerical boundary con-
ditions.

In one time step, the numerical scheme as defined in (10)
supplies updated values for all the nodal variables. We will
denote them the byus

i , in particular, for the cross section,As
i ,

and the associated volume increment is

1M =

N∑
i=1

(As
i − An

i )δx.

When (10) is applied to calculate the updated valuesAs
i and

this is used in the volume increment calculation, the above
expression is

1M =
(
Qn

1 − Qn
N

)
1t

and the difference with respect to the net incoming flow rate
is the volume error of the numerical scheme. It can be seen
as if the scheme was generating a numerical inflow volume
V num

in = Qn
11t and a numerical outflow volumeV num

out =

Qn
N1t . In order to achieve perfect volume conservation, if

the upstream physical boundary condition isQn+1
1 at the in-

let, and it is assumed that the physical volume entering dur-

ing one time step isV phy
in =

1
2

(
Qn+1

1 + Qn
1

)
1t , then the

corrected value for the wetted section upstreamAn+1
1 is

An+1
1 = As

1 +
V

phy
in − V num

in

δx
= As

1 +
1

2

(
Qn+1

1 − Qn
1

) 1t

δx

and for the wetted section downstreamAn+1
N is

An+1
N = As

N −
1

2

(
Qn+1

N − Qn
N

) 1t

δx

in the case of having supercritical flow, upstream:

An+1
1 =

V
phy
in − V num

in

δx
=

1

2

(
Qn+1

1 − Qn
1

) 1t

δx
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Fig. 1. Plan view of the basin.
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Fig. 2. Bottom level variation of the creek along the main direction.
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Fig. 3. Discharge hydrographs at sections for the basic case.

and downstream

An+1
N = As

N

Qn+1
N = Qs

N .

4.2 Front advance over dry bed

Unsteady shallow water flow over dry beds is at present one
of the topics of research in computational hydraulics. One
way to deal with this kind of flow is to use a moving com-
putational mesh so that computation is only performed in the
wet cells and the grid moves as the water front does. Suitable
boundary conditions must be applied for the correct front
tracking. A different approach consists of a thorough calcula-
tion of the front position as it advances over a computational
mesh covering all the physical domain and in which there are
both wet and dry cells. Among the authors using this second
methodology, and for numerical reasons, a very small value
for water depth in the dry cells is frequently used in order
to avoid zero depth values. The amount of this threshold is
reported to be something between 10−3m and 10−6m, not
precised or justified in general.

On the other hand, the shallow water equations can be de-
rived from the Navier-Stokes equations through a depth av-
eraging (in 2D) or a cross section averaging (in 1D) process.
The product of such averaging is a set of equations written
in terms of wetted cross section size and average velocity.
The information concerning the original velocity profile is
therefore reduced to a friction source term which takes into
account the wall tangential stress and other viscous effects.
This is usually modelled by means of a Manning type for-
mula which actually derives from the viscous nature of the
velocity profile.

A way to give physical meaning to the threshold value has
been attempted in our work. In nature, rivers and streams
do not have a regular bottom roughness, but the bed consists
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Fig. 4. Discharge profiles at timest =3:00 h, 3:15 h, 3:30 h, 3:45 h,
4:00 h and 4:15 h for the basic case.

of unsorted sand, gravel and rocks. Numerous researchers in
the past have tried to relate the equivalent roughness height to
a characteristic grain size, such as the median grain sized50,
leading to a general rule of proportionality between them. On
the other hand, it is well known that in torrents and mountain
streams the size of the boulders can be of the order of mag-
nitude of the flow depth. In those cases, the flow resistance
is mainly due to form drag and energy dissipation more than
skin friction. Neither Chezy nor Manning formulae are ade-
quate to estimate the friction losses, and experimental inves-
tigations should be performed beforehand. Due to the impos-
sibility of carrying out such field experiments in most cases,
a compromise is required.

The option chosen in this work is based on the empirical
correlation proposed by Strickler in 1923 (Chanson, 1999)
for the Manning coefficient in rivers

n = 0.041d1/6
50

Given an estimation for the global or local Manning coeffi-
cient, the above relation supplies the order of magnitude of
d50. In our model, this value is used as the minimum water
depth required at the front position to allow front advance.
For water depths below that value, water is forced to stop
and accumulate.

5 Risk remediation strategies and numerical results

The numerical method outlined in Sect. 4 was used to solve
the equations presented in Sect. 3 and therefore to simulate
the flood wave generated by the rainfall-runoff hydrographs
along the Valdecarro Creek during a 5 hour flooding event.
For this simulation the discharge hydrograph at the upstream
end of the creek was used as physical boundary condition and
subsequent hydrographs, entering Valdecarro Creek through
its confluences, were considered as lateral discharges. A gen-
eral sketch of the region is presented in Fig. 1, where Valde-
carro Creek is represented entering by the right side of the
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figure, running over about 12 km and joining Arba de Luesia
River at the left part of the figure. One of the main features of
the creek topography is the high variability of the cross sec-
tion shape along the main axis. The valley is wide, devoid of
bank vegetation and well divided into a curved main channel
and a flood plain in the upstream part (from 0 to 5 km approx-
imately). In particular, there is a very wide reach in the first
200 meters of creek. Atx = 5Km approximately, a transi-
tion from composed to single cross section shape of minor
capacity can be noticed. From 5 km to 8 km this tendency
continues and, at the same time, considerably more vege-
tation covering the banks can be found. The lower part of
the creek, from 8 km ahead, can be considered an artificially
shaped triangular channel of decreasing, tending to zero, ca-
pacity. The torrent ends near the river in a plain crossed by
a road. From the beginning of this study, the lower part was
identified as problematic and a preliminary decision of per-
forming a channelization in the last 3 km was made. Figure 2
shows the bed level variations. As for the roughness char-
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Fig. 8. Discharge hydrographs at different sections for the upstream
reforestation case (s2).

acterization, all the reaches were given an average value of
Manning’s n=0.03.

In a first calculation, the basic magnitudes defining the
torrent were used to evaluate the extent of the flooding in the
presence of the actual physical and hydrologic conditions,
as well as the mentioned channelization. The valley cross
section shape was known up to a limit in width. From
that point, vertical walls were assumed, i.e., no real flood
plain was simulated. The results indicated that the banks
were not able to convey the water in the middle part under
the assumed rain hypothesis. The discharge hydrographs
deduced from the hydrologic hypothesis are shown in Fig. 3
where the flow discharge law versus time has been plotted
for a time interval of 5 h, the period considered in this
study. The discharge entering the creek by the upstream
section has been plotted, together with the hydrographs
joining the stream along the creek. This results are shown
in Fig. 5, where the valley cross section is plotted along
the x distance, together with several wetted cross sections
corresponding to the time evolution of the flood event which
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Fig. 10. Valley cross section (continuous line) and water cross sec-
tion profiles at timest =3:00 h, 3:15 h, 3:30 h, 3:45 h, 4:00 h and
4:15 h for the internal reservoir case (s1).

is supposed to last approximately 5 h. Figure 4 displays
discharge profiles at different times in order to follow not
only the progression of the discharge flooding wave, but
also the effect of the secondary hydrographs entering at
later times through the tributary creeks. It is also worth
noting the torrential character of the flow in this simulation,
hence the inherent numerical difficulties, as indicated by
the Froude number distribution along the valley at an
intermediate time during the simulation in Fig. 6. This figure
also indicates the supercritical regime at the downstream end.

The second step, and main bulk of this work, was the defi-
nition of different scenarios oriented to flood risk mitigation.
In order to exploit the possibilities that CFD offers, several
hypotheses were modelled to check their suitability and abil-
ity to reduce flood damage. The first was to model the effects
of the construction of an in-line reservoir as storage structure
at the upstream inlet by making use of the extremely wide
natural cross section in that part. We shall call this solution 1
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Fig. 11.Discharge profiles at timest =3:00 h, 3:15 h, 3:30 h, 3:45 h,
4:00 h and 4:15 h for the reforestation case(s2).
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Fig. 12. Valley cross section (continuous line) and water cross sec-
tion profiles at timest =3:00 h, 3:15 h, 3:30 h, 3:45 h, 4:00 h and
4:15 h for the reforestation case(s2)

(s1). This reservoir was simulated in our model by means of
a sufficiently rising bed level in the cross section at the loca-
tion of the hypothetical dam. This detail is shown in Fig. 7,
where the original bed level and the one modified to represent
the dam location are plotted together. The storage capacity of
this reservoir was estimated at around 10 000 m3, requiring a
filling time of 5 min at a rate of 35m3/s, the discharge value
at the inlet at the peak of the storm. Figures 9 and 10 dis-
play the numerical results corresponding to this hypothesis
for the wetted cross section and the discharge evolution, re-
spectively. They show clearly that the modelled reservoir has
no significant effect. The reservoir capacity is not enough to
produce a noticeable damping of the peak discharge hydro-
graph.

In a different approach, the second flood mitigation mea-
sure introduced in our model was the hypothesis of upstream
reforestation. This will be called solution 2 (s2). The as-
sumption of a change in the land use and vegetation over the
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Fig. 13.Discharge profiles at timest =3:00 h, 3:15 h, 3:30 h, 3:45 h,
4:00 h and 4:15 h for the bank clearing case(s3).
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Fig. 14. Valley cross section (continuous line) and water cross sec-
tion profiles at timest =3:00 h, 3:15 h, 3:30 h, 3:45 h, 4:00 h and
4:15 h for the bank clearing case (s3).

area forming the basin, draining into the upper part of the
creek, modified the parameters defining the soil infiltration
capacity so that for identical rain conditions, smaller peak
hydrographs resulted. This can be seen on the discharge hy-
drographs plotted in Fig. 8, where the upstream discharge hy-
drograph must be compared with the one in Fig. 3. The sub-
sequent flood profiles, as obtained from the numerical rout-
ing, are displayed in Fig. 11. The main consequence was that
under this hypothesis, the water depths were also reduced so
that the preliminary channelization of the lower part can be
considered sufficient to convey the flow from the assumed
rain intensity.

As the third and last risk mitigation strategy, a roughness
reduction in the channelized part was proposed by means of
bank vegetation clearing and concrete cover. This will be re-
ferred to as solution 3 (s3). This option was simulated by
means of a modified Manning roughness coefficient in the
lower 3 km, reducing the original n=0.03 to n=0.015. The
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Fig. 15. Valley cross section (red line) and water cross section pro-
files at timet =4:00 h for s1 (pink), s2 (green) and s3 (blue).
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Fig. 16. Discharge distribution at timet =4:00h for s1 (blue), s2
(red) and s3 (green).

results from this option led to a flow acceleration in that part
with, consequently, smaller water depths and higher veloc-
ities and Froude numbers for the same discharge values as
in the two first calculations. In some sense, the objective of
preventing flooding on the surrounding areas is achieved with
this option, but the supercritical flow involved at the down-
stream part of the stream renders the interest in the modifi-
cation to be doubtful. The numerical results are plotted in
Figs. 13 and 14. A direct comparison of the results obtained
from the three hypotheses is shown in Fig. 15, where the
maximum wetted cross section distributions are compared
and in Fig. 16, where the maximum discharge distributions
are compared.

6 Conclusions

A finite volume based numerical technique has been applied
as a CFD tool for evaluating different flood risk remediation

strategies in a low mountain area. The computational model
solves the unsteady shallow water equations in the presence
of dry bed and irregular topography. It has proved robust,
useful and efficient as a predictive tool, being able to handle
transcritical flow situations by keeping the mass error bal-
ance close to machine accuracy.

From the hydraulic/hydrologic point of view, the answers
supplied by the computational model allow for the compar-
ison in terms of usefulness and practical interest of differ-
ent proposed alternatives. Among those modelled, it can
be concluded that investments in internal reservoirs or val-
ley channelization are not as effective as a modification in
the land use and vegetation of the upstream area. This latest
option seems to have the strongest influence in the reduc-
tion of flooding risks, since it directly affects the peak dis-
charge hydrograph. On the other hand, bank clearing at the
channelized lower part of the valley results in an increased
conveyance capacity involving lower water depths but higher
flow velocity and supercritical regime in some parts. This
kind of flow, although having less risk of over flooding the
banks, can damage the channel due to the inherent possibil-
ity to generate hydraulic jumps and turbulence.
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Garćıa-Navarro, P., Fras, A., and Villanueva, I.: Dam-break flow

simulation: some results for one-dimensional models of real
cases, J. of Hydrology, 216, 227–247, 1999.
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