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SOLUTION OF THE STIELTJES TRUNCATED MATRIX
MOMENT PROBLEM

Abstract. The truncated Stieltjes matrix moment problem consisting in the description
of all matrix distributions σ(t) on [0,∞) with given first 2n + 1 power moments (Cj)

n
j=0

is solved using known results on the corresponding Hamburger problem for which σ(t)

are defined on (−∞,∞). The criterion of solvability of the Stieltjes problem is given and
all its solutions in the non-degenerate case are described by selection of the appropriate
solutions among those of the Hamburger problem for the same set of moments. The results
on extensions of non-negative operators are used and a purely algebraic algorithm for the
solution of both Hamburger and Stieltjes problems is proposed.
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1. INTRODUCTION

The Hamburger truncated matrix moments problem is formulated in the following
way:
given a set of Hermitian s × s matrices

{C0,C1,C2, . . . ,C2n}, n = 0, 1, 2, . . . . (1)

find all non-negative matrix measures dσ(t) such that

∞∫
−∞

tkdσ (t) = Ck, k = 0, 1, 2, . . . , 2n. (2)

The additional demand: dσ(t) = 0 for t < 0, transforms it into the Stieltjes truncated
matrix moment problem. Classical results on the topic is reflected in the books
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[5, 8, 9, 11, 12], more recent developments can be found in [1, 6, 7]. The aim of
the present work is to solve the matrix variant of the Stieltjes truncated moment
problem. The natural approach to this problem developed here consists in making
clear, which additional conditions should be imposed on the given moments (Cj)2n

j=0

to provide the existence of the solutions σ(t) of the Hamburger problem with support
on the positive half-axis and in singling out in the indefinite case among all solutions
of the Hamburger problem those with support on the half-axis t ≥ 0.
In Section 2 the criterion of solvability of the Stieltjes truncated matrix moment

problem is established. The ascending to M.G. Krein [10] general approach to the
truncated matrix moment problems based on fundamental results of the extension
for symmetric operators is outlined here.
A special class of the so-called canonical solutions of the truncated Stieltjes pro-

blem is described in the next Section. For this class of solutions σ(t) the holomorphic
matrix functions

K(z) =

∞∫
−∞

1
t − z

dσ(t), Im z �= 0, (3)

are such that detK(z) is a rational function of the minimal degree ≤ ns. An algebraic
algorithm is given here for constructing of such solutions.
The description of all solutions of the matrix truncated moment problem in the

non-degenerate case, where
det (Cj+k)n

j,k=0 > 0

is obtained in the last section of the paper.
The simplified scalar version of the present paper was considered earlier in [4].

2. EXISTENCE OF SOLUTIONS OF THE TRUNCATED STIELTJES
PROBLEM FOR MATRIX MOMENTS

Any solution of the Stieltjes problem is evidently a special solution of the Hamburger
problem, for which there are no points of growth of the sought non-decreasing
matrix function σ on the half-axis (−∞, 0). Therefore a criterion of solvability of the
Hamburger problem is only a necessary condition for the solvability of the Stieltjes
problem.

Theorem 2.1. A system of Hermitian matrices {C0,C1,C2, . . . ,C2n}, n =
= 0, 1, 2, . . . . admits the representation

∞∫
0

tk dσ(t) = Ck, k = 0, 1, 2, . . . , 2n, (4)

if and only if:

a) the block Hankel matrix Γn := (Ck+j)n
k,j=0 is non-negative;
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b) for any set ξ0, . . . , ξr ∈ Cs, 0 ≤ r ≤ n−1, and with (ξ, η) being a standard scalar
product in Cs, the condition

r∑
j,k=0

(Cj+kξk, ξj) = 0 (5)

implies
r∑

j,k=0

(Cj+k+2ξk, ξj) = 0; (6)

c) the block Hankel matrix Γ(1)
n−1 := (Ck+j+1)n−1

k,j=0 is non-negative and for any set
ξ0, . . . , ξr ∈ Cs, 0 ≤ r ≤ n − 1, the condition

r∑
j,k=0

(Cj+k+1ξk, ξj) = 0 (7)

implies (6).

Proof. Due to [6] and [1, 2, 3], the conditions a), b) of the theorem is the criterion of
solvability of the truncated Hamburger problem for matrix moments. Therefore we
need only to prove that the condition c), in addition to a) and b), is equivalent to the
existence among the solutions of the Hamburger problem of those with σ(t < 0) = 0.
1. Suppose that the relations (2) hold.
For an arbitrary set of s-dimensional complex vectors

{
ξ0, ξ1, ξ2, . . . , ξn−1

}
we

define
P(t) = ξ0 + ξ1 t + ξ2 t2 + . . . + ξn−1 tn−1. (8)

By (2) and for 0 ≤ r ≤ n − 1

r∑
k,j=0

(
Cj+k+1 ξk, ξj

)
=

∞∫
0

t (dσ(t)P(t),P(t)) ≥ 0. (9)

Hence the block matrix (Ck+j+1)
n−1
k,j=0 is non-negative.

If for some set {ξ0, . . . , ξr}, ξk ∈ Cs, k = 0, 1, . . . , r, 0 ≤ r ≤ n − 1, (5) holds,
then for the vector polynomial P(t) defined by (8) we have:

∞∫
0

t (dσ(t)P(t),P(t)) = 0

and hence,
r∑

k,j=0

(Cj+k+2 ξk, ξj) =

∞∫
0

t2 (dσ(t)P(t),P(t)) = 0.
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2. Notice that due to the conditions a) and c) of the theorem, the quadratic
forms of the matrices Cj are non-negative, or briefly Cj ≥ 0, j = 0, . . . , 2n.
From now on we can assume without loss of generality that all these matrices

are invertible, i.e. that Cj > 0, j = 0, . . . , 2n. Indeed, let Nj ⊂ Cs be null-spaces of
Cj . Due to the condition a) the equality C0η = 0 for any vector η ∈ Cs implies
Cjη = 0, j = 1, . . . , 2n. Besides, since for any vector η ∈ Cs all integrals

∞∫
0

tk d (σ(t)η,η) , 1 ≤ k ≤ 2n

vanish simultaneously, any equality Cjη = 0 implies Ckη = 0, 1 ≤ k ≤ 2n. Hence,
N0 ⊂ N1 = Nk, k = 1, . . . , 2n and for a suitable basis in Cs the matrices Cj can be
reduced to the form

C0 =

(
C̃0 0

0 ˜̃C0

)
;Cj =

(
C̃j 0
0 0

)
, j = 1, . . . , 2n, (10)

where by construction det C̃j > 0, j = 0, 1, . . . , 2n.
If the truncated Stieltjes problem for invertible matrix moments C̃j is solvable,

then the initial problem is solvable as well, and its general solution σ(t) can be
presented as

σ(t) = U

(
σ̃ (t) 0

0 ˜̃C0ϑ (t)

)
U∗,

where U is a fixed s × s-unitary matrix,

ϑ (t) =
{

0, t ≤ 0,

1, t > 0,

and σ̃(t) runs the set of solutions of the truncated Stieltjes matrix moment problem
for the moments C̃j .
3. Suppose now that a)–c) hold.
(a) In this case and for a given set of s×s positive definite matrices {C0, . . . ,C2n}

by the conditions a), b) the truncated matrix Hamburger moment problem has at
least one solution [7, 1, 3, 2]. Let a non-decreasing matrix function σ(t), −∞ < t < ∞,
be such a solution, i.e.

∞∫
−∞

tk dσ(t) = Ck k = 0, 1, 2, . . . , 2n. (11)

Consider the set of continuous vector functions f(t), −∞ < t < ∞, with values in
Cs, for which ∞∫

−∞
(dσ(t)f(t), f(t)) < ∞. (12)
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Construct a pre-Hilbert space L of such vector functions taking the bilinear functional

〈f ,g〉 =

∞∫
−∞

(dσ(t)f(t),g(t)) (13)

as the scalar product. Notice that by (2) the vector polynomials

f(t) = ξ0 + t · ξ1 + . . . + tr · ξr, ξ0, . . . , ξr ∈ Cs, (14)

of degree r ≤ n belong to L. We will denote the linear subset of these polynomials
by Pn.
Let L0 be the subspace of L consisting of all vector functions f such that

‖f‖ :=
√
〈f , f〉 = 0.

If g = f + f0, where f ∈ L, f0 ∈ L0, than, due to the Schwartz inequality 〈f , f0〉 = 0
and hence ‖g‖ = ‖f‖. Let us denote by L1 the factor — space L \ L0. For the class
of elements ĝ = f +L0 of this factor space we set ‖ĝ‖L1

= ‖f‖. Taking the closure of
L1 with respect to this norm, we obtain the Hilbert space L2

σ(Cs). We keep the same
symbol 〈., .〉 for the scalar product in L2

σ(Cs). Let Ln be the subspace of L2
σ (Cs)

generated by the subset of vector polynomials Pn. By (11) and (13) for f ,g ∈Pn,

f(t) =
n∑

l=0

tr · ξr, g(t) =
n∑

l=0

tr · ηr, ξ0, . . . ,ηn ∈ Cs,

we have

〈f ,g〉 =
n∑

j,k=0

(Cj+kξk, ηj). (15)

Therefore for all non-decreasing matrix function σ(t) which satisfy (2), the restric-
tions onto Ln of the scalar products defined in the corresponding spaces L2

σ (Cs)
must coincide.
The non-decreasing matrix functions σ(t) which satisfy (11) and for which

L2
σ(Cs) = Ln, are called canonical. It was proven in [1, 3] that the set of canonical
solutions of the truncated matrix Hamburger moment problem is non-empty whenever
this problem is solvable, i.e. whenever the conditions a), b) of the theorem hold. Due
to (15), a canonical σ(t) is a non-decreasing matrix function which has only a finite
number of points of growth and the sum of the ranks of all jumps of σ at such points
is ≤ ns.
Take some canonical solution σ̃(t) of the truncated Hamburger moment problem

for the given set of moments and consider the self-adjoint operator Ã of multiplication
by the independent variable t in the related space L2

eσ (Cs) = Ln. Let us denote by
Ln−1 the subspace of Ln generated by vector polynomials of the degree ≤ n − 1.
The restriction A0 of the operator Ã onto Ln−1 is a symmetric operator which by
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definition of Ã actually does not depend on the choice of a canonical solution of
the truncated Hamburger moment problem. Therefore each canonical solution σ̃(t)
of this problem generates some self-adjoint extension Ã of A0 in Ln.
Let Ẽt, −∞ < t < ∞, be the spectral function of some canonical extension Ã.

For the canonical orthonormal basis {e1, . . . , es} in Cs we introduce the set of classes
{ê10, . . . , ês0} ⊂ Ln which contain vector polynomials

ê10(t) ≡ e1, . . . , ês0(t) ≡ es,

respectively. Let us consider the non-decreasing s × s matrix function σ̃(t) =
= (σ̃µν(t))s

µ,ν=1, −∞ < t < ∞,

σ̃µν(t) :=
〈
Ẽtêν0, êµ0

〉
Ln

, 1 ≤ µ, ν ≤ s. (16)

By definition of A0 and Ã, for the classes which contain the vector monomials

ê1k(t) ≡ tke1, . . . , êsk(t) ≡ tkes, 0 ≤ k ≤ n

we have
êµk = Ak

0 êµ0 = Ãkêµ0, 1 ≤ µ ≤ s; 0 ≤ k ≤ n.

Hence,

(Cj+k)µ,ν = (Cj+keν , eµ)
Cs

=

= 〈êνk, êµj〉Ln
=

〈
Ãkêν0, Ã

j êµ0

〉
Ln

=

=

∞∫
−∞

tj+kd
〈
Ẽtêν0, êµ0

〉
Ln

=

∞∫
−∞

tj+kdσ̃µν(t), 0 ≤ j, k ≤ n.

Thus each canonical self-adjoint extension Ã of A0 in Ln generates a certain solution
σ̃(t) of the truncated Hamburger matrix moment problem. Such a solution is at the
same time a solution of the Stieltjes problem if and only if the corresponding spectral
function Ẽt has no points of growth on the half-axis (−∞, 0), i.e. if and only if Ã is a
non-negative extension of A0. Such extensions of A0 might exist only if the operator
A0 is itself non-negative, i.e. the quadratic form of A0 is non-negative. But this is
the case, since by our assumptions

〈A0f , f〉Ln
=

n−1∑
j,k=0

(Cj+k+1ξk, ξj) ≥ 0 (17)

for a class f ∈ Ln−1 which contains a vector polynomial

f(t) =
n−1∑
l=0

tr · ξr.
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(b) If Ln = Ln−1, then A0 is a self-adjoint operator and in this case the truncated
Hamburger problem has a unique solution σ0(t). This solution is generated according
to (16) by the spectral function E0

t of A0. Since A0 ≥ 0, then σ0(t) is also the unique
solution of the truncated Stieltjes problem.
(c) If Ln �= Ln−1, then put N = Ln � Ln−1, 1 ≤ dimN ≤ s.
(i) Let us assume first that

detΓ(1)
n−1 > 0. (18)

With respect to the representation of Ln as the orthogonal sum Ln−1 ⊕N , we can
represent a self-adjoint extension Ã of A0 as a 2 × 2 block operator matrix

Ã =
(

A00 G∗

G H̃

)
,

where A00 is a symmetric operator in Ln−1, the quadratic form of which coincides
with that of A0, G = PNA0|Ln−1 , where PN is the orthogonal projector onto the
subspace N in Ln, and H̃ is a self-adjoint operator in N , which just defines the
extension Ã. Due to (17) and (18), A00 is a positive definite operator. We can use
now the Schur–Frobenius factorization to represent Ã in the form

Ã =
(

I 0
GA−1

00 I

)(
A00 0
0 H̃ − GA−1

00 G∗

)(
I A−1

00 G∗

0 I

)
.

Then the extension Ã ≥ 0 if and only if H̃ ≥ GA−1
00 G∗. Since the set of self-adjoint

operators H̃ inN which satisfy the last inequality is evidently non-empty, we conclude
that the condition c) of Theorem 2.1 together with (18) guarantee the existence of
non-negative extensions Ã of A0.
(ii) Let us assume now that

detΓ(1)
n−1 = 0. (19)

We will denote by Z the null-space of A0 in Ln−1 and by L̃n−1 the subspace Ln−1�Z.
Notice that for a class f ∈ Z which contains the vector polynomial

f(t) =
n−1∑
l=0

tr · ξr

and any class g ∈ N , the equality

〈A0f , f〉 =
n−1∑

j,k=0

(Cj+k+1ξk, ξj) = 0,

and the condition c) of the theorem yield:

〈A0f ,g〉 ≤
√

〈A0f , A0f〉 〈g,g〉 =

 n−1∑
j,k=0

(Cj+k+2ξk, ξj)


1
2 √

〈g,g〉 = 0.
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Therefore
G|Z = PNA0|Z = 0, PZG∗ = 0,

where PZ is the orthogonal projector onto Z in Ln. With respect to the representation
of Ln as the orthogonal sum Z⊕ L̃n−1⊕N and since A00 is a symmetric operator, we
can now represent a self-adjoint extension Ã of A0 as a 3 × 3 block operator matrix

Ã =

 0 0 0
0 A

(1)
00 G∗

1

0 G1 H̃

 ,

where A
(1)
00 is a positive definite operator in L̃n−1, the quadratic form of which

coincides with that of A0 on L̃n−1, G1 = PNA0|eLn−1
, and H̃ is a self-adjoint operator

in N , which defines the extension Ã. As above, we can further factorize Ã as follows:

Ã =

 I 0 0
0 I 0
0 G1A

(1)−1
00 I


 0 0 0

0 A
(1)
00 0

0 0 H̃ − G1A
(1)−1
00 G∗

1

×

×
 I 0 0

0 I A
(1)−1
00 G∗

1

0 0 I

 .

(20)

Due to (20) there are non-negative self-adjoint extensions Ã of A0 in Ln. Such
extensions are obtained if the operator H̃ in N which defines Ã is such that

H̃ ≥ G1A
(1)−1
00 G∗

1. (21)

3. CANONICAL SOLUTIONS

We call canonical the solutions of the truncated matrix Stieltjes problem given by
the expression (16), where Ẽt is the spectral function of some non-negative canonical
self-adjoint extension Ã of A0. The established correspondence between the set of
such extensions of A0 and the set of canonical solutions of the Stieltjes problem
makes it possible to find, under the conditions of Theorem 2.1, an explicit algebraic
formulas for the description of the sought canonical solutions. To this end we can
use as a starting point (16) and the relation

∞∫
−∞

1
t − z

dσ̃µν(t) =

∞∫
−∞

1
t − z

d
〈
Ẽtêν0, êµ0

〉
=

〈(
Ã − z

)−1

êν0, êµ0

〉
. (22)

From now on we will assume that detΓn > 0, i.e. we will consider the
non-degenerate case of the above problems.
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Let Ln (Cs) denote the (n + 1)s-dimensional linear space of column vectors

ξ =
(

ξ0 · · · ξn

)†
, ξ0, . . . , ξn ∈ Cs, (23)

(† stands for the transposition operation) with the scalar product

(ξ,η) =
n∑

j=0

(
ξj ,ηj

)
Cs

.

We will denote as before by Ln the same linear vector space but with the scalar
product

〈ξ,η〉 = (Γnξ,η) =
n∑

j,k=0

(
Cj+kξk,ηj

)
Cs

.

Ln was considered above as the space of vector polynomials.
Let Ln−1 (Cs) be the subspace of Ln (Cs) which consists of vectors (23) but with

ξn = 0 and let
N = Ln (Cs) � Ln−1 (Cs) .

We denote by PN the orthogonal projector in Ln (Cs) onto N. In the natural basis of
subspaces of Ln (Cs) this projector is evidently given as the following (n+1)×(n+1)
block operator matrix

PN =

 0 . . . 0
. . . . . . . . .

0 . . . Is

 ,

where Is is the s× s unit matrix. Let us consider the linear operator Ψ given as the
(n + 1) × (n + 1) block operator matrix

T =


0 0 0 . . . 0
Is 0 0 . . . 0
0 Is 0 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . Is 0

 .

The symmetric operator A0 in Ln introduced above is the restriction of T onto
Ln−1 (Cs). Let Γ̃

(1)
n−1 be the (n + 1) × (n + 1) block operator matrix

Γ̃(1)
n−1 =

(
Γ(1)

n−1 0n,s

0s,n 0s,s

)
.

Here 0n,s, 0s,n, and 0s,s are the n × s, s × n, and s × s null-matrices, respectively.
Notice that for any ξ ∈ Ln−1 (Cs) and any η ∈ Ln (Cs) we have

〈A0ξ,η〉 = 〈Tξ,η〉 =
(
Γ̃(1)

n−1ξ,η
)

+ (PNΓnTξ,η) =

=
〈
Γ−1

n Γ̃(1)
n−1ξ,η

〉
+

〈
Γ−1

n PNΓnTξ,η
〉
.

Solution of the Stieltjes Truncated Matrix Moment Problem 13



Hence,
A0|Ln−1(Cs) = Γ−1

n Γ̃(1)
n−1|Ln−1(Cs) + Γ−1

n PNΓnT|Ln−1(Cs). (24)

Put P⊥
N = I − PN. Due to (24), any self-adjoint extension Ã of A in Ln can be

represented as

Ã = Γ−1
n Γ̃(1)

n−1P
⊥
N + Γ−1

n PNΓnTP⊥
N + Γ−1

n P⊥
N T ∗ΓnPN + Γ−1

n H̃, (25)

where

H̃ =
(

0 0
0 H

)
and H is some s × s Hermitian matrix, which defines the extension Ã. In a more
detailed form,

Ã = Γ−1
n

 Γ(1)
n−1

Cn+1

...
C2n

Cn+1 · · · C2n H

 = (26)

= T + Γ−1
n

 0ns,ns

Cn+1

...
C2n

0 · · · 0 H

 . (27)

Corollary 3.1. The block Hankel matrix Γ(1)
n−1 is invertible.

Proof. If Γ(1)
n−1 is not invertible, then due to the conditions of Theorem 2.1, the matrix

Γ(2)
n−1 = (Cj+k+2)n−1

j,k=0

is also not invertible. But Γ(2)
n−1 is a diagonal block of the positive definite matrix

Γn, a contradiction.
Let us introduce now the inverse block matrices

Γ(1)−1
n−1 = (bjk)n−1

j,k=0

and (
Γ̃(1)

n−1

)−1

cond
=

(
Γ(1)−1

n−1 0ns,s

0s,ns 0s,s

)
.

Remark 3.1. The operator defined by the block matrix (26) is non-negative if and
only if

H̃ − PNΓnTP⊥
N

(
Γ̃(1)

n−1

)−1

cond
P⊥

N T ∗ΓnPN ≥ 0,
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or, equivalently, if and only if

H −
n−1∑

j,k=0

Cn+j+1bjkCn+k+1 ≥ 0. (28)

Since the s × s matrix

Q :=
n−1∑

j,k=0

Cn+j+1bjkCn+k+1

is positive definite, then all matrices H which generate the non-negative extensions
Ã and hence the solutions of the Stieltjes problem, must be positive definite and,
moreover, satisfy the inequality H ≥ Q. Notice that the requirement Ã � 0 excludes
the equality in (28).

Put

ΘH (z) := Γn

(
Γ(1)

H;n − zΓn

)−1

Γn, (29)

where

Γ(1)
H;n :=

 Γ(1)
n−1

Cn+1

...
C2n

Cn+1 . . . C2n H

 (30)

and let ∆H (z), Imz > 0, be the upper left s × s block of ΘH (z),

∆H (z) := ΘH;00 (z) . (31)

The following theorem is an evident combination of the above arguments.

Theorem 3.1. Let the conditions of Theorem 2.1 hold and detΓn > 0. Then the
relation ∞∫

−∞

1
t − z

dσH(t) = ∆H(z), Imz > 0,

establishes the one-to-one correspondence between the set of all canonical solutions of
the truncated matrix Stieltjes moment problem with the given moments {C0, . . . ,C2n}
and the set of positive definite matrices H such that

H −
n−1∑

j,k=0

Cn+j+1bjkCn+k+1 ≥ 0. (32)

Actually Theorem 3.1 with (29), (30) describes in the non-degenerate case an
algebraic algorithm of construction of canonical solutions of the truncated Stiel-
tjes matrix moment problem and with the omission of the condition (32) also the
algorithm of construction of those of the Hamburger matrix moment problem.
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Compare this algorithm with the method of construction of the solutions of the
latter problem, described, in particular, in [1] for the Hamburger problem. To this
end set

Πr = (0s,s, . . . , 0s,s︸ ︷︷ ︸r

, Is)T ,Υr(t) = (Is, tIs, . . . , t
rIs) , r = n − 1, n.

Since Γn is positive definite and invertible, the same is true for all

Γr := (Ck+j)r
k,j=0, 0 ≤ r ≤ n − 1.

Let us introduce s × s matrix polynomials

Dr(t) = Υr(t)Γ−1
r Πr, r = n − 1, n (33)

and the corresponding conjugate polynomials

Er (z) :=

∞∫
−∞

1
t − z

dσ(t) (Dr(t) − Dr(z)) . (34)

Let R be the Nevanlinna class of holomorphic in the upper half-plane s × s

dissipative matrix functions, i.e. matrix functions with non-negative imaginary parts
and let

R0 =
{
t ∈ R| lim

y↑∞
1
y
t(iy) = 0

}
.

By [7, 1] and under all above assumptions, the Nevanlinna-type formula

ϕ(z) =

∞∫
−∞

1
t − z

dσ(t) = − (En(z) (R(z) + zI) − En−1(z))×

× (Dn(z) (R(z) + zI) − Dn−1(z))−1
,

(35)

R(z) =
(
Γ−1

n

)−1

nn
t(z), Imz > 0,

establishes the one-to-one correspondence between the set of all non-decreasing ma-
trix function σ(t), −∞ < t < ∞, satisfying (11) and the set Nevanlinna s× s matrix
functions t ∈ R0.
The same formula with t (z) replaced by any s× s constant Hermitian matrices

Ĥ, establishes the one-to-one correspondence between the set of all non-decreasing
canonical matrix functions σ bH(t) which satisfy (11) and the set of all Hermitian s×s

matrices Ĥ. For a canonical solution σ bH(t) of the truncated Hamburger problem for
the given matrix moments, the expression on the right hand side of (35) is a rational
matrix function of the Nevanlinna class R0. The poles of this matrix function are
the roots of the matrix polynomial

PbH(z) :=
(
Dn(z)

((
Γ−1

n

)−1

nn
Ĥ + zI

)
− Dn−1(z)

)
. (36)
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By [1] PbH(z) has only real roots. These roots are unique points of growth of σ bH(t).
Therefore a canonical solution σ bH(t) of the Hamburger problem is at the same
time a solution of the Stieltjes problem for the same set of matrix moments if and
only if PbH(z) for the corresponding Hermitian matrix Ĥ has no roots on the half-
axis (−∞, 0). By [1, 3] a Hermitian matrix H in (26), (27) which determines a
canonical solution σH(t) of the Stieltjes or Hamburger problem through the self-
adjoint extensions Ã of A0 given by (25), and the matrix Ĥ which replaces t(z) in
(35) in order to obtain the same solution σĤ(t), are connected by the relation(

0 0
0 Ĥ

)
= PNÃΓ−1

n PN.

Hence

Ĥ =
(
Γ−1

n

)
n−1,n

+
n−1∑
j=0

(
Γ−1

n

)
nj

Cj+1

(
Γ−1

n

)
nn

+
(
Γ−1

n

)
nn

H
(
Γ−1

n

)
nn

:=

:= Λn +
(
Γ−1

n

)
nn

H
(
Γ−1

n

)
nn

(37)

and
H = (Γ−1

n )−1
nn

(
Ĥ − Λn

) (
Γ−1

n

)−1

nn
. (38)

We see that

Theorem 3.2. The formula

∞∫
−∞

1
t − z

dσH(t) = − (En(z) (RH + zI) − En−1(z))×

× (Dn(z) (RH + zI) − Dn−1(z))−1
,

(39)

RH =
(
Γ−1

n

)−1

nn
Λn − H

(
Γ−1

n

)
nn

, Imz > 0, (40)

establishes in the non-degenerate case the one-to-one correspondence between the set
of all canonical solutions σH(t) of the truncated matrix Stieltjes problem and the set
of positive definite s × s matrices H which satisfy (28).

If we compare the last result with the assertion of Theorem 3.1, we can conclude
that(

Γn

(
Γ(1)

H;n − zΓn

)−1

Γn

)
00

=

= − (En(z) (RH + zI) − En−1(z)) (Dn(z) (RH + zI) − Dn−1(z))−1
,

(41)

RH =
(
Γ−1

n

)−1

nn
Λn − H

(
Γ−1

n

)
nn

, Imz �= 0. (42)
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4. DESCRIPTION OF ALL SOLUTIONS OF THE TRUNCATED STIELTJES
MATRIX NON-DEGENERATE MOMENT PROBLEM

By (22) we reduce the description of all solutions of the Stieltjes matrix moment
problem to the construction of the upper left s × s block of the resolvent (Ã − z)−1

of the generalized non-negative self-adjoint extensions of A0 with coming out the
space Ln.
Certainly, each solution of the Stieltjes problem is at the same time the solution

of the Hamburger problem for the same set of matrix moments. Hence, we can use
(35) to describe the solutions of the Stieltjes problem, but we must restrict the set of
“parameters” t(z) which reflect, according to (35), all matrix functions σ(t) which
correspond to the non-negative extensions and only them.
To this end, let us consider a generalized non-negative self-adjoint extension A

of A0 with coming out Ln to a Hilbert space H = Ln ⊕H′, dimH′ ≤ ∞. In general,
A is an unbounded operator, but since A is an extension of A0, then Ln−1 ⊂ DA.
Suppose first that Ln = (Ln−1 ⊕N ) ⊂ DA. Then according to the splitting

H = Ln−1 ⊕N ⊕H′,

we can represent A in the form

A =

 A00 G∗ 0
G HA G∗

1

0 G1 A11

 , (43)

where A00, G are defined as above, HA is a non-negative operator in N , G1 is a
bounded operator from N into H′, and A11 is a non-negative self-adjoint operator
in H′. We can choose any λ < 0 and apply the Schur–Frobenius factorization to get:

A − λ =

 I 0 0
G (A00 − λ)−1

I G∗
1(A11 − λ)−1

0 0 I

×

×
 A00 − λ 0 0

0 HA − λ − G (A00 − λ)−1
G∗ − G∗

1 (A11 − λ)−1
G1 0

0 0 A11 − λ

×

×
 I (A00 − λ)−1

G∗ 0
0 I 0
0 (A11 − λ)−1G1 I

 .

(44)

Due to the formula (44) the assumption A ≥ 0 is equivalent to the conditions

A00 − λ � 0, A11 − λ � 0,

HA − G (A00 − λ)−1
G∗ − G∗

1 (A11 − λ)−1
G1 ≥ 0 (45)
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for any λ < 0. Further, we can take into account the representation H = Ln ⊕ H′

and rewrite A − z, Imz > 0, as

A − z =
(

I G∗
1(A11 − z)−1

0 I

)(
W (z) 0

0 A11 − z

)
×

×
(

I 0
(A11 − z)−1G1 I

)
,

(46)

where

W (z) =
(

A00 − z G∗

G HA − z − G∗
1(A11 − z)−1G1

)
. (47)

Thus, due to (46) and (22), the solution σA (t) of the truncated Stieltjes problem
generated by the extension A is given by the expression

∞∫
−∞

1
t − z

dσA;µν(t) =
〈
(A − z)−1êν0, êµ0

〉
=

〈
W (z)−1 êν0, êµ0

〉
. (48)

Introduce

ΘA(z) := Γn

(
Γ(1)

A;n(z) − zΓn

)−1

Γn, (49)

where

Γ(1)
A;n(z) :=

 Γ(1)
n−1

Cn+1

...
C2n

Cn+1 . . . C2n HA − G∗
1(A11 − z)−1G1

 , (50)

and let

(∆A;µν(z))s
µ,ν=1 , Imz > 0,

be the upper left s × s block of ΘA(z). The considerations similar to those in the
proof of Theorem 3.1, now show that〈

W (z)−1êν0, êµ0

〉
= ∆A;µν(z). (51)

Put

tA(z) = G∗
1(A11 − z)−1G1

and compare the expressions (49)–(51) to (29)–(31).
We conclude that the replacement of the matrix H by the matrix function

HA−tA (z) on both sides of (41) cannot violate this equality at least for z ∈ (−∞, 0).
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Therefore

∞∫
−∞

1
t − z

dσA(t) =

= − (En(z) (RA(z) + zI) − En−1(z)) (Dn(z) (RA(z) + zI) − Dn−1(z)) ,

RA =
(
Γ−1

n

)−1

nn
Λn + (tA(z) − HA)

(
Γ−1

n

)
nn

, Imz �= 0.

If N � DA, then the representation (43) is not valid anymore. However, due to
the representation H = Ln−1 ⊕H′′, H′′ = N ⊕H′

, we can write

A =
(

A00 G∗

G A11

)
, (52)

where A00 and G are defined as before and A11 is some non-negative self-adjoint
operator in H′

. The Schur–Frobenius factorization by virtue of (52) then yields:

(A − z)−1 =
(

WA;00(z)−1 WA(z)−1G∗(A11 − z)−1

(A11 − z)−1GWA(z)−1 WA;11(z)−1

)
. (53)

Here
WA;00(z) = A00 − z − G∗(A11 − z)−1G, (54)

and

WA;11(z)−1 = (A11 − z)−1 + (A11 − z)−1GWA;00(z)−1G∗(A11 − z)−1. (55)

Let Pn be the orthogonal projector of Ln onto H and let

ΞA(z) = PN (A11 − z)−1|N , Imz �= 0. (56)

Due to (53) and (55), the generalized resolvent

Rz(A) := Pn(A11 − z)−1|Ln

of A can be represented in the form

Rz(A) =
(

WA;00(z)−1 WA;00(z)−1G∗ΞA(z)
ΞA(z)GWA;00(z)−1 ΞA(z) + ΞA(z)GWA;00(z)−1G∗ΞA(z)

)
, (57)

Imz �= 0.

Then the expressions (54) and (57) can be used to verify, by direct calculations, that

Rz(A) =
(

A00 − z G∗

G ΞA(z)−1

)−1

, Imz �= 0. (58)
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Next, we compare (58) and (47) to conclude that in the general non-degenerate
case the solution σA(t) of the truncated Stieltjes moment problem generated by a
non-negative self-adjoint extension A of A0, is also defined as the upper left s × s

block of the matrix function

Γn

(
Γ(1)

A;n(z) − zΓn

)−1

Γn,

where

Γ(1)
A;n(z) :=

 Γ(1)
n−1

Cn+1

...
C2n

Cn+1 . . . C2n ΞA (z)−1 + z

 . (59)

Let S be the subset of R consisting of all Nevanlinna s × s matrix functions
t(z), Imz > 0 which admit the integral representation

t(z) =

∞∫
0

1
t − z

dρ(t)

with a non-decreasing s × s matrix function (Cs operator) σ(t) such that

∞∫
0

dρ(t) < ∞.

It is evident that the operator functions tA(z), ΞA(z) ∈ S.
On the other hand, we can make use of the usual constructions of the spectral

theory of linear operators in the Hilbert spaces to verify that any function Ξ(z) ∈ S

with the values on the set of linear operators acting in N admits the realization
(56), i.e. for such a function there is a non-negative operator A11 in a Hilbert space
N ⊕H′

such that for Ξ(z) the equality (56) holds. However, the functions ΞA which
are connected with non-negative extensions A which in turn generate the solutions
of the Stieltjes problem, satisfy the additional condition: they are such that for any
λ < 0 the block operator Rλ(A) defined by (58) is positive.
Introduce now the block matrix(

Γ(1)
n−1 − z

)−1

= (bjk(z))n−1
j,k=0 , z /∈ [0,∞),

where bjk(z) are s × s matrix functions. The latter requirement on Ξ is equivalent
to the condition

Ξ (λ)−1 −
n−1∑

j,k=0

Cn+j+1bjk(λ)Cn+k+1 > 0, λ < 0. (60)
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Notice that the matrix function on the left-hand side of (60) is non-increasing
on the negative half-axis. Therefore, we can formally admit that some elements of
Ξ(0)−1 are +∞, and substitute (60) by the condition

Ξ(−0)−1 −
n−1∑

j,k=0

Cn+j+1bjk(λ)Cn+k+1 ≥ 0. (61)

We have thus proven the following theorems.

Theorem 4.1. Let the conditions of Theorem 2.1 hold and detΓn > 0, and let∆Ξ(z)
be the upper-left block of the matrix function

Γn

(
Γ(1)

Ξ;n(z) − zΓn

)−1

Γn

where

Γ(1)
Ξ;n(z) :=

 Γ(1)
n−1

Cn+1

...
C2n

Cn+1 . . . C2n Ξ (z)−1 + z

 .

Then the relation ∞∫
−∞

1
t − z

dσΞ(t) = ∆Ξ(z), Imz > 0,

establishes the one-to-one correspondence between the set of all solutions of the trun-
cated Stieltjes matrix moment problem with the given moments {C0, . . . ,C2n} and
the subset of the Nevanlinna matrix functions Ξ from S which satisfy (60).

Theorem 4.2. Let the conditions of Theorem 4.1 hold. Then the formula

∞∫
−∞

1
t − z

dσΞ(t) =

= − (En(z) (RΞ(z) + zI) − En−1(z)) (Dn(z) (RΞ(z) + zI) − Dn−1(z)) ,

RΞ =
(
Γ−1

n

)−1

nn
Λn − Ξ(z)−1

(
Γ−1

n

)
nn

, Imz > 0,

establishes the one-to-one correspondence between the set of all solutions σΞ (t) of the
truncated matrix Stieltjes problem and the subset of the Nevanlinna matrix functions
Ξ ∈ S which satisfy (60).
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