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Abstract: Impact of soil water regimes on physiological responses and water use efficiency (WUE) for
Vigna unguiculata L. Walp. (cowpea) inoculated with rhizobia still remains implicit. Therefore, the goal
of the current study was to examine the leaf gas exchange, abscisic acid (ABA) and hydraulic signaling,
WUE and carbon and oxygen isotopic compositions (δ13C and δ18O) of cowpea under different soil
water levels. The treatments included soil water regimes at three levels (90%, 70%, and 50% of soil
water holding capacity (SWHC)) and two inoculation forms (inoculated and non-inoculated with
rhizobia). The results showed that across the inoculation treatments, reduced soil water regimes
depressed both stomatal conductance (gs) and photosynthesis (An) of the leaves, nonetheless, the
decrease of gs was more pronounced compared with the reduction in An. Consequently, the intrinsic
water use efficiency (WUEi) was improved in the treatments under decreased soil water conditions.
Plant WUE was also improved when soil water contents decreased as exemplified by the increased
leaf δ13C and δ18O, indicating the enhanced plant WUE was mainly attributed to the decrease of gs.
Significant interactions between soil water regimes and rhizobia treatments for root water potential
(RWP), leaf water potential (LWP), and gs were found due to the different responses of rhizobia to
varied soil water regimes. Inoculation could improve plant water status and gs under 70% and 90%
SWHC compared to 50% SWHC with negative effect from rhizobia. A moderate soil water regime is
suggested for cowpea production in terms of high WUE with a minor biomass reduction.

Keywords: abscisic acid; δ13C; δ18O; rhizobium inoculation; stomata; water potential

Water 2019, 11, 498; doi:10.3390/w11030498 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
http://www.mdpi.com/2073-4441/11/3/498?type=check_update&version=1
http://dx.doi.org/10.3390/w11030498
http://www.mdpi.com/journal/water


Water 2019, 11, 498 2 of 15

1. Introduction

Water deficit represents the most important restriction for biomass production in many tropical
areas of developing countries [1]. Compared to other legumes, cowpea (Vigna unguiculata L. Walp.) is
a vital food legume that has been cultivated successfully in tropical and sub-tropical regions where
water is scarce [2,3]. It is a major source of dietary protein for humans as well as for animal feeding [4],
and it can grow under limited water and high temperatures in low fertility soils. Further, it has the
capacity to fix nitrogen which improves soil fertility. Therefore, it is considered as one of the important
crops under future climate change scenarios where an increase in temperature and reduction in rainfall
has been predicted in these regions [5]. Nowadays, cowpea is critical in saving the lives of people
in Africa and other developing countries, as cowpea is the major crop for food security. However,
in cowpea production most of the African farmers depend largely on natural rainfall, which is low
and erratic, resulting in low and unstable yield [6]. Therefore, a better understanding of cowpea’s
responses to water stress is essential for improving yield and quality under future climate scenarios.

Stomata of leaves become partially closed in response to drought stress, which regulates
the photosynthesis and transpiration rate and consequently modulates water use efficiency
(WUE) [7,8]. Many studies on cowpea found that drought stress reduced photosynthesis (An), gs

and transpiration [9–11]. It has been shown that drought stress increased endogenous abscisic acid
(ABA) concentration in leaves of cowpea, which induces partial stomatal closure even at moderate
soil water deficits [12–14]. In addition, hydraulic signals communicate the water status between
root and shoot, regulating stomatal aperture, photosynthesis, and plant performance under limiting
water availability [15]. Leaf or plant level WUE increases under moderate water stress [11,16–19],
and this provides great potential for sustaining crop yield in drought-prone environments [6,16,19].
Increasing WUE at the leaf level means either to maintain stomatal conductance (gs) lower, which
has more effect on transpiration than on photosynthesis, or to maintain high photosynthetic rate
simultaneously with decreasing gs [20–22]. Reduced irrigation regimes, such as deficit irrigation,
expose the plants to moderate drought stress, and this can induce chemical and/or hydraulic signaling,
thereby, modulating gs, hence, enhancing WUE [15,23].

Rhizobia is a soil microorganism which is considered as one of the major symbiotic fixers of
nitrogen [24]. Previous studies have demonstrated that rhizobia nodulation is affected by soil water
regimes [25]. Jemo et al. [26] observed that the nodulation of cowpea was significantly decreased
by water deficit at different soil phosphorus levels, presumably, due to the decreased infection and
nodulation rates. Yanni et al. [27] reported that inoculation with tolerant rhizobia could increase the
yield of seeds for the common bean in contrast to the non-inoculated plants under both well-watered
and water-deficit treatments. Figueiredo et al. [28,29] and Bano et al [30] noticed that rhizobia could
alleviate the drought stress for plants. However, the symbiotic efficiency was largely determined
by rhizobium strains applied and soil conditions [26,28,31,32]. Hence, whether and how inoculation
affects plant water status and leaf gas exchange in cowpea under varied soil water regimes is not well
documented because of the uncertain inoculation effect in response to rhizobia inoculation to cowpea
plants which have rarely been found to respond to inoculation [33]. Therefore, more researches are
still necessary to illuminate the impact of soil water regimes on physiological responses for rhizobia
inoculated cowpea.

Carbon isotopic composition (δ13C) of plants provides important information for long-term
measurement of WUE [7,34], which is regulated by An and/or gs. Furthermore, oxygen isotopic
composition (δ18O) of plants is influenced by gs but is not remarkably affected by An [35].
The concurrent measurements of δ13C and δ18O, therefore, can help to differentiate the relative
significance of An and gs on modulating WUE [35]. Therefore, the goal of the current study was
to examine how soil water regimes affect plant physiological responses and WUE for rhizobia
inoculated cowpea.
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2. Materials and Methods

2.1. The Growing Conditions and Treatments

The experiment was carried out between April and August 2017 in a temperature-controlled
glasshouse at the Chinese Academy of Agricultural Sciences (CAAS), Beijing, China. The average
temperatures in the day and night during the experimental period were 27 and 22 ◦C, respectively, and
the average air humidity was 70% during the experimental period. The photon flux density ranged
from 450 to 800 µmol m−2 s−1. The experimental pots with a 16 cm diameter and 22 cm height and
perforated holes at their basal parts were used. During the experimental period, leaching was not
observed from the bottom of the pots. The soil was naturally dried and sieved by a 5 mm mesh, and
then 6.72 kg of the soil was filled into each pot reaching a bulk density of 1.20 g dry soil cm−3. The soil
was sandy loam. The pot water-holding capacity of the soil was 35.0%, and the permanent wilting
point was 11.0%. The soil had a pH of 7.6, a total N of 1.0 g kg−1, and total C of 9.0 g kg−1. For each
pot, an equal amount of N, P, and K fertilizers were mixed homogeneously into the soil at the rate of
2.85 g pot−1, 5.75 g pot−1, and 1.88 g pot-1 as NH4NO3, KH2PO4, and K2SO4, respectively, to meet the
macronutrient demand during the growth period.

The treatments included three soil water regime levels (90%, 70%, and 50% of soil water holding
capacity (SWHC), denoted as 90, 70 and 50, respectively) and two inoculation forms (inoculated
and non- inoculated with rhizobia, designated as R and NR, respectively). The treatments with
90% of SWHC or NR were considered as control treatments for water and rhizobia inoculation
treatments, respectively. The experiment was a completely randomized design with four replications
for each treatment. The rhizobia (Bradyrhizobium japonicum, strain LXB0002) were provided by Leading
Bio-agricultural CO., Ltd (Beijing, China). The seeds were supplied by the International Crops Research
Institute for the Semi-Arid Tropics (ICRISAT). The seeds of cowpea (cultivar IT82E-18) were sterilized,
and then the recommended dose of 150 mL of inoculants per 80 kg of seeds was applied to the seeds
by mixing seeds homogenously with rhizobia. Three inoculated seeds were sown in each pot. Ten
days after germination, plants in each pot were thinned to one plant. The plants in the pots were
well irrigated, and twenty days after germination, the irrigation treatments were initiated. The soil
water contents in the pots were measured daily (15:30–16:00 by using a time domain reflectometer
(Soil Moisture Equipment Corp, Goleta, CA, USA). Two probes with the length of 15 cm were installed
in each pot, and then the soil water contents were measured. The plants were irrigated daily between
16:00 to 17:00. Plant water use was computed by irrigation quantity, soil water contents measured, and
the soil volume in the pots.

2.2. Sampling, Measurements and Analyses

The stomatal conductance (gs), evapotranspiration (E) and photosynthetic rate (An) were
measured weekly with photosynthetically active radiation at 1800 µmol m−2 s−1 with Li-6400 Portable
Photosynthesis System (Li-Cor Biosciences, Lincoln, NE, USA) from 9:00 to 11:00 am on upper fully
expanded leaves of plants. Sixty-one days after initiation of the irrigation treatment, the plants were
harvested. The sampling and measurements of roots and leaves for ABA concentration ([ABA]root

and [ABA]leaf), root and leaf water potential (RWP and LWP) as well as carbon and oxygen isotopic
compositions (δ13C and δ18O) followed the procedures described in Wang et al. [36]. The area of leaves
was determined by using a leaf area meter (model 3050A, Li-Cor Biosciences, Lincoln, NE, USA).
The dry weight of biomass samples was measured at 70 ◦C in the oven to constant weight. The water
use efficiency (WUE) of plants was computed as above-ground dry weight/plant water use. Intrinsic
water use efficiency (WUEi) was determined as An/gs.

2.3. Statistical Analysis

The data were firstly evaluated by Homogeneity test, and all the data followed the normal
distribution. Therefore, they were not transformed and were analyzed by two-way analysis of
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variance (ANOVA) with SPSS 23.0 software (IBM Corporation, New York, NY, USA). Differences
between treatments were tested when the value was less than 0.05 by Ducan’s multiple range test.
The significances for each experimental factor as well as the interactions between treatments were
obtained. Linear regression was deployed to determine the correlations between the parameters
determined by using SPSS 23.0 software (IBM Corporation, New York, NY, USA).

3. Results

3.1. Soil Water Changes

Daily average soil water contents differed significantly among the water treatments (Figure 1).
In the treatment with high soil water content, soil water contents remained around 24% during the
treatment period. Soil water contents were kept around 19% and 14% in the treatments with medium
and low soil water levels, respectively. The treatments with or without rhizobia inoculation had similar
soil water contents.
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Figure 1. Changes of daily average soil water contents in the pots under the soil water levels at 90%,
70%, and 50% of soil water holding capacity (SWHC) and rhizobia inoculation (with rhizobia (R) and
without rhizobia (NR)). Values are means ± standard error (SE) (n = 4).

3.2. Leaf Gas Exchange

The analysis across soil water treatments showed that the leaf gas exchange was not affected by
rhizobia inoculation (Figure 2), while soil water regimes significantly influenced the averaged An,
gs, and WUEi across the inoculation treatments. The treatment with high soil water content had the
highest An and gs, followed by the treatments with medium and low soil water contents. Consequently,
the WUEi increased under the treatments with low and medium soil water levels in comparison with
high soil water treatment. The significant interaction between water level and inoculation was found
for gs (Figure 2).
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Figure 2. Effect of soil water regimes and rhizobia inoculation on (A) averaged photosynthesis (An),
(B) stomatal conductance (gs), and (C) intrinsic water use efficiency (WUEi) of cowpea during the
experimental period. 50, 70 and 90 denote 50%, 70%, and 90% of SWHC. R and NR indicate inoculation
with and without rhizobia. Values are means ± SE (n = 8 for 90%, 70% and 50% of SWHC treatments
and n = 12 for R and NR treatments). Different letters indicate significant differences in the experimental
factor at p < 0.05 according to Duncan’s multiple range test.

3.3. Leaf Area and Root Nodule Number

Across the inoculation treatments, leaf area decreased significantly with the reduced soil water
contents (Figure 3). The high soil water treatment had the highest leaf area, intermediate under
treatment with medium soil water content, and lowest under treatment with low soil water content.
Nevertheless, leaf area was not affected by inoculation treatment. The number of root nodules was
increased by 36% when plants were inoculated with rhizobia, though the root nodule number was not
statistically different between the inoculation treatments across the soil water levels.
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Figure 3. (A) Leaf area and (B) root nodule number of cowpea under different soil water regimes (90%,
70%, and 50% of SWHC) and rhizobia inoculation. Values are means + SE (n = 8 for 90%, 70%, and
50% of SWHC treatments and n = 12 for R and NR treatments). Different letters indicate significant
differences in the experimental factor at p < 0.05 according to Duncan’s multiple range test.

3.4. Plant Water Status and ABA Concentration

When analyzed across the inoculation treatments, LWP was similar under different soil water
regimes whereas RWP was significantly decreased under the water-stressed treatments (Figure 4).
Rhizobia inoculation had no significant effect on LWP and RWP. However, the interactions between
water level and rhizobia treatment for LWP and RWP were significant (Figure 4). [ABA]root and
[ABA]leaf were similar among the soil water treatments or between the inoculation treatments
(Figure 5).
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Figure 5. (A) Leaf abscisic acid and (B) root abscisic acid (ABA) concentration of cowpea under different
soil water regimes (90%, 70%, and 50% of SWHC) and rhizobia inoculation. Values are means + SE
(n = 8 for 90%, 70%, and 50% of SWHC treatments and n = 12 for R and NR treatments).
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3.5. Biomass Accumulation, Plant Water Use, Water Use Efficiency, Plant δ13C and δ18O

Across the inoculation treatments, the above-ground dry biomass, plant water use, and WUE
differed significantly among the soil water regimes, while they were similar between the inoculation
treatments (Table 1). Plants under medium and low soil water treatments consumed significantly
less water compared with the well-watered treatment. The biomass accumulation was significantly
decreased in the low soil water treatments compared to the medium and high soil water treatments.
The treatments with medium and low soil water contents had significantly higher plant WUE than that
in the treatment with high soil water content. The low soil water treatment had the highest plant δ13C
and δ18O, intermediate under treatment with medium soil water content, and lowest under treatment
with low soil water condition. WUEi was significantly positively correlated with leaf δ13C (Figure 6).
Furthermore, significant positive linear relationships between plant δ18O and gs, between plant δ18O
and E, and also between plant δ18O and δ13C were observed.

Table 1. Effect of soil water regimes, rhizobia inoculation and their interactions on biomass
accumulation, plant water use, water use efficiency (WUE), plant carbon and oxygen isotopic
compositions (δ13C and δ18O) of cowpea under different soil water regimes (90%, 70%, and 50%
of soil water holding capacity (SWHC)) and rhizobia inoculation. Values are means ± SE (n = 8 for
90%, 70%, and 50% of SWHC treatments and n = 12 for inoculated and non- inoculated (R and NR)
treatments). Means with different letters indicate significant differences and ns denotes not significant
at p < 0.05 according to Duncan’s multiple range test.

Factors
Above-Ground

Dry Biomass
(g plant−1)

Plant Water
Use

(L plant−1)

WUE
(g L−1)

Plant δ13C
(h)

Plant δ18O
(h)

Water level
90 162.9 ± 10.1a 48.1 ± 2.1a 3.4 ± 0.1b −27.41 ± 0.16b 26.89 ± 0.27b
70 138.5 ± 8.2a 36.4 ± 1.5b 3.8 ± 0.1a −26.67 ± 0.15a 27.38 ± 0.29ab
50 80.9 ± 2.6b 22.7 ± 0.9c 3.6 ± 0.1ab −26.50 ± 0.32a 27.86 ± 0.10a

Significance *** *** * * *

Inoculation
R 123.0 ± 13.0 34.8 ± 3.6 3.5 ± 0.1 −27.03 ± 0.23 27.21 ± 0.25

NR 135.0 ± 11.9 37.8 ± 3.4 3.6 ± 0.1 −26.74 ± 0.17 27.50 ± 0.18
Significance ns ns ns ns ns

Water level x Inoculation
Significance ns ns ns ns ns

*, *** Indicate significance levels at p < 0.05 and p < 0.001, respectively; ns denotes no significance.
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4. Discussion

Increasing WUE is becoming crucial in improving crop productivity under water stress conditions.
When analyzed across the inoculation treatments, soil water regimes showed a significant effect on
leaf gas exchange and WUE at the leaf level (WUEi) (Figure 2). The An and gs decreased with the
reduction of soil water regimes. WUEi increases when a reduction in gs is more prominent than in
An [37]. The results showed that gs was impaired more significantly than the An by the partial closure
of stomata under deficit soil water conditions. Consequently, medium and low water treatments
increased WUEi compared with high soil water treatment. This indicates that the significant reduction
in gs was primarily responsible for the increase of WUEi in the treatments with medium and low
soil water regimes. A decrease in An and gs under water deficit was previously observed in cowpea
plants when irrigation was maintain lower than 70% of soil water holding capacity [9–11,17,38].
The severe water stress in the low water treatment inhibited physiological activities, and consequently,
led to decreased leaf biomass growth [23,39,40]. For the medium soil water treatment, RWP, leaf
area, and biomass growth were also depressed to some extent. However, they were not decreased
significantly when compared with those under the high soil water regime. Chemical and/or hydraulic
signaling can play crucial functions during water stress, such as they act on stomatal regulation
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and transpiration [23,41–43]. Previous studies have reported increased leaf ABA concentration in
cowpea plants under water stress after withholding water or at soil water content between 20% and
30% [3,13,44]. Similarly, Luchi et al. [12] also reported that water stress imposed by withholding water
for one month resulted in a significant increase of [ABA]leaf in cowpea plants. However, in the present
study, similar [ABA]leaf and [ABA]root were found under different soil water regimes, though an
increase in [ABA]leaf and [ABA]root by 18% and 17% was observed in the treatment with low soil water
content in comparison with the high soil water regime. In the current study, reduced soil water regimes
significantly reduced RWP, which could decrease leaf expansion and gs in the deficit water treatments.
Previous studies documented that cowpea plants could maintain leaf water status to overcome limited
water supply as exemplified by an insignificant change in LWP after withholding water [38]. In the
current study, LWP was sustained under the water-stressed treatments compared to the high water
treatment. This indicated that when the cowpea plants were under water-stressed conditions, they
quickly adapted to such conditions via decreasing leaf expansion and stomatal opening, thus, the
leaf water status was maintained compared with well-watered plants. Likewise, Verbree et al. [45]
found that cowpea did not show any significant differences in LWP after three weeks of withholding
irrigation. It is noteworthy that, inoculation with rhizobia did not show a significant effect on plant
physiological activities across the soil water treatments, however, significant interactions between soil
water regimes and rhizobia treatments were observed for LWP, RWP, and gs. This indicated that the
impact of rhizobia on LWP, RWP, and gs was dependent on the specific soil water regimes. The results
showed that under the treatments with 70% and 90% SWHC, rhizobia inoculation increased RWP, LWP,
and gs, however, under treatment with 50% SWHC, inoculation with rhizobia showed a negative effect
on plant water status and stomatal opening (data not shown). Similarly, Tairo et al. [46] reported a
significant interaction between water stress and rhizobia in common bean (P. vulgaris) and noticed that
applying rhizobia inoculation and stressing plants with water enhanced plant growth and seed yield.
In future studies, the interactions between soil water regimes and rhizobia merit further investigation.

Previous studies in cowpea showed an increase of WUE at the whole plant level under limited
water supply [47]. In the present study, plants under the medium and low water treatments improved
WUE by 12% and 6% compared with the treatment with high soil water content. However, other
studies observed decreases in WUE in some cowpea varieties when soil water potential was maintained
at −75 kPa [9]. This variation of WUE under limited water supply may be due to the differences in the
cultivar used, the intensity of the stress imposed, and the environmental conditions [48]. To explore
further how the WUE were regulated by leaf gas exchange during the treatment period as affected by
different soil water regimes, carbon and oxygen isotopic composition were determined as long-term
time-integrated measurements. Many studies have shown that water stress increases δ13C in plant
biomass [6,18,49]. In good agreement with this, a significant increase of δ13C value was observed
in the plants under low and medium water treatments together with improved WUE in these two
treatments compared to the high water treatment (Table 1). Previous studies have reported a positive
correlation between plant δ13C and WUE [21,50–52]. The results showed that plant δ13C was positively
and linearly correlated with WUEi. The difference in plant δ13C is caused by either variation in gs or
An, or both [34,53]. As mentioned above, in the current study, both gs and An were decreased in the
treatments with reduced soil water regimes. However, gs decreased more pronouncedly compared
with the reduction in An in these treatments. To further differentiate the impact of these two factors
on modulating WUE, oxygen isotopic composition (δ18O) was determined in the present study to
indicate time-integrated measurement of gs during the treatment period, as plant δ18O is mainly
influenced by changes in gs and transpiration in comparison with variations in An. Hence, plant
δ18O can be used to differentiate whether differences in δ13C are mainly a result of variations in gs or
An [34,42,54,55]. As expected, the medium and low soil water treatments increased δ18O values by
3h and 4h, respectively, when compared with those under the high soil water regime. Significant
negative linear relationships were found between plant δ18O and gs as well as between plant δ18O and
E (Figure 6). It is said that when gs determines the variations of δ13C, a positive relationship between
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δ18O and δ13C should exist [54–58], which was found in our study (Figure 6). This indicates that the
increased δ13C and WUE in the treatments with decreased soil water regimes were mainly attributed
to the reduced gs.

Nodulation was not significantly affected by soil water regimes or rhizobia inoculation, though
plant inoculated with rhizobia increased their nodule number compared to those non-inoculated.
Consequently, inoculation showed minimal relation with plant growth and physiological responses.
Similar results have been reported in previous studies in cowpea but not in conditions of water
stress [59,60]. They studied the effect of rhizobia inoculation in different soil types under well-watered
condition and concluded that rhizobia were ineffective to improve biomass production and the number
of nodules. Ulzen et al. [61] reported contrasting responses of rhizobia inoculation in two sites
inoculated even with the same strains under rainfall condition and concluded that the non-response
of rhizobia at Nyagli site was due to the lower native number of strains and other unknown factors.
Furthermore, some previous studies found that cowpea inoculated with two glums species did not
significantly affect leaf gas exchange under the volumetric soil water content around 8% [62]. Similarly,
the ineffectiveness of rhizobia was also reported in soybean [63,64]. Nonetheless, Figueiredo et al. [65]
noted that water deficit significantly decreased nodule number and weight for cowpea at more
negative soil water potential lower than −60 kPa. Likewise, Mouradi et al. [32] reported that water
stress level at 40% of SWHC significantly reduced the number and dry weight of nodules for alfalfa.
In the above-mentioned studies, it is noteworthy that the symbiotic efficiency varied according to
specific rhizobium strains in response to soil water regimes. Catroux et al. [66] reported that the
effectiveness of inoculants is largely determined by the rhizobia available to effectively be involved in
the process of infection in the soil after application. It appears that the efficiency of rhizobium strains
is largely dependent upon the tolerance of rhizobia and the varied soil environments which cause
the discrepancies for the results in the above-mentioned studies. In the present study, the strain of
the rhizobia might not be tolerant to water stress, or the symbiotic effectiveness of the inoculation
might be negatively affected by water deficit, leading to the trivial impact of rhizobia inoculation
on plants. Therefore, more researches are still needed to further examine plant WUE as regulated
synchronously by soil water contents and inoculation with varied strains of rhizobia. Importantly,
before the application of rhizobium strains in the field, investigations should be made to examine the
inoculation efficiency of rhizobium strains and their relations with soil environments for specific crops.

5. Conclusions

Reduction in soil water regimes decreased stomatal conductance (gs), and depressed
photosynthesis rate (An), nonetheless, gs decreased more pronouncedly compared with the reduction
in An regulated mainly by hydraulic signals for cowpea inoculated with rhizobia. In consequence,
WUEi was improved under reduced soil water regimes. Plant δ13C and WUE increased significantly
under the medium and low water treatments. Leaf δ18O indicated that the increase of leaf δ13C and
WUE in the condition with decreased soil water contents were principally ascribed to the decrease of
gs. Moderate soil water content is suggested for cowpea production in terms of high WUE with mild
biomass reduction. When rhizobia are used for crop production, it is suggested that the effectiveness
and benefit of strains are tested in specific locations even in the same growing zone.
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