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Abstract

Since its announcement made on Sept. 6, 2011, the Swiss National Bank (SNB)

has been pursuing the goal of a minimum EUR/CHF exchange rate of 1.20, promising

to intervene on currency markets to prevent the exchange rate from falling below this

level. We use a compound option pricing approach to estimate the latent exchange

rate that would prevail in the absence of the SNB’s interventions, together with the

market’s confidence in the SNB’s commitment to this policy.

∗This paper was presented at the 11th Int. Conference on Computational Management Science (Lisbon,
May 2014) and the research seminar of the Swiss National Bank (Zurich, Oct. 2014). We are grateful
to Christian Grisse for pointing out an error in a previous version of this paper. Poulsen gratefully
acknowledges support from the Danish Strategic Research Council under contract number 10-092299, the
research center ‘HIPERFIT’.
†Corresponding author. Universitetsparken 5, DK-2100 Copenhagen. E-mail: rolf@math.ku.dk; Tel.:

+45 3532 0685

1



Keywords: exchange rate options, latent exchange rate, compound options

JEL classification: G13, F31, E58

1 Introduction

In the early 2000s, the EUR/CHF exchange rate hovered around 1.6, with a low of 1.444

in September 2001 and a high of 1.679 in October 2007. From 2008 onwards, the euro

depreciated markedly and almost reached parity on August 11, 2011. This strength of the

Swiss franc posed a severe problem especially for Swiss and Liechtenstein exporters,1 which

spurred calls for interventions on the part of the Swiss National Bank (SNB). The SNB

acted by announcing on Sept. 6, 2011, to enforce a minimum exchange rate of 1.20 Swiss

francs per euro, together with a commitment to buy euros in unlimited quantity in order

to reach this goal. The SNB did not indicate any specific time frame for this policy, but

hinted at possible further measures if necessitated by economic prospects and deflationary

risks.2

Until the time of writing (May 2014), this policy was successful: Since its inception, the

exchange rate has always been at or above 1.20 (disregarding very short-term and minor

violations of this intervention level). This, however, comes at the risk of domestic inflation.

Especially in the first few months after announcing this policy, the SNB’s euro reserves

grew markedly, whereas in late 2012, the SNB managed to get rid of a sizable portion of

its euro position without causing a slump in the exchange rate. The SNB has been called

upon its promise repeatedly since September 2011 and has proven its commitment on these

occasions.

From an economic point of view, this raises the question where the EUR/CHF exchange

rate would be without the SNB’s policy. This question is at the core of the present paper.

Out of a number of possible approaches, we opt for an option-pricing setting, modeling

traded options on the exchange rate as compound options on the latent exchange rate

process that would prevail in the absence of the SNB’s policy. As a by-product, we derive

market estimates of the credibility of the SNB’s commitment to the intervention level of

1.20 in the form of probabilities for a policy change occurring before the traded options’

maturities. Part of the desired effect on the exchange rate level might come from decreased

speculation following the SNB’s announcement. One limitation of our approach is that we

1Liechtenstein also uses the Swiss franc as its official currency.
2See http://www.snb.ch/en/mmr/reference/pre_20110906/source/pre_20110906.en.pdf for the

original SNB press release.
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do not attempt to measure the amount of speculation in the market or its effects on the

observed exchange rate.

We are unaware of any other paper that tries to infer the latent exchange rate pro-

cess from observed exchange rates in the presence of central bank interventions. The

related paper by Hertrich and Zimmermann (2014) also uses an option-based analysis of

the EUR/CHF exchange rate, but has a different focus: Its main goal is to assess the

credibility of the SNB’s commitment to the intervention level of 1.20. As an earlier contri-

bution, Malz (1996) uses an option pricing approach based on a jump-diffusion process for

the exchange rate to study the probability of an exchange rate leaving a specified target

zone. Both models will be discussed and compared to the approach used in the present

paper in Section 2.1.

The paper is structured as follows: Section 2 describes modeling of the exchange rate in

more detail, relating our approach to the literature. Section 3 discusses the option pricing

model. Section 4 describes our data and details the estimation procedure. Section 5

presents the empirical results, and Section 6 concludes.

2 Exchange rate modeling

In this section, we describe our approach to modeling the EUR/CHF exchange rate before

and after the SNB’s policy announcement on Sept. 6, 2011. This will be the basis for the

option pricing model laid out in Section 3. To point out the differences of our model to

related papers, we start by a description of the models used by Malz (1996) and Hertrich

and Zimmermann (2014). Fig. 1 shows the development of the EUR/CHF exchange rate

from Jan. 2011 to Oct. 2013. The political and banking crises in the eurozone in the second

and third quarters of 2012 caused the EUR/CHF exchange rate to decrease towards the

intervention level of 1.20, which was tested several times, e.g., in April 2012.

2.1 Related literature

Malz (1996) studies the behavior of the GBP/DEM exchange rate in the years 1990-

1992. The British pound became part of the so-called Exchange Rate Mechanism (ERM),

which marked an important step towards the euro. A target rate was fixed towards the

European Currency Unit (ECU), together with a ±6% fluctuation band. Due to political

and economic shocks during the observation period, there was speculation about a possible

realignment of this target rate (Malz, 1996, p. 721). Malz uses a jump-diffusion process to
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Figure 1: EUR/CHF exchange rate from Jan. 2011 to Oct. 2013. On Sept. 6, 2011 (vertical
dashed line), the SNB announced its commitment to enforce a minimum exchange rate of
1.20 Swiss francs per euro.

capture what he considers to have been the prevailing market view of the likely consequence

of such a realignment: A sudden jump in the value of the observed exchange rate, but no

change in exchange rate volatility. While the assumption of unchanged volatility may be

justified for the type of realignment studied by Malz, it is quite different from the likely

consequences of a revocation of the SNB’s minimum exchange rate policy. Fig. 1 shows that

the EUR/CHF exchange rate volatility declined sharply following the SNB’s announcement

on Sept. 6, 2011. Moreover, in the second and third quarters of 2012, the EUR/CHF rate

approached the intervention level of 1.20. At the same time, exchange rate volatility

reached historical lows, which clearly indicates level-dependence in volatility. Since the

jump-diffusion process used by Malz (1996) assumes volatility to be level-independent, it

is not suitable for the economic situation analyzed here. Moreover, this model assumes that

a realignment event is triggered externally, which means that realignment probabilities are

independent of the current level of the process. In the case of the SNB’s minimum rate

policy, we can reasonably assume that the probability of an end to the SNB’s commitment is

higher when the exchange rate is close to the intervention level. Hui and Lo (2009) analyze

the same situation and data as in Malz (1996), but use a first-passage time approach to

estimate realignment probabilities. This overcomes an important limitation of Malz (1996)

by modeling these probabilities as path-dependent, i.e., they increase when the exchange

rate approaches the boundaries of the target-rate band. However, the economic situation
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of a target-rate band differs from that of the SNB’s minimum rate policy, which is why Hui

and Lo model the exchange rate before the realignment event as mean-reverting. Since

a pronounced increase in the EUR/CHF rate, which would move the exchange rate way

above 1.20 (say, to 1.35) would not be a reason for an intervention on the part of the SNB, a

mean-reverting process does not seem to be an adequate model for its minimum rate policy.

Neither approach, whether treating realignment probabilities as external (Malz, 1996) or

internal (Hui and Lo, 2009), is designed to model the exchange rate before and after the

realignment event in an internally consistent manner: Both use descriptive processes with

different parameters before and after realignment, whereas the minimum rate policy of the

SNB allows us to put more structure on the link between these two phases. This will be

an important aspect for the modeling approach taken in the present paper, which will be

discussed in Section 2.2.

Hertrich and Zimmermann (2014) model the EUR/CHF exchange rate in the presence

of the SNB’s commitment as a geometric Brownian motion (GBM). Observing non-zero

prices for put options with strikes below an exchange rate of 1.20, they conclude that this

minimum exchange rate is not perceived as fully credible by the market. To rationalize

non-zero prices for puts with strikes below 1.20 while maintaining the GBM assumption for

the observed exchange rate, they invoke the additional assumption of a market-anticipated

decrease of the intervention level of 1.20 to a – fully credible – lower level b < 1.20.

They use this lower bound b as a reflection barrier on the geometric Brownian motion.

Option pricing in such a setting has first been studied by Veestraeten (2008), with an

extension for continuous dividend yields provided by Hertrich and Veestraeten (2013). We

do not use the Hertrich and Zimmermann (2014) approach in the present paper for the

following reasons. First, the assumption of an anticipated reset of the intervention level to

a level b < 1.20 seems difficult to justify: If, at some stage, the SNB should be unable or

unwilling to defend an exchange rate of 1.20, markets simply would not perceive resetting

the intervention level to, e.g., 1.15 as credible. Moreover, the Hertrich and Zimmermann

(2014) model implicitly assumes the barrier b to exist forever, but allows the level of the

barrier to change daily, with sizable fluctuations (Fig. 6 in Hertrich and Zimmermann, 2014,

p. 35). Second, their model treats the observed exchange rate process as external and does

not address consistency between observed exchange rates and their process assumptions.

Observing the exchange rate path in the second and third quarters of 2012 (cf. Fig. 1) is

extremely unlikely given the assumption of GBM. The put option implied by the SNB’s

policy, which will be discussed in Section 2.2, affects the observed exchange rate process,
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e.g., by decreasing volatility when exchange rates approach the intervention level. These

effects are ignored when assuming a GBM for the observed exchange rates in the presence of

the SNB’s policy. Third, the model requires historical volatilities to estimate the reflection

barrier b. Thus, it assumes a constant exchange rate volatility, which is clearly at odds

with the empirically observed exchange rate process (see Fig. 1).

2.2 Modeling observed and latent exchange rates

In contrast to Hertrich and Zimmermann (2014), our model for the EUR/CHF exchange

rate is designed to apply both in the presence and in the absence of the SNB’s policy,

and it links the two regimes in an internally consistent manner. It explicitly accounts for

a possible future removal of the intervention level of 1.20, which allows us to estimate

the corresponding probabilities of such a removal before the expiration of traded options.

Furthermore, we endogenize the observed exchange rate process by explicitly considering

the value of the SNB’s policy to the holders of euros. For each euro in the market, the

SNB’s promise to defend a level of 1.20 can be interpreted as an American put option with

uncertain lifetime. Once a euro is bought by the SNB, the put option becomes meaningless,

given that the writer of the put now holds the underlying. If the SNB sells the euro

again, it comes with a newly written put. Since the SNB’s announcement, the observed

exchange rate reflects the value of this put option. Denoting the EUR/CHF exchange

rate before Sept. 6, 2011, by Vt, this leads to two processes from this date onwards: The

observed exchange rate St is the sum of the latent exchange rate Vt (“freely floating”, no

longer observable) and the value of the American put option. Once the SNB abandons its

minimum exchange rate policy, St will be equal to Vt again.

Instead of trying to explain the exchange rate by fundamental factors, we follow the

literature discussed in Section 2.1 and choose a descriptive model, specifying a stochastic

process for Vt. Using option pricing theory, we compute the corresponding process for the

observed exchange rate St in the presence of the SNB’s policy. Market data are then used

to calibrate the model and back out the latent exchange rate process Vt from the observed

exchange rate and traded exchange rate options.

We use the following notation:

• Vt. . . value of the EUR/CHF spot exchange rate at time t without the SNB’s minimum

exchange rate policy (observable until Sept. 5, 2011, unobservable since, and again

observable upon revocation of the policy),
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• σV . . . the volatility of Vt,

• rt and it. . . domestic (CHF) and foreign (EUR) spot rates,

• K. . . intervention level imposed by the SNB, equal to 1.20,

• St. . . observed EUR/CHF spot exchange rate; in the absence of the SNB’s policy,

St=Vt, whereas in the presence of the policy, St is given by

St(Vt, ·) = Vt + PA(Vt, ·), (1)

where PA(Vt, ·) is the value of the American put option implied by the SNB’s policy,

• τt. . . maturity of this American put option.

We model Vt using a geometric Brownian motion, mainly for reasons of simplicity and

robustness. We note that for a zero risk-free rate and positive dividend yield, an American

put should never be exercised early, making its price equal to that of a European put.

This result is less well-known compared to the “no-early-exercise” result for American call

options on non-dividend-paying underlyings. Using the well-known no-arbitrage relation

P (Vt, K, τt, ·) > K exp(−rtτt)− Vt exp(−itτt) for the European put option and noting that

the intrinsic value K − Vt < P (Vt, K, τt, ·) for rt = 0 and it > 0 proves non-optimality of

early exercise.

Short-term interest rates on the Swiss franc between the inception of the minimum

exchange rate policy and the time of writing were very close to zero, with interest rates on

the euro (the “dividend yield” of the underlying) consistently above Swiss franc interest

rates. This justifies treating the American put representing the SNB’s policy as European,

which allows us to use the Garman and Kohlhagen (1983) model for its valuation:

PA(·) ' P (Vt, K, rt, it, τt) = Ke−rtτtN(−d2)− Vte−itτtN(−d1) (2)

d1 =
ln(Vt/K) + (rt − it + σ2

V /2)τt
σV
√
τt

, d2 = d1 − σV
√
τt. (3)

For European currency options, the following put-call parity relation holds:

Vte
−itτt + P (Vt, ·) = Ke−rtτt + C(Vt, ·). (4)

Our option pricing model in Section 3 will be based on rewriting equation (1) to approxi-
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mate St as

St(Vt, ·) ' Ke(it−rt)τt + C(Vt, ·), (5)

which is inspired by multiplying both sides in equation (4) by exp(itτt) and comparing

the resulting left-hand side to equation (1). To assess the error associated with this ap-

proximation, note that K=1.20, while Vt is expected to be roughly in the range of 1-1.15.

Observable exchange rates in the range 1.20-1.25 imply values for the put option P (Vt, ·) in

equation (4) of 0.1-0.2, and for the call option in the range 0-0.05. Replacing the right-hand

side in equation (1) by exp(itτt) times the right-hand side of equation (4) would increase

St by the interest (at rate it) on the put option. Part of this error has been reduced

in equation (5) by multiplying only K by exp(itτt), but not C(Vt, ·). Then, the error is

approximately

(eitτt − 1)[P (Vt, ·)− C(Vt, ·)]. (6)

During our sample period, the average value of it was 0.505%. Preliminary calculations

indicate values for τt (which can be interpreted as the market’s consensus estimate of the

expected end of the SNB’s policy) of 0.5-1 years. Using a value for τt of 0.75 and (from the

arguments provided above) a difference between put and call values of 0.1, equation (6)

gives an error of 3.8·10−4, which is much smaller than the accuracy achievable by our

method given the noise present in option prices/implied volatilities. For this reason, we

feel comfortable with replacing equation (1) by equation (5) as the basis for our option

pricing model in Section 3. The unobservable input parameters Vt, σV and τt will then be

estimated using market data. Data and estimation procedures will be described in more

detail in Section 4.

3 The compound option pricing model

Call and put options on the EUR/CHF exchange rate are standard options on Vt until

Sept. 6, 2011. Afterwards, they can be viewed either as standard options on St or as

compound options (as analyzed in Geske, 1979) on the latent exchange rate Vt. Once the

SNB changes its policy back to a freely floating exchange rate, these options will again

be standard options on Vt. Therefore, values of currency options depend on the market’s

estimate of the probability of such a policy change. As noted by Hertrich and Zimmermann

(2014), put options with strikes Xk ≤ K can only have a positive payoff if the policy change

happens before the option’s maturity. Positive prices for these options therefore imply that
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the market attaches a positive probability to a policy change before the options’ maturities.

Denoting the maturity of traded option k by τk,
3 two cases have to be distinguished:

With risk-neutral probability πτk,t, the SNB’s policy will still be in place when the option

expires, i.e., τt ≥ τk. This implies that with risk-neutral probability 1 − πτk,t, the option

payoff will not depend on St given by equation (1) (including the “SNB put”), but on Vt.

Since risk premia in currency markets are very small, risk-neutral probabilities will be close

to real-world probabilities, see, e.g., De Santis and Gérard (1998). Using γk for either call

or put options k on the exchange rate, we can write their values as

γk,t(Vt, ·) = πτk,tγt(St, Xk, ·) + (1− πτk,t)γt(Vt, Xk, ·) (7)

= πτk,tγt(Ke(it−rt)τt + Ct(Vt, K, τt, σV ), Xk, ·) + (1− πτk,t)γt(Vt, Xk, ·), (8)

where equation (8) follows from equation (5). The second part of equation (8) is just a

standard call or put option on Vt. The first part is a compound option (call on a call or put

on a call), because in this case τt > τk. If γk,t is a traded call, then on the first expiration

date τk its value is

Ck,τk(Vt, ·) =

max[Cτk(Vτk , K, τt − τk, σV )− (Xk −Ke(it−rt)τt), 0] with prob. πτk,t

max[Vτk −Xk, 0] with prob. 1− πτk,t
,

(9)

and in case of a put

Pk,τk(Vt, ·) =

max[(Xk −Ke(it−rt)τt)− Cτk(Vτk , K, τt − τk, σV ), 0] with prob. πτk,t

max[Xk − Vτk , 0] with prob. 1− πτk,t
.

(10)

Equations (9) and (10) hold if Xk−Ke(it−rt)τt > 0.4 In this case, the critical exchange rate

V ∗
τk

for the compound option part is (in both cases) given by

γt(V
∗
τk
, K, τt − τk, σV ) = Xk −Ke(it−rt)τt . (11)

3In light of the definition of τt, using τk instead of, e.g., τkt or τk,t is a slight abuse of notation. However,
since the options used in our empirical analysis have constant maturities of one and three months (without
any time dependence) and the meaning should be clear from the context, we prefer this notation for
reasons of brevity and simplicity. Furthermore, the distinction between the conditional/unconditional
time to maturity of the guarantee (τt) should be clear from the context.

4The case Xk −Ke(it−rt)τt < 0 will be treated at the end of this section.
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This allows us to derive the time t price of Ck in equation (9) as

Ck,t =πτk,t

[
Vte

−itτtN2

(
a+, b+;

√
τk/τt

)
−Ke−rtτtN2

(
a−, b−;

√
τk/τt

)
− e−rtτk(Xk −Ke(it−rt)τt)N(a−)

]
+ (1− πτk,t)

[
Vte

−itτkN(c+)−Xke
−rtτkN(c−)

]
,

(12)

and the time t price of Pk in equation (10) as

Pk,t =πτk,t

[
Ke−rtτtN2

(
−a−, b−;−

√
τk/τt

)
− Vte−itτtN2

(
−a+, b+;−

√
τk/τt

)
+ e−rtτk(Xk −Ke(it−rt)τt)N(−a−)

]
+ (1− πτk,t)

[
Xke

−rtτkN(−c−)− Vte−itτkN(−c+)
]
,

(13)

with:

a+ =
log(Vt/V

∗
τk

) + (rt − it + σ2
V /2)τk

σV
√
τk

, a− = a+ − σV
√
τk,

b+ =
log(Vt/K) + (rt − it + σ2

V /2)τt
σV
√
τt

, b− = b+ − σV
√
τt,

c+ =
log(Vt/Xk) + (rt − it + σ2

V /2)τk
σV
√
τk

, c− = c+ − σV
√
τk,

and N2(x, y; ρ) is the two-dimensional normal distribution function with correlation coef-

ficient ρ. If Xk −Ke(it−rt)τt < 0, the compound option component disappears, and pricing

of traded options reduces to the Garman-Kohlhagen model. For the out-of-the-money calls

used in our numerical analysis (see Section 4), this case never occurs. For the out-of-the-

money puts in our sample, the first summand in equation (13) is zero in this case.

4 Data and estimation process

We retrieve daily exchange rates from Thomson Reuters Datastream. Bloomberg provides

implied volatilities (annualized) for EUR/CHF calls and puts for various maturities and

deltas. For each trading day t, we use 8 options: Calls and puts with maturities of 1 and

3 months and deltas of 10 and 25 percentage points (“10D” and “25D”). For each of these

options, we convert the implied volatilities to prices using the Garman and Kohlhagen
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(1983) model. To this end, we start by determining the respective strikes corresponding

to the 10D and 25D levels for all options. As proxies for the risk-free interest rates, we

use the 3-month LIBOR rates in both currencies for all maturities. An alternative would

be to use repo rates. However, while the EUREPO is available for a range of maturities,

a repo rate for the Swiss franc is only available for a maturity of one week. We are

well aware of potential distortions in LIBOR rates resulting from varying credit risk and

liquidity premia. However, when it comes to option pricing, it is primarily the difference

between the interest rates in the two currencies that is relevant. This difference should be

rather similar regardless whether we compute it from LIBOR or from repo rates. Short-

term interest rates in both currencies were very low and close to flat throughout the sample

period (Sept. 7, 2011 until Oct. 11, 2013). Moreover, noise in implied volatilities from other

sources (cf. Table 1) dominates possible distortions arising from the maturity-dependence

of rates. For these reasons, we are comfortable with the assumption of a flat term structure

in each currency for each trading day at the level of the respective 3-month rate.

Figure 2 plots the implied (annualized) volatilities reported by Bloomberg against the

respective strikes, standardized by the observed exchange rate St on the corresponding

trading day. For each maturity (1M and 3M) and trading day, we have four options

available, two calls and two puts. Diamonds (1M) and squares (3M) indicate averages of

implied volatilities for 10D and 25D calls and puts for the respective maturities, which

are plotted against averages of the standardized strikes Xk,t/St. All averages are taken

across the entire dataset. Volatilities show the well-known symmetric smile pattern, which

is typical for currency options. Table 1 provides descriptive statistics of our options data,

both for the implied volatilities retrieved from Bloomberg and the option prices computed

from these implied volatilities using the Garman-Kohlhagen model. Option prices in our

sample fluctuate considerably, note in particular the high option price volatilities of one-

month put options (P1M10 and P1M25) in column 4, which are caused by high relative

price changes for very small option prices. Prices of this option category exhibit particularly

high levels of noise. Fluctuations of option prices decrease considerably at later stages of our

dataset, as shown in the final column for a subsample containing the last 50 observations

from our dataset.

The parameters to be estimated using exchange rate and option price data are Vt, σV ,

τt, π1/12,t and π3/12,t. We assume a fixed volatility σV across all eight options on each

trading day, i.e., a flat volatility across strikes and maturities for all eight options. An

alternative would be to explicitly account for volatility smiles and term structures (see

11



0.94 0.96 0.98 1 1.02 1.04 1.06
4

5

6

7

8

9

Average of X/S

A
v
er
a
g
e
im

p
li
ed

v
o
la
ti
li
ty

 

 

1M

3M

Figure 2: Average volatility smile for 1M and 3M EUR/CHF calls and puts over the entire
sample period (Sept. 7, 2011, to Oct. 11, 2013). Diamonds (1M) and squares (3M) indicate
averages of implied volatilities (annualized) quoted by Bloomberg for 10D and 25D calls and
puts for the respective maturities, which are plotted against averages of their standardized
strikes Xk,t/St. Lines shown interpolate between these points using splines.

Entire dataset Last 50 obs.
Impl. Vol. Averages of relative Volatility of Volatility of

Option Average option prices (×103) option prices (in %) option prices (in %)
C1M25 5.70 2.47 25.8 2.68
C3M25 6.14 4.63 12.6 0.90
C1M10 7.33 1.02 19.4 2.54
C3M10 7.66 1.86 17.2 0.74
P1M25 5.09 2.18 33.3 3.51
P3M25 6.22 4.57 13.7 2.19
P1M10 6.44 0.87 26.3 4.54
P3M10 8.18 1.87 10.8 3.08

Table 1: Descriptive statistics of the options used to estimate the parameters of the com-
pound option model. Sample period: Sept. 7, 2011 until Oct. 11, 2013 (total number
of observations: 547). Abbreviations in first column: First letter indicates call (C) or
put (P), next two letters indicate maturity (one month or three months), final two digits
indicate moneyness (10D or 25D). The next three columns provide statistics for the en-
tire dataset: The second column provides the averages of implied volatilities (annualized)
quoted by Bloomberg, which are also shown in Figure 2. The third column contains aver-
ages of relative prices Ck,t/St and Pk,t/St, computed from these implied volatilities using
the Garman-Kohlhagen model (multiplied by 103). The fourth column shows volatilities of
option prices (i.e., the annualized standard deviations of daily log returns computed from
option prices). The final column provides the volatilities of option prices (using the same
definition) computed for a subsample containing only the last 50 observations.
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Figure 2 for average smiles). However, smiles and term structures also vary over time,

and our main goal is to robustly estimate the latent exchange rate as opposed to pricing

each individual option as precisely as possible.5 We allow σV to vary over time when

re-calibrating our model on each trading day, which corresponds to the standard market

practice of assuming time-varying volatility when using the Black/Scholes-model and its

variants. To make this time-dependence explicit, we will write σV,t instead of σV from now

on. Using traded options with different maturities τk will result in different values for πτk,t.

The longer the maturity τk of the traded option, the higher the probability that the SNB’s

policy will end before the option’s maturity. Assuming a specific functional form for the

dependence of πτk,t on τk will reduce the number of parameters and stabilize the estimation

process. For simplicity and robustness, we postulate linear dependence between πτk,t and

τk to this end:

πτk,t = 1− gtτk. (14)

Hence, instead of a separate estimation of π1/12,t and π3/12,t, we compute only the common

parameter gt determining both probabilities via equation (14).

We estimate the parameters Vt, σV,t, τt and gt by minimizing the sum of squared

differences between market prices γmk,t (computed from implied volatilities as described

above) and model prices γk,t (computed from equations (12) and (13)) for each trading

day in our sample.6 As an additional component, we add the squared difference between

the observed EUR/CHF exchange rate and the exchange rate Vt implied by equation (5)

to impose internal consistency of our model as an additional requirement.7 More precisely,

we compute

(Vt, σV,t, τt, gt) = arg min

[
(Smt − St(Vt, ·))2 +

∑
k

(γmk,t − γk,t(Vt, σV,t, τt, τk, gt))2
]
∀t,

(15)

where the superscript m denotes observed market values for exchange rates and option

5Additional information regarding the shape of the risk-neutral pricing density might be inferred from
risk reversals, i.e., differences in implied volatilities of calls and puts with identical absolute deltas and
maturities, see e.g. Campa et al. (1998) and Hertrich and Zimmermann (2014, pp. 14 ff.). We leave a
possible extension to our model based on such information to future research.

6We use the MATLAB function fmincon for this purpose.
7Alternatively, the estimation could be formulated as a constrained optimization problem, using in

the objective function only the squared differences between γmk,t and γk,t, and adding a constraint in the
form of an upper bound on the absolute deviation between the observed exchange rate Smt and the model
exchange rate St(Vt, ·). The results of this approach (using an upper bound of 0.01) are very similar to
those shown in Section 5.
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prices. Minimizing the equally weighted sum of squares across these terms (in our base

case, these are eight options and the exchange rate) per trading day is the simplest approach

to be used. We refrain from using weights on the components to avoid any impression of

tweaking parameters, which – in the absence of sound theoretical arguments in favor of

any particular weighting scheme – could easily lead to data snooping. Note that implicitly,

however, weighting does take place in some way because of different price levels among

the options and the exchange rate. We will address this issue using robustness checks with

different weighting schemes.

5 Results

The estimates resulting from equation (15) are quite noisy on some trading days, to some

extent because of the complicated non-linear interrelations between the parameters, which

leads to substitutive effects when estimating four parameters simultaneously. Therefore,

we show smoothed values using splines (dashed black lines) in Fig. 3 in addition to the

daily estimates (solid gray lines).

The top left panel in Fig. 3 compares the observed EUR/CHF exchange rate to the

latent exchange rate Vt, estimated using equation equation (15). The latent exchange

rate starts around 1.03, close to the August 2011 all-time low of the observed EUR/CHF

exchange rate. It increases in the weeks after the SNB’s announcement, but drops again

below 1.10 at the beginning of 2012. For most of 2012, with a short exception in September,

it remains between 1.01 and 1.10 (also in Q2 and Q3, when the observed exchange rate

almost flattens out closely above 1.20). November 2012 marks the beginning of an upward

trend for Vt, which continues until February 2013. Afterwards, the latent exchange rate

stabilizes between 1.12 and 1.18.

The estimated volatility of the latent exchange rate, σV,t, shows a decreasing trend over

the entire dataset, albeit with sizeable fluctuations. Starting around 24% in Sept. 2011, it

decreases to 13% at the end of the sample (top right panel). The values seem high in a

historical context, which can be attributed to ongoing concerns of the markets about future

developments in the eurozone. Moreover, the estimates are driven by implied volatilities

of out-of-the-money options, which tend to be higher than realized volatilities.

The market’s estimate of the remaining life of the SNB’s policy, τt (bottom left panel),

increases from 0.285 years in Sept. 2011 to around 0.9 years in the second quarter of 2013.

Until the end of 2012, we consider the main driver of this development to be the increasing
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Figure 3: Daily estimates for Vt, σV,t, τt and gt from equation (15), smoothed using splines
(dashed lines). Top left: latent exchange rate process Vt compared to observed exchange
rates St (solid black line), top right: volatility σV,t of the latent exchange rate, bottom left:
market’s unconditional estimate τt of the remaining life of the SNB’s minimum exchange
rate policy, bottom right: parameter gt from equation (14).
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confidence of the market in the SNB’s commitment to its policy. Increased levels of both

observed and latent exchange rate during the year 2013 may lead to an “implicit” increase

in the perceived remaining life of the SNB’s policy in the sense that a higher exchange rate

implies a higher probability that it will remain above 1.20 even without any intervention

on the part of the SNB.

The parameter gt, which determines the probability for a policy change before the

traded options’ maturity, is above 0.5 at the end of 2011, but decreases afterwards. Values

of gt≈1 at the beginning imply a three-month probability for policy revocation of 25%.

During the second and third quarters of 2013, gt declines further and reaches 0.04 on the

final day in our sample. This value implies a break probability of 1% for three months and

0.3% for one month, which means a high degree of confidence by the markets in the SNB’s

commitment. Although our estimates of break probabilities show some variation, they are

considerably lower than the values reported by Hertrich and Zimmermann (2014), who use

the same options data, in the majority of cases: E.g., for Oct. 31, 2012, they report implied

probabilities for breaking the 1.20 barrier of 37% (25D 3-month puts, their Table 2) and

41% (10D 3-month puts, their Table 3). For this day, we estimate a gt of 0.11, which,

using equation (14), implies a corresponding break probability of 2.8%. We attribute

these high deviations to two sources: First, the strong process assumptions in Hertrich

and Zimmermann (2014, see the discussion in Section 2.1) combined with their use of

a constant (historical) volatility in their estimation. Second, their “break probabilities”

are driven by market participants constantly revising their estimates of the barrier value b

which will never be broken,8 while our probabilities are directly associated with an (implicit

or explicit) end to the SNB’s minimum rate policy, since this is the only way in which a

break of the intervention level can occur in our model.

As noted in Section 4, we minimize the equally weighted sum of squares across nine

observations per trading day. One way to assess the quality of the model and the estimation

is by analyzing the deviations between observed and fitted values. The average absolute

deviation between observed exchange rate Smt and the model-implied exchange rate St

(computed from equation (5)) is 0.0012, which is very small compared to range of observed

exchange rates (between 1.20 and 1.25). Fig. 4 shows the mean absolute error ε between

the estimated values for Vt and γk,t and the corresponding market prices, see equation (15).

Comparatively higher values for εt at the beginning indicate that the market seemed to

be somewhat “unsettled” about pricing options in the presence of the SNB’s minimum

8For a precise description, see Hertrich and Zimmermann (2014, p. 11).
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Figure 4: Mean absolute error εt from estimating our model according to equation (15)
(grey line, average taken across the 9 components in equation (15), smoothed using splines,
black dashed line). Following initially high values during the “unsettled” period immedi-
ately after the SNB’s announcement on Sept. 6, 2011, εt declines considerably as time
passes, indicating an improving model fit.

exchange rate policy. Reassuringly, this mean absolute error decreases quite steadily over

time: The more time the market has had to learn how to price options in the presence of

the SNB’s policy, the better is the fit of our model. Hence, in a way, market prices seem to

converge towards the model proposed in this paper over time. The precision of estimated

option prices follows a similar pattern (not shown): In the period after Sept. 2011, implied

option volatilities fluctuate considerably. The noise in option prices also leads to larger

deviations between market prices and model prices of options compared to later periods

in our sample, when pricing accuracy is very good (e.g., average relative pricing errors of

7.5% for calls over the last 50 days of our sample period).

To check the robustness of our results, we repeat our calculations for various variations

in our setting: In case (i), we omit the 10D options, i.e., we use only the 25D options

for estimating the parameters. In cases (ii) and (iii), we use all options, but we apply

different weighting schemes by putting more weight on the options deviations relative to

the exchange rate deviation:

(Vt, σV,t, τt, gt) = arg min

[
w(Smt − St(Vt, ·))2 + (1− w)

∑
k

(γmk,t − γk,t(Vt, σV,t, τt, τk, gt))2
]
∀t.

(16)

The original estimation in equation (15) implies w=50%. Since this leads to very high

accuracy levels for the estimates of Vt, we use as robustness checks values of (ii) w=40%

17



Sep11 Mar12 Sep12 Apr13 Oct13
0.95

1

1.05

1.1

1.15

1.2

1.25

 

 

V

base case

case (i)

case (ii)

case (iii)

Figure 5: Robustness checks, comparing the estimated latent exchange rate process
(smoothed using splines) for various variations of the base case setting (solid black line).
Dashed black line: case (i), omitting the 10D options and using only the 25D options in
equation (15). Alternative weighting schemes are indicated by grey lines. Solid grey line:
case (ii), w=40% in equation (16), dashed grey line: case (iii), w=20% in equation (16).

and (iii) w=20%, which puts higher weight on estimation errors from option prices. Fig. 5

compares the estimated latent exchange rate processes (smoothed using splines similar to

Figure 3) from these robustness checks. The solid black line represents our base case and

is identical to the top left panel in Figure 3. Excluding the 10D options leads to the latent

exchange rate process depicted by the dashed black line, see case (i). Most of the time,

the two estimated processes differ by not more than 2 or 3 basis points. Larger deviations

(up to 5 bps) occur at the beginning and in the middle of 2013, but are rather short-

lived. Alternative weighting schemes are shown in grey. Case (ii) with w=0.4 differs only

marginally from the base case, showing deviations below 2 bps for most of the time. Case

(iii) with w=0.2, which puts even more weight on accuracy in option prices rather than

the latent exchange rate process, leads to slightly larger deviations during certain periods

(particularly in the third quarter of 2012). However, even in these periods the deviations

from the base case are never larger than 5 bps. Overall, we consider the results of these

robustness checks to confirm the soundness of our modeling approach in general.

One limitation of our model is that it ignores the impact of speculative activity on

the EUR/CHF exchange rate. We neither try to measure this impact, nor the effect on

speculative activity caused by the SNB’s policy. If the SNB’s policy did indeed reduce

downward speculative pressure on the Swiss franc, our results can be viewed as an upper

bound on exchange rate levels that would have prevailed in the presence of unchanged
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speculative behavior.

6 Conclusions

Using observed exchange rate data and implied volatilities of exchange rate options, we

showed how to back out the latent process of the EUR/CHF exchange rate that would

prevail in the absence of the SNB’s minimum exchange rate policy. We found latent

exchange rate levels between 1.01 and 1.18, which are markedly lower than the intervention

level of 1.20 set by the SNB. As by-products, we estimated two statistics describing implied

market’s expectations regarding the SNB’s policy: (i) the expected remaining life of the

policy and (ii) implied probabilities for an end to the policy within the next one/three

month(s). Our results indicate that the market’s confidence in the SNB’s commitment

increased considerably over time, leading to both increased expected lifetime and decreased

probability for an end to the policy in the near future. Robustness checks confirmed

relative insensitivity of our results to variations in data and weighting schemes used in the

estimation. The absolute estimation error in our model declines markedly over time, which

indicates convergence of market prices towards the model proposed in this paper.
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