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Abstract
Early mobilization is of importance for improving long-term outcome for patients after severe

acquired brain injury. A limiting factor for early mobilization by head-up tilt is orthostatic

intolerance. The purpose of the present study was to examine cerebral autoregulation in

patients with severe acquired brain injury and a low level of consciousness. Fourteen

patients with severe acquired brain injury and orthostatic intolerance and fifteen healthy vol-

unteers were enrolled. Blood pressure was evaluated by pulse contour analysis, heart rate

and RR-intervals were determined by electrocardiography, middle cerebral artery velocity

was evaluated by transcranial Doppler, and near-infrared spectroscopy determined frontal

lobe oxygenation in the supine position and during head-up tilt. Cerebral autoregulation was

evaluated as the mean flow index calculated as the ratio between middle cerebral artery

mean velocity and estimated cerebral perfusion pressure. Patients with acquired brain

injury presented an increase in mean flow index during head-up tilt indicating impaired auto-

regulation (P < 0.001). Spectral analysis of heart rate variability in the frequency domain

revealed lower magnitudes of ~0.1 Hz spectral power in patients compared to healthy con-

trols suggesting baroreflex dysfunction. In conclusion, patients with severe acquired brain

injury and orthostatic intolerance during head-up tilt have impaired cerebral autoregulation

more than one month after brain injury.

Introduction
Severe acquired brain injury (ABI) causes major disability [1] and is often accompanied by a
low level of consciousness in the early and sub-acute stage of rehabilitation[2]. As a consequence
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of the low level of consciousness, physical interventions in the early phases of rehabilitation pri-
marily consist of passive mobilization, e.g. by head-up tilt (HUT) [3]. Early high-level mobiliza-
tion is important for the functional outcome in patients with severe ABI, but may be limited by
orthostatic intolerance [1, 4]. Orthostatic intolerance manifests as a rapid decrease in mean arte-
rial pressure (MAP) or tachycardia, when the patient is mobilized [5, 6].

The cause of orthostatic intolerance is multifactorial, including a direct effect of the brain
injury as well as prolonged bed rest [7–9]. In healthy subjects, cerebral blood flow is usually
maintained at a relative constant level during HUT despite changes in MAP by adaptation of
the cerebrovascular resistance, known as cerebral autoregulation [10, 11]. Clinically, a decrease
in cerebral blood flow is usually associated with sweating, light-headedness, nausea, muscle
weakness, and visual disturbances [12]. However, patients with severe ABI and low levels of
consciousness often have spontaneous sweating periods whereby clinical signs of impaired
cerebral blood flow can be difficult to interpret. It has been suggested that cerebral autoregula-
tion is impaired in patients with severe ABI and that the severity of impairment is associated
with long-term outcome [10, 13, 14]. However, these studies only assessed cerebral autoregula-
tion in the supine position, and little is known about cerebral blood flow responses during
HUT that adds additional stress to the cardiovascular system. If HUT affects cerebral blood
flow, care should be taken when mobilizing these patients.

The aim of the study was to examine the cerebral autoregulation in patients with severe
brain injury and low level of consciousness before, during, and after mobilization on a tilt-
table.

Material and Methods
Fifteen patients admitted to the Department of Neurorehabilitation/TBI unit at Rigshospitalet/
Glostrup University Hospital, Denmark were consecutively enrolled from February 2014
to November 2014. This sample size was derived from data obtained by Hesse et al (2002) giv-
ing an estimated number of 15 subjects including a 20% dropout rate (β-level = 0.8 and α-
level = 0.05) [15]. Inclusion criteria were: age� 18 years, orthostatic intolerance during HUT
(decrease in systolic or diastolic blood pressure of� 20 mmHg and� 10 mmHg, respectively,
or increase in heart rate (HR) of� 30 beats/min as defined by the European Society of Cardiol-
ogy [12]), low level of consciousness and ABI. Low level of consciousness was defined as either
vegetative state or minimally conscious state [2]. Vegetative state was defined as “complete
unawareness of the self and the environment; it is accompanied by sleep-wake cycles with
either complete or partial preservation of hypothalamic and brainstem autonomic functions”
[16]. The minimally conscious state is characterized by inconsistent, but clearly discernible
behavioural evidence of consciousness [2]. Exclusion criteria were: fractures, wounds, deep
venous thrombosis, diabetes, or liver cirrhosis.

The study was approved by the regional ethical committee of the Capital Region of Copen-
hagen, Denmark (H-3-2013-024). Written informed consent was obtained from a legal proxy
and the patient’s general practitioner before inclusion in the study. Fifteen healthy volunteers
were recruited following provision of verbal and written informed consent.

Experimental measurements
MAP was determined non-invasively by pulse-contour analysis using a continuous non-inva-
sive arterial pressure system (CNAPMonitor 500 “HD”, CNSystems Medizintechnik AG, Aus-
tria (n = 5 patients; n = 14 healthy controls)) or Finometer (Finometer, Finapres Medical
Systems, Amsterdam, the Netherlands) both of which uses photoplesmytographic continuous
beat-to-beat measurement. Use of the CNAP monitor was discontinued due to malfunction.
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The cuff was kept at heart level during the experiment. Lead II electrocardiography (ECG) was
used to measure heart rate and RR-intervals within the QRS-complex. Middle cerebral artery
mean velocity (MCA Vmean) was evaluated by transcranial Doppler sonography (Multidop X;
DWL, Sipplingen, Germany) with a 2 MHz probe placed over the temporal ultrasound win-
dow. Changes in MCA Vmean reflect those in cerebral blood flow [17, 18], as a stable diameter
of the middle cerebral artery can generally be assumed [19]. MAP, ECG, and MCA Vmean
were sampled at 1 kHz through an AD-converter (Powerlab, AD Instruments, Colorado
Springs, CO, USA) and saved for further analysis using Labchart ver. 7.3 (Labchart, AD Instru-
ments, Colorado Springs, CO, USA). Regional frontal lobe oxygenation (rScO2) was measured
by near-infrared spectroscopy (NIRS) (INVOS 5100c Cerebral Oximeter1, COVIDIEN, Mans-
field, Massachusetts, USA) [20]. The sensor was placed laterally on the forehead 2 cm above
the margo orbitales superior. Changes in light absorption are considered to relate to haemoglo-
bin oxygenation in blood vessels under the optode with some contribution from skin and skull
[21]. NIRS data was sampled every five-six s (�0.2 Hz). The transcranial Doppler and NIRS
probes were placed on the patient´s least damaged hemisphere (right, n = 10). This decision
was made by the treating physician supported by relevant imaging.

Procedure
The subject was secured with straps on a tilt table with the feet against a footplate. Subjects
rested for at least 30 min during instrumentation. Following this, 300 s of supine baseline
recordings were made and the subjects were than tilted to 30°, 60° and 80° (head up) in 60 s
intervals and stood for a maximum of 18 min at 80° tilt angle. If orthostatic intolerance
occurred, the patient was immediately brought to the horizontal position and outcome mea-
sures were continued for a total of 30 min.

Data analysis
Offline Data analysis was performed using MATLAB 2012b (Mathworks, Natick, USA). ECG
data were pre-processed in Kubios HRV software (ver. 2.2, University of Eastern Finland, Fin-
land) and inspected for artefacts. MAP, CPPe, MCA Vmean, HR and rScO2 was reported as
baseline (300 s), the first 10 s during 30°, 60° and 80° HUT, the last 10 s of HUT (HUT0) and
the post-tilt period (300 s after HUT0).

Correlation between MAP and MCA Vmean
Autoregulation was analysed by calculating the mean flow Index (Mx) [13, 22] as the ratio of
MAP and MCA Vmean. Two different calculations were performed: 1) 10 s averages using the
raw MAP signal, and 2) 10 s averages corrected for the hydrostatic pressure gradient between
the heart level and the cranial base referred to as the mean estimated cerebral perfusion pres-
sure (CPPe). To account for the hydrostatic pressure gradient we estimated the distance from
the level of the heart to the cranial base to be approximately 30 cm. A model was applied to
continuously estimate the CPPe at the level of the cranial base with a change in tilt angle of
3.75°/ s:

CPPe ¼ MAPheart level � 30 cm� 0:7
mmHg
cm

� sinðtilt angleÞ

A Pearson’s product moment correlation was then calculated between 30 averages of 10 s
data i.e. a window length of 300 s through the entire recording of 30 min with no overlap
between windows. Correlation coefficient values close to zero indicate intact autoregulation,
whereas values closer to 1 or -1 suggest impaired autoregulation [23]. Due to differences in the
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time spend in the upright position between patients we report Mx values for the 300 s of base-
line, the first 300 s of HUT and the first 300 s after HUT (post-tilt). Time was added from the
post-tilt period if patients had less standing time than 300 s and the following interval was
moved accordingly. We report Mx values calculated using both MAP (Mxa) and CPPe (Mxc).
Note that Mxa and Mxc are equal in the supine position. Prior to the analysis, artefacts arising
from head or arm movement or calibration of the Finometer were removed from the data by
visual inspection.

ECG analysis
A power spectral analysis of the RR intervals between successive heart beats (taken from the
QRS complex of the ECG wave) was undertaken to investigate the magnitude of low (0.05–0.15
Hz) and high frequency (0.15–0.35 Hz) content of the RR intervals. Low frequency content is
associated with the arterial baroreceptor regulation and a mix of parasympathetic and sympa-
thetic branches of the autonomic system whereas the high frequency content reflects parasym-
pathetic activity [24]. RR intervals from baseline and the first 300 s of HUT were then exported
to MATLAB for further analysis. A cubic spline interpolation of 4 Hz was applied to the data in
order to ensure equidistant sampling rate and a Fast Fourier Transformation (FFT) was applied
to the data in order to estimate the spectral content of the RR intervals. A window length of 64 s
with an overlap of 50% was used. Prior to the FFT analysis the RR intervals were normalised to
have unit variance (divided by the SD) in order to compare spectral estimates between patients
and controls. Pooled estimates of spectral power for the two groups were calculated using pool-
ing algorithms available from Neurospec 2.0 (neurospec.org) [25]. Statistical comparison of
pooled spectral estimates was performed by calculation of the log10 ratio and 95% confidence
intervals between group estimates [26], also available from Neurospec 2.0 (neurospec.org).

Statistical analysis
All data were analysed using STATA ver. 13.1 (StataCorp. 2013, College station, USA). Statisti-
cal significance was set at P< 0.05. The effects of HUT on MAP, CPPe, MCA Vmean, HR,
rScO2, Mxa and Mxc were analysed by a repeated measure mixed effects model. Restricted
maximum-likelihood estimation was used as default, with individual measures modelled as a
function of group (patient or healthy), time (baseline at supine position, 30°, 60° and 80° HUT,
HUT0 and post-tilt), and the interaction between group and time. Data are presented as mean
and SE if not otherwise stated. Graphical representations of the results were performed in SPSS
ver. 22 (IBM Corp. 2013, Armonk, NY).

Results
One patient was excluded due to orthostatic tolerance leaving fourteen patients and fifteen
healthy volunteers for further analysis (Table 1). For one patient post-tilt analysis was not pos-
sible because of short recording time and for one patient and one healthy control ECG record-
ings were not available due to apparatus malfunction. Thus, 13 patients were analysed for post-
tilt and 13 patients were used in the power spectral analysis. There was a significant difference
in age between the two groups (P = 0.003,Mann-Whitney Wilcoxon test). Patients suffered
mainly from traumatic brain injury or cerebral haemorrhage (Table 1). Glasgow Coma Scale,
Early Functional Ability Scale and Functional Independence Measure indicated that all patients
suffered from severe brain injury, although only three of the patients were in a vegetative state.

Orthostatic intolerance presented as tachycardia in four patients and as a decrease in blood
pressure in ten patients. The mean tilt-time for the patients was 348 (range: 61–989) s. Five
patients were tilted down at 60° HUT due to decrease in blood pressure and thus, only nine
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patients are included in the 80° HUT results (Table 2). None of the healthy subjects experi-
enced orthostatic intolerance during the experiment.

The mixed effects analysis showed an overall significant group difference in MAP from
baseline to HUT0 (P< 0.001) (Table 2) as the patient group had an orthostatic fall in MAP of

Table 1. Subject characteristics.

Patients (n = 14) Healthy controls (n = 15)

Age [years] (IQR) 64 (49–69) 31 (27–59)

Male sex (%) 7 (50) 7 (47)

Traumatic brain injury (%) 8 (57)

Cerebral haemorrhage (%) 5 (36)

Anoxic brain damage (%) 1 (7)

GCS (IQR) 9 (8; 13)

MCS (%) 11 (79)

EFA (IQR) 31 (20; 45)

FIM (IQR) 18 (18; 18)

Days since injury (SD) 41 ± 12

Days in ICU (SD) 26 ± 9

GCS: Glasgow Coma Scale; MCS: Minimally Conscious state; EFA: Early Functional Ability; FIM:

Functional Independence Measure; ICU: Intensive care unit. Values are mean ± SD or median and IQR.

Percentages presented in brackets.

doi:10.1371/journal.pone.0154831.t001

Table 2. Central and cerebral hemodynamics.

Baseline a HUT 30° a HUT 60° a HUT 80° b HUT0 a Post-tilt c

MAP [mmHg]

PT 96 (3)* 92 (3) 87 (4) † 93 (4) † 84 (5) † 97 (4)

HC 79 (3)* 77 (4) 79 (4) 82 (4) 92 (4) 80 (3)

HR [beats/min]

PT 95 (4)* 99 (5) 103 (5) 113 (8) 110 (7) 97 (5)

HC 62 (2)* 69 (3) 71 (3) 76 (4) 82 (3) 61 (3)

CPPe [mmHg]

PT 96 (3)* 82 (3) 70 (4) † 72 (4) † 65 (4) † 97 (4)

HC 79 (3)* 66 (4) 61 (4) 62 (4) 73 (3) 80 (3)

MCA Vmean [cm/s]

PT 43 (3)* 40 (3) 35 (3) 36 (4) 36 (3) 41 (3)

HC 64 (3)* 64 (2) 60 (3) 56 (3) 55 (3) 60 (3)

rScO2 [%]

PT 65 (2) 64 (3) 61 (3) 63 (2) 57 (3) † 63 (3) †

HC 70 (2) 70 (2) 69 (2) 67 (2) 68 (2) 75 (2)

HUT: Head-up tilt; PT: Patients; HC: Healthy controls; MAP: Mean arterial pressure; CPP: Cerebral perfusion pressure; MCA Vmean: Middle cerebral

artery velocity; HR: Heart rate; rScO2: Near infrared spectroscopy determined frontal lobe oxygenation. Values in brackets are SE.

*denotes significant difference between patients and healthy controls at baseline (P < 0.001).
† denotes between group difference in change from baselines (P < 0.05).
a: Fourteen PT and 15 HC;
b: Nine PT and 15 HC;
c: Thirteen PT and 15 HC.

doi:10.1371/journal.pone.0154831.t002
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12 ± 3 mmHg, whereas the control group showed an increase in MAP by 13 ± 2 mmHg. HR
increased from baseline to 60° and 80° HUT and HUT0 (P = 0.041, P = 0.001 and P< 0.001,
respectively) in both groups, without differences in orthostatic change between groups from
baseline to any other time point. There were no overall difference in HR between baseline and
post-tilt (P = 0.728). When correcting for hydrostatic pressure in the standing position the
CPPe dropped significantly in both groups from baseline to 30°, 60° and 80° HUT (P< 0.001)
and HUT0 (P = 0.003), with the patient group having a larger drop at the HUT0 compared to
the healthy controls (31 ± 3 mmHg vs. 6 ± 2 mmHg, respectively). MCA Vmean decreased
in both groups from baseline to 60° and 80° HUT and HUT0 and from baseline to post-tilt
(P = 0.008, P< 0.001, P< 0.001 and P = 0.013, respectively), but orthostatic changes were
alike between patients and controls. Similarly, rScO2 decreased from baseline to 80° HUT and
HUT0 (P< 0.001 and P = 0.007) and from baseline to post-tilt (P< 0.001). S1 Fig. illustrates
the timespan and differences for patients and healthy controls during a HUT procedure. It is
noteworthy that the MCA Vmean appears to decrease more in the patient group than in in the
healthy controls from baseline to 60° HUT with a trend towards a difference in the orthostatic
change between the two groups (P = 0.065).

Mxa changed overall for patients and healthy controls from baseline to HUT (P< 0.001),
but not from baseline to post-tilt (P = 0.621) (Table 3).

Mxc increased from baseline to HUT for the patients and decreased for the healthy controls
with no overall statistical difference from baseline to HUT in either group (P = 0.454). The
orthostatic change from baseline to HUT showed a significant difference in Mxa and Mxc
between patients and healthy controls (P< 0.001). There were no significant difference in Mxc
between baseline and post-tilt (P = 0.597).

Subgroup exploratory analysis
Subgroup analysis of the patients with orthostatic hypotension (n = 10), showed an increase in
the Mxa/c index from 0.09 at baseline to an Mxc of 0.59 during HUT, whereas patients with
orthostatic tachycardia (n = 4) appeared to have a similar Mxc index of 0.27 during HUT as
the healthy control group. Patients with postural tachycardia had a small increase in MAP (by
4 mmHg) during HUT while MAP decreased in the rest of the patients (by 19 mmHg). The
orthostatic increase in HR appeared higher in the tachycardia group than in the rest of the
patients and the controls (41 beats/min vs. 5 beats/min vs. 20 beats/min, respectively). The pos-
tural decrease in MCA Vmean was 5 cm/s in the tachycardia group compared to 8 cm/s in the
patients with orthostatic hypotension and 9 cm/s in the healthy subjects. rScO2 decreased simi-
larly in both the tachycardia and the orthostatic hypotension group (by 8% and 7%). Due to

Table 3. Flow index (Mx).

Baseline (300 s) HUT (300 s) Post-tilt (300 s)

Mxa

PT 0.04 (0.07)* 0.35 (0.09) † -0.02 (0.06)

HC 0.35 (0.07)* -0.15 (0.10) 0.39 (0.08)

Mxc

PT 0.04 (0.07)* 0.50 (0.09) † -0.02 (0.06)

HC 0.35 (0.07)* 0.28 (0.07) 0.39 (0.08)

Mx: Correlation index; HUT: Head-up tilt; PT: Patient; HC: Healthy control; Values in brackets is SE.

*denotes significant difference between patients and healthy controls at baseline (P < 0.01).
† denotes between group difference in change from baselines (P < 0.001).

doi:10.1371/journal.pone.0154831.t003
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the small number of patients experiencing tachycardia, we did not perform statistical tests on
these subgroups.

Power spectral analysis of RR intervals
Power spectral analysis of the RR intervals in the healthy controls showed a peak in the ~0.1
Hz frequency band at baseline (S2A Fig) and no significant change within this frequency band
during HUT (S2B Fig). Larger magnitudes at baseline vs. HUT are indicated by positive values
and vice versa in the log/log comparison (S2C Fig). The patients did not show a well-defined
peak in the ~0.1Hz frequency band in the supine position (S2D Fig) and yet the spectral power
within this frequency band tended to decrease even further during HUT (S2E Fig) as indicated
by the positive values the in the log/log spectral comparison (S2F Fig). Log/log comparison
of spectral power at baseline and HUT showed significantly lower levels at ~0.1 Hz for the
patients compared to the control group (S2G and S2H Fig). In addition, we found a significant
decrease in the high frequency band during HUT in healthy subjects, which was not found for
the patients.

Discussion
This present study demonstrates impaired cerebral autoregulation in patients with severe ABI
during HUT as Mxc increased in the patient group with concurrent reductions in MAP, CPPe,
rScO2 and MCA Vmean during orthostasis. Previous studies have shown impaired cerebral
autoregulation during supine rest in patients with traumatic brain injury or stroke [13, 23].
The higher Mxa/c value at baseline for the healthy controls is in accordance with data pre-
sented by Piechnik et al (1999) [27]. Reinhard et al (2003) also demonstrated an Mxc index
close to 0.3 on stroke patients with low level of stenosis and 0.5 for patients with high level
of stenosis [23]. The low Mxa/c for the patients in supine position in our study, most likely
reflects an intact autoregulation in this position. Interestingly, the constant Mx for the healthy
controls throughout the experiement signifies that the cardiovascular system is responding to
the increased orthostatic stress introduced by HUT, whereas the patients did not show this
reaction to HUT. Sato et al (2012) showed in healthy volunteers an orthostatic reduction in
MCA Vmean of 9% during 60° HUT [11]. Other studies have found a decrease by 16% during
lower body negative pressure [28, 29], which is similar to our results (16% and 13% in patients
and healthy controls, respectively). Although there was no difference in the change of MCA
Vmean for patients and healthy controls, the change in rScO2 and Mxc during HUT may be of
clinical importance. Furthermore, the difference could have been accentuated if the patients
were not lowered to supine as our protocol dictated. The slight increase in MAP, CPPe and
rScO2 at 80° HUT is due to the fewer patients included at this time point, since five patients
developed orthostatic intolerance at 60° HUT. Heart rate variability at frequencies around 0.1
Hz represent baroreflex regulation and the reduction found in this frequency range in the
patients points to an impairment of the baroreflex explaining the orthostatic intolerance as
reflected in postural reduction in MAP. Markedly reduced low frequency (~0.1Hz) content in
the RR interval signal in the patients both during HUT and at rest are in line with previous
findings in both severe and mild cases of TBI as measured in the supine position [30].

The differences between patients and controls with respect to baseline MAP, HR, and MCA
Vmean may partly be due to the difference in age between our two groups, since younger peo-
ple often presents lower resting MAP and HR and higher MCA Vmean [31] and this may also
be the case for Mx. However, it should be noted that previous studies failed to demonstrate any
age-related changes in cerebral autoregulation as expressed by Mx values measured at rest [32,
33] and during HUT [34]. Further, the main purpose of including the control group was to
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compare postural changes in Mx and not for direct comparison of absolute values in the two
groups. In addition, The Mx value is known to vary to some extent as a study by Ortega-
Gutierez et al (2014) found variations between healthy subjects of similar magnitudes as ours
[35].

Despite these significant findings, a number of limitations should be considered. MCA
Vmean is a surrogate measurement of cerebral blood flow that assumes a constant diameter of
the cerebral arteries. In studies of healthy volunteers this assumption is in all likelihood correct
[36, 37]. However, it remains to be fully tested in patients with severe brain injury [19]. Along
these lines it has recently been shown that around 27% of patients with traumatic brain injury
experience vasospasms, defined as a cerebral blood flow velocity of more than 120 cm/sec[38].
Although the severity of vasospasms has been associated with the severity of cerebral autoregu-
lation impairment [39], none of our patients experienced values of cerebral blood flow velocity
of that magnitude. Moreover, it was not possible to directly measure CPP in our patients as
none of the patients were instrumented with an ICP measurement device as part of their treat-
ment at the department. We assume that the patients had a stable intracranial pressure but a
sudden change in the parameter would inevitable affect the CPP. Lastly, further precision
could have been achieved through recordings of end-tidal CO2, which affects CPP and MCA
Vmean by approximately 4 mmHg /% [40].

NIRS was included to investigate if this could be used as a quick and effective bedside tool
for evaluating cerebral blood flow in patients with severe brain injury. In general NIRS data
reflects local brain tissue oxygenation and it is therefore also a surrogate measure of cerebral
blood flow [21]. Although a difference between the time points and groups showed a significant
change in rScO2, it is beyond this study to establish clinically valuable cut-off points to be used
during tilt-table training. Moreover, limitations in the sampling frequency of the equipment
(�0.2 Hz) and the inability to synchronize NIRS with ABP/CBVF measurement limited the
possibility of more sophisticated analysis of rScO2 [41, 42]. Future studies may elucidate the
predictive capability of NIRS determined rScO2 and a denser array covering both the affected
and non-affected hemisphere may yield better results.

Interestingly, the four patients that presented with tachycardia during HUT did not show
an increase in the Mxc during HUT pointing to a preserved cerebral autoregulation. These
four patients can explain a large part of the increase in HR on group level, since the other ten
patients had almost no increase in HR during HUT. Although care should still be taken, the
tachycardia patients might to some extent be able to compensate during tilt, which is supported
by the change in MCA Vmean that appeared to be lower than that of the healthy volunteers
(9% decrease vs. 13%, in the tachycardia patients and healthy controls respectively). The time
since injury was similar for these four patients compared the remaining patients (46 vs. 39
days). Despite this notion, it clearly remains to be investigated whether the impaired regulation
of cerebral blood flow observed in our study is due to the severity or localization of the brain
damage or the extent of immobilisation (days in micro-gravity) or both. One previous study
performed on patients with spinal cord injury using the same HUT protocol as ours found that
patients with symptomatic orthostatic hypotension also had large decreases in MCA Vmean
during HUT [43]. Moreover, haemodynamic changes have been found in healthy young men
confined to bed rest for 20 days [44]. Therefore, a role of immobilization alone on the autore-
gulation cannot be ruled out.

Cerebral autoregulation have been suggested to recover within the first month after severe
traumatic brain injury [10]. In the present study the mean time since injury was 41 days which
indicates that cerebral autoregulation still may be impaired at later stages. Orthostatic intoler-
ance and impaired cerebral autoregulation limits further mobilization of some ABI patients
because of risk of hypo perfusion of the brain. Because of this, these patients are referred to
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further bed rest or mobilised with the risk of increasing the severity of the brain injury. Given
the association between early and intensive mobilisation on functional outcomes [4] both situ-
ations are at risk of deteriorating the effectiveness of the rehabilitation. Therefore, treatment
strategies to overcome this challenge should be considered.

Conclusion
Patients with severe ABI and orthostatic intolerance demonstrate impaired cerebral autoregu-
lation during HUT more than one month after ABI which limits mobilization. In addition,
patients with severe brain injury differ from healthy controls with respect to postural reduction
in blood pressure and rScO2. This is supported by the finding of impaired baroreflex sensitivity
expressed through frequency analysis of HR variability. Further research is needed focusing on
methods to stabilise blood pressure and cerebral hemodynamics in the upright position to
enable more intensive rehabilitation of patients with severe ABI.

Supporting Information
S1 Fig. Change from baseline. Change in MAP, HR, CPP, MCA Vmean and rScO2 for
patients and healthy controls. � denotes between group difference in change from baselines
(P< 0.05).
(TIF)

S2 Fig. Power spectral analysis. Pooled power spectral analysis of the RR intervals at baseline
(A&D) and head-up tilt (HUT) (B&E) for patients (PT) and healthy controls (HC), respec-
tively. Log10 ratio of pooled power spectra between baseline and HUT for the healthy controls
(C) and the patients (F) and between healthy controls and patients at baseline (G) and HUT
(H). Dashed lines denote no difference and solid lines denote lower and upper 95% confidence
intervals. Low frequency content marked by grey shaded area.
(TIF)

S1 File. Spectral analysis. All data used for spectral analysis of RR-intervals.
(ZIP)

S1 Table. Subject characteristics. Excel file containing data from Table 1 and in text data.
(XLSX)

S2 Table. Central and cerebral hemodynamics. Excel file containing data from Table 2 and in
text data.
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S3 Table. Flow index (Mx). Excel file containing data from Table 3 and in text data.
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