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Abstract
Aims/hypothesis Intra-islet and gut–islet crosstalk are critical
in orchestrating basal and postprandial metabolism. The aim
of this study was to identify regulatory proteins and receptors
underlying somatostatin secretion though the use of
transcriptomic comparison of purified murine alpha, beta
and delta cells.
Methods Sst-Cremice crossed with fluorescent reporters were
used to identify delta cells, while Glu-Venus (with Venus re-
ported under the control of the Glu [also known as Gcg] pro-
moter) mice were used to identify alpha and beta cells. Alpha,
beta and delta cells were purified using flow cytometry and
analysed by RNA sequencing. The role of the ghrelin receptor
was validated by imaging delta cell calcium concentrations

using islets with delta cell restricted expression of the calcium
reporter GCaMP3, and in perfused mouse pancreases.
Results A database was constructed of all genes expressed in
alpha, beta and delta cells. The gene encoding the ghrelin
receptor, Ghsr, was highlighted as being highly expressed
and enriched in delta cells. Activation of the ghrelin receptor
raised cytosolic calcium levels in primary pancreatic delta
cells and enhanced somatostatin secretion in perfused
pancreases, correlating with a decrease in insulin and gluca-
gon release. The inhibition of insulin secretion by ghrelin was
prevented by somatostatin receptor antagonism.
Conclusions/interpretation Our transcriptomic database of
genes expressed in the principal islet cell populations will facil-
itate rational drug design to target specific islet cell types. The
present study indicates that ghrelin acts specifically on delta cells
within pancreatic islets to elicit somatostatin secretion, which in
turn inhibits insulin and glucagon release. This highlights a
potential role for ghrelin in the control of glucose metabolism.
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Glucagon . Insulin . RNA sequencing . Somatostatin

Abbreviations
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FPKM Fragments per kilobase of transcript

per million mapped reads
GHSR Growth hormone secretagogue receptor
GPCR G-protein coupled receptor
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tdRFP Tandem red fluorescent protein
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Introduction

The pancreatic islets provide a centre where signals indicating
the nutritional status of the body, including factors such as
enteroendocrine hormones, nutrients, metabolites and neuronal
signals, can converge and initiate changes in pancreatic hormone
secretion to regulate blood glucose levels. Insulin (released from
beta cells) and glucagon (released from alpha cells) exert oppo-
site effects on glycaemia, with insulin promoting glucose uptake
in conditions of high glucose and glucagon initiating hepatic
glucose production in periods of decreasing glucose levels [1].
Nuanced interactions and crosstalk between islet cell types are
critical in maintaining tight control over blood glucose equilibri-
um, and elucidating the ways in which enteric signals and islet
cells interact to influence circulating glucose levels could provide
insights into the mechanisms underlying altered glycaemic con-
trol and diabetes [2, 3].

A key paracrine mediator within islet cells is somatostatin
(SST), which is produced by pancreatic delta cells. SSTappears
to exert tonic suppression of insulin and glucagon release with-
in islets [4]. The importance of this potent paracrinemechanism
is illustrated by experiments showing that whole-animal genet-
ic ablation of Sst results in aberrant secretion of both insulin and
glucagon from isolated islets in response to glucose [5]. Indeed,
the dysregulation of SST-mediated negative-feedback loops
has been implicated in the development of type 2 diabetes
[6]. Compared with our knowledge of insulin and glucagon
release, there is still much to learn about the regulatory path-
ways and cellular machinery underlying SST secretion.
Identifying how delta cells differ from their neighbouring alpha
and beta cells is crucial for interpreting transcriptomic and func-
tional data obtained from whole islets [7].

Ghrelin is a peptide hormone that has been identified as a
key component of the gut–brain axis [8]. It is synthesised
predominantly in the stomach [9, 10] and gastrointestinal tract
[11], although there have been reports of ghrelin-producing
epsilon cells in adult islets [12, 13]. Ghrelin levels in plasma
are influenced by nutritional status and may influence growth
hormone secretion, appetite and fat deposition [14].
Importantly, there are indications that ghrelin plays a role in
the regulation of the pancreas in response to changes in glu-
cose levels [15]. A large number of reports have examined the
effects of the active acylated form of ghrelin on glucose-
stimulated insulin secretion. The consensus of these studies
is that ghrelin exerts acute inhibition of insulin release
[16–19], and that ghrelin infusions lead to impaired glucose
tolerance [20, 21]. In addition, pharmacological inhibition of
ghrelin acylation (which is essential for the biological activity
of ghrelin) via blockade of ghrelinO-acyltransferase results in
significant increases in glucose-stimulated insulin secretion
and improves overall glucose tolerance [22].

The cognate receptor for ghrelin is the growth hormone
secretagogue receptor (GHSR) [9]. The effects of ghrelin on

insulin release are purportedly through direct receptor-
mediated modulation of beta cell activity [23, 24]. However,
the predominant Gαq coupling of GHSR [25] and the
insulinostatic effects of ghrelin, if indeed mediated directly
via beta cells, are paradoxical. Because of the therapeutic po-
tential of manipulating the ghrelin axis in individuals with
obesity and diabetes [26], the mechanism by which ghrelin
inhibits insulin release warrants further exploration.

The aims of this study were to build a transcriptomic profile
of pancreatic delta cells, in comparison with alpha and beta cells,
and to identify specific delta cell markers and regulators. Having
demonstrated Ghsr expression to be highly enriched in delta
cells, we further aimed to characterise the effects of ghrelin on
delta cell signalling pathways and islet cell secretory profiles.

Methods

Solutions Unless otherwise stated, all chemicals were ob-
tained from Sigma-Aldrich (Poole, UK). The standard bath
solution contained 138 mmol/l NaCl, 4.5 mmol/l KCl,
4.2 mmol/l NaHCO3, 1.2 mmol/l NaH2PO4, 2.6 mmol/l
CaCl2, 1.2 mmol/l MgCl2 and 10 mmol/l HEPES
(pH 7.4, NaOH). Mouse ghrelin and SST receptor
(SSTR) antagonists (H-5884+H-6056) were obtained from
Bachem (Bubendorf, Switzerland).

Animals All animal procedures were approved by the local
ethics committee and conformed to UK Home Office regula-
tions or those of the Animal Experiments Inspectorate,
Ministry of Justice, Denmark, and the eighth edition of the
Guide for the Care and Use of Laboratory Animals (2011)
(http://grants.nih.gov/grants/olaw/guide-for-the-care-and-use-
of-laboratory-animals.pdf). For the isolation of purified
populations of alpha and beta cells, transgenic mice
expressing the Venus fluorophore under the control of the
proglucagon promoter, Glu (also known as Gcg), (Glu-Venus)
[27] were used. For the introduction of delta cell specific
transgenes for FACS-mediated purification or the introduction
of the genetically encoded calcium sensor GCaMP3 [28], trans-
genic mice expressingCre under the control of the Sst promoter
[29, 30] were used. These mice were crossed with reporter
strains containing genes encoding tandem red fluorescent pro-
tein (tdRFP) (a gift from H. J. Fehling, University Clinic Ulm,
Ulm, Germany), GCaMP3 (Charles River, Margate, UK) or
enhanced yellow fluorescent protein (EYFP) (Charles River)
in the Rosa26 locus [28, 31]. All mice were on a C57BL/6
background.

Perfused mouse pancreases Male C57BL/6 J mice (age ap-
proximately 10 weeks, purchased from Taconic, Ejby, Lille
Skensved, Denmark) were anaesthetised and pancreases were
isolated and perfused in situ as described previously [32].
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Pancreases were perfused with a modified Krebs Ringer bi-
carbonate buffer containing, in addition, 5% dextran (Dextran
Products, Toronto, ON, Canada), 0.1% BSA, fumarate, gluta-
mate and pyruvate (5 mmol/l of each) and 12 mmol/l glucose.
Test substances included mouse ghrelin (1–100 nmol/l),
SSTR antagonists (1 μmol/l) and arginine (10 mmol/l).
Hormone concentrations were measured using in-house RIA
[33–35].

Islet isolation and FACS Transgenic mice expressing the
fluorescent protein Venus under the control of the
proglucagon promoter (Glu-Venus) or EYFP under the control
of the Sst promoter (Sst-Cre/Rosa26EYFP) were killed and the
pancreases were injected with collagenase V (0.5 mg/ml).
Pancreases were digested at 37°C. Islets were hand-picked
into HBSS containing 0.1% wt/vol. fatty acid-free BSA.
Each pancreas yielded approximately 150–300 islets. Islets
from two to five mice were pooled for each replicate sample.
Islets were disrupted into single cells by trituration following
incubation in Ca2+-free HBSS containing 0.1× trypsin/EDTA.
Cells were sorted by flow cytometry using a BD Influx cell
sorter (BD Biosciences, San Jose, CA, USA) equipped with a
488 nm laser for excitation of Venus and EYFP. Venus-
negative cells from the Glu-Venus sorts were further
subdivided to collect a population with high side and forward
scatter and high background autofluorescence at 530 and
580 nm to isolate beta cells. Cells were collected into RLT
lysis buffer (Qiagen, Manchester, UK) and frozen on dry ice.

RNA extraction and quantitative RT-PCR Total RNAwas
extracted using an RNeasy Micro kit (Qiagen) according to
the manufacturer’s protocol. Quantitative (q)RT-PCRwas per-
formed with a 7900 HT Fast Real-Time PCR system (Applied
Biosystems, Warrington, UK). The PCR reaction mix
consisted of approximately 20 ng first-strand cDNA template,
6-carboxyfluorescein/quencher probe/primer mixes (Thermo
Fisher Scientific, Loughborough, UK) and PCR Master Mix
(Thermo Fisher Scientific), and was amplified for 40 cycles.
Samples where target gene expression was undetected were
assigned Ct values of 40. Expression of the selected targets
was compared with that ofActb, measured on the same sample
in parallel on the same plate, giving a Ct difference (ΔCt).
Mean and SEM calculations and statistical analyses were per-
formed on theΔCt data and only converted to relative expres-

sion levels (2ΔCt) for presentation in the figures.

RNA sequencing Total RNAwas extracted using an RNeasy
Plus Micro kit (Qiagen) according to the manufacturer’s in-
structions. The quality of the extracted RNA was checked
using a Bioanalyzer RNA Pico kit (Agilent Technologies,
Stockport, UK), indicating RIN (RNA Integrity Number)
values between 7.2 and 9.4. RNA was amplified using the

Ovation RNA sequencing RNA-Seq System V2 (NuGEN
Technologies, Leek, the Netherlands) (six replicates were used
for delta cells, five for alpha cells and four for beta cells,
totalling 15 samples). An RNA sequencing library was pre-
pared using the Ovation Rapid DR Library System (NuGEN)
and sequenced using an Illumina HiSeq 2500 system at the
Genomics Core Facility, Cancer Research UK Cambridge
Institute (Cambridge, UK).

Islet isolation for imaging experiments Transgenic mice ex-
pressing the genetically encoded calcium sensor GCaMP3 under
the control of the Sst promoter (Sst-Cre/Rosa26tdRFP/GCaMP3)
were killed and their islets were isolated, dissociated into cell
clusters and plated onto Matrigel-coated glass-bottom dishes.
Cells were incubated at 37°C and 5% CO2 in RPMI 1640 me-
dium containing 11.1 mmol/l glucose and 10% FCS vol./vol.
Cells were imaged 24–48 h after plating.

Calcium imaging Pancreatic delta cells were imaged 1–2 days
after plating. GCaMP3-positive cells were imaged and data
recorded as previously described [29]. All bath solutions
contained 1 mmol/l glucose. Average fluorescence intensities
were calculated over 10 s time windows for the entirety of the
experiment. GCaMP3 intensity values over the entire trace for
each experiment were normalised to the absolute baseline,
which was calculated by taking the average GCaMP3 intensity
values over two 1 min intervals at the beginning and end of the
experiment when cells were in basal conditions. Responses to
test reagents were calculated by determining the average nor-
malised GCaMP3 intensity over a 2 min interval during perfu-
sion of the test reagent divided by the average normalised
GCaMP3 intensity over a 2 min interval taken before applica-
tion of the test reagent to give a fold-change value. Cells were
included in the analysis if they responded to 30 mmol/l KCl
(n=74); n=19 cells were excluded from the analysis due to
spontaneous and erratic GCaMP3 intensity fluctuations.

Data analysis All statistical analyses were conducted using
Microsoft Excel and GraphPad Prism 5.0 (GraphPad Software,
La Jolla, CA, USA). Statistical significance was calculated using
a Student’s single-sample or two-sample t test or via ANOVA
with either a Tukey, Dunnett’s or Bonferroni post hoc test, as
appropriate. The threshold for significance was set at p<0.05.
Sequence reads were demultiplexed using the CASAVApipeline
(Illumina, Little Chesterford, UK) and then aligned to the mouse
genome (GRCm38) using TopHat version 2.0.11 (http://ccb.jhu.
edu/software/tophat/index.shtml). Raw read counts and
fragments per kilobase of transcript per million mapped reads
(FPKM) were generated using Cufflinks version 2.2.1
(http://cole-trapnell-lab.github.io/cufflinks) and differential gene
expression was determined using edgeR (www.bioconductor.
org/packages/release/bioc/html/edgeR.html).
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Results

Transcriptomic profiling of isolated populations of islet
cells revealed key identifiers of each cell typeWe separated
populations of alpha and beta cells via FACS from Glu-Venus
mice and populations of delta cells from Sst-Cre/Rosa26EYFP

mice. Quantitative PCR (qPCR) analysis of the relative expres-
sion of Ins, Gcg and Sst in cDNA isolated from these purified
populations of islet cells confirmed the enrichment of Ins in
beta cells, Gcg in alpha cells and Sst in delta cells (Fig. 1a).

We next performed RNA sequencing analysis of these iso-
lated populations of alpha, beta and delta cells to build a
transcriptomic profile for each cell type. The mapping effi-
ciency was 82.8%. Principal component analysis revealed that
alpha, beta and delta cells clustered separately, indicating that
they differ considerably in their gene-expression profiles.
Using a false discovery rate of 5% and a lower sensitivity
threshold of 1 FPKM, we identified 773 genes that were dif-
ferentially expressed between alpha, beta or delta cells
(Fig. 1b, electronic supplementary material [ESM] Table 1),
of which 200 genes encoded proteins expressed on the plasma
membrane (Fig. 1c). Of the cell surface markers, we found
that 23 G-protein coupled receptors (GPCRs), 24 ion channels
and 32 membrane transporters were differentially expressed
between alpha, beta and delta cells (Fig. 1d). The top 40 cell
surface markers for each cell type are depicted as a heatmap in
Fig. 1e, and details of all 773 differentially expressed genes
are given in ESM Table 1.

To identify the key regulatory receptors for each cell type,
we plotted the expression levels of Gpcrs in alpha vs beta
cells, alpha vs delta cells and beta vs delta cells (Fig. 2a–c).
Gpcrs specific to alpha, beta or delta cells were identified
using a cut-off of twofold differential expression. Ghsr was
one of the most highly enriched Gpcrs found in delta cells
compared with both alpha and beta cells, and its enrichment
was confirmed by qPCR (Fig. 2d). Ghsr was undetectable in
beta cells and very lowly expressed in alpha cells (alpha vs
delta cells, p<0.001; beta vs delta cells p<0.001; alpha vs
beta cells p<0.01).

To examine candidate sites of ghrelin production in the
mouse, wemeasured the expression of ghrelin (Ghrl) in whole
islets, the whole stomach and the whole small intestine by
qPCR (Fig. 2e). Ghrl expression in whole islets was low and
only detected at an average cycle threshold of 36.4, substan-
tially lower than in the stomach and small intestine (p<0.001
and p<0.05, respectively). We were also unable to detect
acyl-ghrelin in perfusates from adult mouse pancreases per-
fused at 3.5 mmol/l glucose, using a ghrelin assay with a
working limit of detection of approximately 25 pg/ml (data
not shown).

Calcium imaging in dispersed islets revealed GHSR-
mediated activation of delta cells To establish the functional

role of GHSR activation in delta cells, we performed calcium
imaging experiments in dispersed islet cultures from Sst-Cre/
Rosa26tdRFP/GCaMP3 mice. Delta cells were identified by their
tdRFP expression, and their calcium responses to 100 nmol/l
hexarelin, a stable ghrelin analogue, were recorded in real time
using the genetically encoded calcium indicator GCaMP3.
Hexarelin elicited significant increases in GCaMP3 emission,
indicative of an increased cytosolic calcium concentration, in
59 out of 74 delta cells (1.51-fold increase in GCaMP3 fluo-
rescence, p<0.001; Fig. 2f,g).

Ghrelin inhibited insulin and glucagon secretion in an
SST-dependent manner To establish a physiological role
for delta cell specific activation by GHSR binding, we exam-
ined the effects of ghrelin on insulin, glucagon and SST se-
cretion in a perfused mouse pancreas model. In a pilot exper-
iment, 10 nmol/l ghrelin increased SSTsecretion in a pancreas
perfused with 3.5 mmol/l glucose (Fig. 2h), consistent with
the finding that hexarelin increased delta cell Ca2+ even at low
glucose concentrations. In further experiments, pancreases
were perfused with 1 or 100 nmol/l ghrelin in the presence
of 12 mmol/l glucose to enable concurrent assessment of a
potential inhibitory effect on insulin secretion. Both 1 and
100 nmol/l ghrelin evoked immediate increases in SST release
(1.6- and 2.7-fold, respectively; Fig. 3a,b). These increases in
SST coincided with concomitant decreases in the secretion of
insulin (1.4- and 2.1-fold; Fig. 3c,d) and glucagon (1.1- and
2.1-fold; Fig. 3e,f).

As beta cells express negligible levels of Ghsr, and alpha
cells express significantly lower levels ofGhsr compared with
delta cells, we hypothesised that the effects of ghrelin on in-
sulin and glucagon secretion were mediated by SST.
Examination of our RNA sequencing database revealed that
the most prominent Sstr expressed in beta cells was Sstr3,
whereas alpha cells expressed both Sstr2 and Sstr3 (Fig. 4a).

�Fig. 1 Transcriptomic profiling of pancreatic alpha, beta and delta cells.
RNA was extracted from purified populations of alpha, beta and delta
cells, and converted to cDNA or prepped for RNA sequencing. (a)
Populations of alpha (black bars), beta (grey bars) and delta (white
bars) cells were checked for Ins, Gcg and Sst enrichment, respectively,
using qPCR analysis. Data are presented as the geometric mean, with
error bars (SEM) calculated from log2 data. Each column represents the
average expression from three separate samples. Significance
comparisons were calculated by one-way ANOVAwith Bonferroni post
hoc comparison; ***p< 0.001. (b) RNA from five alpha cell samples,
four beta cell samples and six delta cell samples was sequenced using
SE50 sequencing. Differential gene expression was determined using
edgeR, and a principle component analysis plot was constructed using a
false discovery rate of 5% and a sensitivity threshold of FPKM values >1.
(c) Pie chart showing the cellular distribution of genes differentially
expressed between islet cell types. (d) Pie chart showing the
distribution of differentially expressed genes found at the plasma
membrane. (e) Heatmap showing the top 40 most differentially
expressed genes found at the plasma membrane. Data are presented as
log2 FPKM
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In the RNA sequencing analysis, Sstr5was undetectable in all
alpha and beta cell samples, but gave a low signal in one out of
six delta cell samples, whereas Sstr4 was undetectable in all
samples analysed. Expression levels of Sstr1, Sstr2, Sstr3 and
Sstr5 were further quantified by qPCR (Fig. 4b). Perfusion
experiments were repeated, and 10 nmol/l ghrelin was applied

with and without the combination of the SSTR antagonists
H6056 and H5884 (both 1 μmol/l), which are inhibitors of
SSTR2, SSTR3 and SSTR5. Addition of the SSTR inhibitor
cocktail to the perfusate containing 12 mmol/l glucose in-
creased the secretion of SST (2.6-fold; p<0.01), insulin (two-
fold, p<0.001) and glucagon (threefold, p<0.001). In the
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with Bonferroni post hoc comparison; *p < 0.05, ***p < 0.001. (f, g)

Pancreatic islets from Sst-Cre/Rosa26tdRFP/GCaMP3 mice were dispersed
and cultured on glass-bottom dishes and imaged 24–48 h after plating.
Delta cells were excited with 488/8 nm, and the GCaMP3 fluorescence
(488 fluorescence units [FU]) was recorded. Cells were perfused with
either 100 nmol/l hexarelin or 30 mmol/l KCl, as indicated.
Representative responses of two delta cells monitored in parallel in the
same dish are shown in black and grey (f). Mean changes in GCaMP3 in
cells from seven mice are shown in a histogram (g), with the number of
responding cells out of the total number of cells imaged for each condition
shown above each bar. Data represent the mean± SEM of the number of
responding cells. Significance above baseline was calculated using a sin-
gle Student’s t test; ***p< 0.001. (h) Awhole pancreas was perfusedwith
3.5 mmol/l glucose and treated with 10 nmol/l ghrelin and 10 mmol/l
arginine, as indicated, and SST concentrations were measured every
minute
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continued presence of the antagonist cocktail, the ghrelin in-
fusion still stimulated SST secretion, but its effects on insulin
and glucagon release were abolished (Fig. 4c–h).

Discussion

In this study, we identified the transcriptome of pancreatic
delta cells and performed a comparative transcriptomic anal-
ysis with beta and alpha cells. Amongst islet-expressedGpcrs,
we found Ghsr to be significantly enriched in delta cells over
both alpha and beta cells. Althoughwewere unable to identify
antibodies suitable for confirming GHSR localisation at the
protein level, the functional relevance of this receptor in delta
cells was confirmed by the finding that GHSR agonism elic-
ited increases in cytosolic calcium levels in isolated delta cells,
and that in the perfused pancreas, ghrelin stimulated SST re-
lease while attenuating insulin and glucagon release in an
SSTR-sensitive manner.

A multitude of studies involving genetic and pharmacolog-
ical manipulation of GHSR have concluded that the action of
ghrelin on glucose tolerance and glycaemia is reliant on
GHSR binding and that its blockade, even on a high-fat back-
ground, improves glucose handling [12, 16, 36–38]. Previous
studies have concluded that the effects of ghrelin on insulin
secretion are mediated by its direct binding to GHSR located

on the beta cell plasma membrane, but the underlying signal-
ling mechanism is difficult to explain. GHSR is predominant-
ly Gαq coupled, so, like other beta cell Gαq-coupled receptors
such as the muscarinic receptor M3, its activation would be
predicted to enhance rather than inhibit insulin secretion.
However, GHSR blockade in isolated islets has been reported
to increase insulin release and cytosolic calcium in beta cells
via a pertussis toxin-sensitive pathway [16], implicating Gi/o

G proteins [39], and to be impaired by antisense oligonucleo-
tides against Gαi2 [23]. Administration of pertussis toxin has
also been reported to render ghrelin incapable of lowering
plasma insulin levels in vivo [23].

To account for the paradoxical Gi/o dependence of a response
downstream of a Gαq-coupled receptor, some have suggested
non-canonical coupling of the ghrelin receptor to Gi/o G proteins
via recruitment and heteromerisation of GHSR with SSTR5 in
beta cell lines [24]. However, our transcriptomic analysis found
negligible expression ofGhsr and Sstr5 in mouse beta cells. This
is unlikely to reflect technical limitations, as we have previously
been able to detect Sstr2, Sstr3 and Sstr5 in intestinal L cells [40].
In the context of pancreatic islets, our data confirm relatively
specific expression of Sstr2 in alpha cells, but the high expres-
sion of Sstr3 was unexpected [41], suggesting that conclusions
based on SSTR-selective agents and antibodies should be
revisited. A recent study reported that re-expression of Ghsr
specifically in beta cells on a Ghsr–/– background rescued the
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Fig. 3 Ghrelin stimulated SST
release, while decreasing insulin
and glucagon release, in a
perfused pancreas model. Whole
pancreases were perfused with
12 mmol/l glucose (control) and
treated with 1 or 100 nmol/l
ghrelin, and the secretion of SST
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hormone outputs were averaged
over 5 min before addition of the
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Data are represented as means
± SEM. Significance was tested
by one-way ANOVAwith post
hoc Tukey modification; n= 7;
*p< 0.05, ***p< 0.001
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ability of a GHSR antagonist to enhance glucose-stimulated in-
sulin release during a glucose tolerance test [42], supporting the
direct detection of ghrelin by beta cells and suggesting that even
extremely low levels of Ghsr expression might modulate beta
cell activity. To explain the GHSR-mediated suppression of in-
sulin release and the involvement of a Gi/o-dependent pathway,
our findings alternatively suggest that the inhibitory effect of
ghrelin on insulin release is not entirely mediated directly via
the beta cell, but instead proceeds at least in part by the activation
of GHSR on delta cells, triggering SST release that subsequently
inhibits beta cells through SSTR activation. Similar conclusions
were reached in a paper submitted while this manuscript was
under review [43].

Our work presents an exhaustive transcriptomic comparison
between murine pancreatic alpha, beta and delta cells (available

at www.ncbi.nlm.nih.gov/geo), providing a database for
identifying factors that similarly or uniquely regulate different
islet cell types. The transgenes used to fluorescently label alpha
and delta cells did not alter islet architecture or the relative
proportions of islet cell types [30], but we cannot rule out the
possibility that they had subtle effects on gene expression.
Several recent studies have similarly analysed the gene-
expression profiles of pancreatic alpha and beta cells [44–47],
but this, together with the study conducted in parallel by
DiGruccio et al [43], is the first study to compare delta cells
with neighbouring alpha and beta cells. Delta cells exert a tonic
inhibitory tone over both insulin and glucagon release, as evi-
dent from the elevated rates of basal insulin and glucagon re-
lease from perfused pancreases in the presence of SSTR inhib-
itors. Whether and how agonists/antagonists modulate SST
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signalling will therefore be an important consideration in the
design of new antidiabetic drug targets, as well as for our un-
derstanding of the endocrine and metabolic control of insulin
secretion.
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