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Carotid Artery Wall Segmentation in Multispectral
MRI by Coupled Optimal Surface Graph Cuts

Andrés M. Arias-Lorza1, Jens Petersen2, Arna van Engelen1, Mariana Selwaness3,4, Aad van der Lugt4, Wiro J.
Niessen1,5, and Marleen de Bruijne 1,2

Abstract—We present a new three-dimensional coupled op-
timal surface graph-cut algorithm to segment the wall of the
carotid artery bifurcation from Magnetic Resonance (MR) im-
ages. The method combines the search for both inner and outer
borders into a single graph cut and uses cost functions that
integrate information from multiple sequences. Our approach
requires manual localization of only three seed points indicating
the start and end points of the segmentation in the internal, ex-
ternal, and common carotid artery. We performed a quantitative
validation using images of 57 carotid arteries. Dice overlap of
0.86±0.06 for the complete vessel and 0.89±0.05 for the lumen
compared to manual annotation were obtained. Reproducibility
tests were performed in 60 scans acquired with an interval of
15±9 days, showing good agreement between baseline and follow-
up segmentations with intraclass correlations of 0.96 and 0.74 for
the lumen and complete vessel volumes respectively.

Index Terms—Carotid artery, Magnetic resonance imaging
(MRI), Optimal surface graph, Wall segmentation.

I. INTRODUCTION

Atherosclerosis is one of the primary causes of death in
the world [1]. Atherosclerotic plaques in the carotid arteries
may rupture causing thrombus formation and embolization
of plaque content and/or thrombus into the distal intracranial
vessel resulting in a stroke [2]. For risk assessment, detection
of plaque and accurate quantification of plaque volume is
important.

Magnetic Resonance (MR) enables 3D imaging of the
carotid artery vessel wall [3], [4]. For a proper analysis of
the vessel wall, segmentation of both vessel lumen and outer
vessel wall is required. Manual segmentation of the vessel
walls in MR images is a time consuming process and subject to
inter-observer variability [5]. Therefore, automatic techniques
for segmenting the vessel wall are highly desirable.

Several automatic and semi-automatic methods have been
proposed to segment the artery wall in MR images [6], [7],
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[8], [9], [10], [11], [12]. The methods presented in [6], [7],
[8] are based on deformable models and can only segment the
inner border. [9], [10], [11], [12] are able to segment inner
and outer artery walls. Van ’t Klooster et al. [9] proposed a
3D deformable vessel model, in which a vessel is modeled
using a cylindrical surface that can be modified by moving
control points located on the model surface. Good results
were reported on Proton Density Weighted (PDw) Black-
Blood MRI (BBMRI) images. However, only the Common
Carotid Artery (CCA) and not the bifurcation region were
segmented. This method also uses a local optimization pro-
cedure with the lumen segmentation as initialization, which
may get stuck in a local optimum for instance in diseased
vessels where the distance between the inner and outer wall
is large. Hameeteman et al. [12] extended this method with
a learning-based postprocessing step. In this approach, two
separate cylindrical deformable surface models must be used
to segment from CCA to the Internal Carotid Artery (ICA), and
from CCA to the External Carotid Artery (ECA), which may
lead to inaccuracies in the bifurcation area. Recently, Ukwatta
et al. [10] proposed a globally optimal evolution approach for
segmenting the carotid artery wall from BBMRI images. They
obtained good results segmenting the complete bifurcation
region with low processing times. This method requires the
initial estimation of the intensity probability density functions
of the lumen, wall, and background using marks of the three
regions on a 2D transverse slice. Therefore, problems may
arise at sections of the artery that are different from the
estimated probability density functions.

Graph-based methods have been used for segmenting vari-
ous types of vessels on several imaging modalities obtaining
promising results [11], [13], [14], [15], [16]. Most common are
voxel-based graph cut methods which represent the voxels of
an image as vertices in a graph. Generally, in these approaches
all vertices are connected to the sink and source vertices,
and only neighbor vertices are linked. This approach allows
cuts between neighboring voxels to segment foreground and
background regions. A fully automatic voxel-based graph
method to segment the aortic arch and carotid artery from
CTA scans was proposed by Freiman et al. [13]. Bauer et al.
[14] proposed another voxel-based graph method to segment
vessels, in which an energy function that combines gradient
magnitude information and the distance to an initialization
shape is minimized.

A second class of graph-based methods is the optimal
surface methods [11], [15], [17], [18], [19]. Here the graph
vertices represent image positions, and these are arranged in
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columns. Each of these columns intersects the sought surface,
and the positions where the columns intersect the surface dis-
cretely represent the segmentation solution. This construction
makes it possible to enforce topology constraints and to incor-
porate an initialization volume in the graph structure. Often,
the graph is defined based on a coarse initial segmentation.
Petersen et al. [18] proposed to generate the graph columns
from an initial segmentation surface using non-intersecting
columns based on flow lines and applied this to segment
airways in CT images. These non-intersecting columns avoid
self-intersecting surface results, making it possible to segment
high curvature surfaces such as the bifurcation of airways or
vessels. In a preliminary study of the present work, we adapted
this approach to segment the carotid artery wall on individual
MRI sequences [11]. However, if the image information of the
individual MRI sequences is combined and integrated into a
surface graph, it may provide more accurate border locations
since different image sequences have better contrast either at
the inner or outer wall.

In this paper, we present an extension of this previous
work [11] which uses an optimal surface graph to segment
the complete carotid artery wall bifurcation on MRI images
using minimal user interaction. This method guarantees global
minimization of a cost function, ensuring smooth surfaces and
topological constraints between surfaces. The contributions of
this paper are as follows:
• New graph edge cost function that integrates information

from several images.
• Initialization using an automated centerline extraction

method as opposed to [11] which requires a lumen
segmentation.

• A much extended validation compared to [11]: 57
carotid arteries in contrast to 32, parameter optimization
and evaluation by full data set evaluation using a cross-
validation approach in contrast to data set division, many
more manually annotated cross-sections (one for every
1mm centerline in contrast to 6 cross-sections per artery
at random positions).

• We present improved results compared to [11]. Ad-
ditionally, we extended the evaluation including inter-
observer variability analysis, scan-rescan reproducibility
test, and comparison with a state-of-the-art MRI artery
wall segmentation method [12] on a public database.

II. METHOD

A. Method overview

The main steps of the method are:
1) Obtain a 3D coarse segmentation of the lumen as

initialization. This segmentation is obtained by a dilation
of an extracted artery centerline.

2) Based on the initialization construct the surface graph.
The steps to construct the graph are:

a) Obtain from the initialization the graph column
trajectories.

b) On the graph column trajectories assign the graph
vertices.

c) Assign graph edges between vertices with a re-
spective cost. The cost for edges between graph
columns is given by a constant value, while the
cost of the edges in a column is a function of the
image information.

3) Compute minimum graph cut. The segmented surface is
located at the cut locations.

Fig. 1. Schematic of the segmentation method. At the top the used images
are shown, next are depicted the preprocessing steps. Finally, at the bottom
the segmentation is shown using the proposed method.

B. Initialization by centerline extraction

To build the graph we require a coarse initial segmenta-
tion. From this initial segmentation the graph columns are
constructed. The coarse initial segmentation is obtained by
computing the centerline of the vessel lumen using the semi-
automatic centerline extraction method proposed by Tang et
al. [6]. In this method, the lumen centerline is determined as
the minimum cost path between user-defined seed points in
the common xc, internal xi, and external xe carotid arteries.
Two minimum cost paths are computed, one between xc
and xi (we denote the set of points that define this path
by CCCi), and the other between xc and xe (CCCe). The cost
is defined by a combination of the inverse of medialness
filtering [20] and inverse of lumen intensity similarity metric
[6] outputs. The minimum cost path is obtained by applying
Dijkstra’s algorithm. Subsequently, the centerline is refined
by re-computing the minimum cost path after multi-planar
reformatting perpendicular to the centerline [6]. The two
obtained centerlines CCCi and CCCe are connected in order to have
the centerline of the complete artery:CCC = CCCi∪CCCe. Finally, we
obtain a 3D binary image representation of the centerlines Ic:
Z3 → {0, 1} by mapping the centerline set of image positions
CCC to a binary scalar space Ic.
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A coarse approximation of the lumen Q: Z3 → {0, 1} is
obtained by computing a binary morphological dilation of Ic

with a disk structuring element with radius R.

C. Optimal surface graph construction and optimization

Based on the coarse initial segmentation Q, we construct the
graph G = (V,E) with vertices V and edges E. The vertices
are associated with positions in the image, and represent
potential border locations. As in [18], these are grouped by
non-intersecting graph columns, which guarantee non self-
intersecting segmentations. The set of edges E connects the
vertices of the graph, and represents the association between
vertices. High-cost edges are expected to connect vertices of
the same class. Low-cost edges are expected between vertices
from different classes. The segmentation solution is given
by the minimum graph cut, which represents the separation
of the graph vertices in two sets: source part Vs ⊆ V
(foreground) and sink part Vt ⊆ V (background), such that
Vt = V \Vs. In our case we have two surfaces to segment,
the inner and the outer carotid artery wall, therefore coupling
two graphs is necessary to find both borders simultaneously.
One graph is used to separate the vessel lumen from the wall
and background while the other graph is used to separate
the lumen and wall from the background. We represent the
coupling of graphs by connecting vertices of the two sub-
graphs. This graph construction approach coupling several
graphs is described in detail in section II-C2. A minimal cut
minimizes the total cost of the edges that are being cut [21]:

min
vi∈Vs, vj∈Vt

∑
Cost(vi → vj),

s.t. s ∈ Vs, t ∈ Vt, Vt = V \Vs, (vi → vj) ∈ E,
(1)

where Cost(vi → vj) is the associated cost of the directed
edge vi → vj between the vertices vi and vj , and the vertices
s and t denote the source and sink points of the graph.
This minimization is solved by applying a min-cut/max-flow
optimization algorithm [22].

The following three subsections explain in detail the graph
construction approach.

1) Graph column trajectories: To construct the graph, first
the graph columns have to be traced in the image. Each
graph column is composed of a set of vertices representing
the possible image positions the surface can take. The graph
column trajectories are traced from the surface voxels of the
coarse initial segmentation Q. This set of image locations at the
starting surface is represented by XQ = {xi,0| i ∈ {0, .., NQ}},
where NQ is the number of voxels on the surface.

A requirement to guarantee segmented surfaces that do not
self-intersect is that the graph columns do not intersect each
other [18]. Graph columns based on flow lines as described
in [18] have these characteristics. Here, the graph columns
are traced from xi,0, and follow the flow lines f i: R → R3

of the gradient vector field of a Gaussian smoothing of the
initial segmentation represented by Qσ: R3 → R, where σ2

represents the variance of the Gaussian kernel. That is, the
flow lines f i are obtained by solving:

∂f i

∂t
(t) = ∇Qσ(f i(t)), (2)

with initial value given by f i(0) = xi,0. These flow lines
vary in length depending on the point where the gradient of the
scalar field Qσ flattens. A schematic of a gradient vector field
of a smoothed segmentation Qσ is shown in Fig. 2(a). A 2D
sketch of the flow lines traced along this gradient vector field,
starting from the graph vertices located at the initialization
surface is depicted in Fig. 2(b).

2) Graph construction:
a) Graph vertices: Solving Eq. 2 for all xi,0 ∈ XQ such

that f i(0) = xi,0 leads to all graph columns. Each individual
flow line f i defines two graph columns: V Inneri and V Outeri ,
whose vertices represent sets of possible positions for the inner
and the outer wall respectively.

Using the Runge-Kutta-Fehlberg method, the solution of
f i(t) in Eq. 2 is approximated at regular intervals δ defining
the positions of the graph vertices by:

xi,k = f i(kδ), (3)

where k ∈ Z, xi,k is the image position associated with
the graph vertex vmi,k. For each vertex vmi,k, m ∈ M and
M = {Inner,Outer} represent the set of surfaces to find.
The vertex vmi,k is part of the graph column V mi , such that
V mi =

{
vmi,k
∣∣ k = −Ii, Ii + 1, . . . , 0, . . . , Oi − 1, Oi

}
, where

the vertices vmi,0 represent positions at the initial surface given
by xi,0, and vmi,−Ii

and vmi,Oi
represent the innermost and

outermost vertices of column V mi . Each vertex vmi,k describes
a possible position of wall m in column V mi . An example
depicting this graph column construction based on flow lines
is shown in Fig. 2(c).

The complete set of vertices of the graph is represented by
the set of all column vertices and the vertices s and t. Unlike
the vertices of a column V mi , s and t do not have an associated
position in the image. Thus the complete set of vertices V is
defined by:

V =

{⋃
i,m

V mi

}
∪ {s, t},

s.t. i ∈ {0, .., NQ},M = {Inner,Outer} .

(4)

b) Graph edges: The set of edges E connects the vertices
of the graph, and represents the association between vertices.
The edge between the vertices vm1

i,k1 and vm2

j,k2 is denoted by
vm1

i,k1 −→ vm2

j,k2 with an associated cost of Cost(vm1

i,k1→v
m2

j,k2).
The edge set E consists of intra-column edges Eintra and

inter-column edges Einter [11], [18].
- Intra-column edges: The intra-column edges Eintra

connect two consecutive vertices vmi,k and vmi,k+1 in the same
column by directed edges. The cost of edges vmi,k→vmi,k+1

represents local image information associated with the border
location, and must satisfy the condition Cost(vmi,k→vmi,k+1) ≥
0 [18]. To ensure the surfaces cross each column only once,
the edges vmi,k+1→vmi,k are assigned an infinite cost. Finally,
the source vertex s is connected to all innermost vertices
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Construction of graph columns based on flow lines. First, the coarse initial segmentation is smoothed (gray colored tubular structure) and a gradient
vector field is computed, see (a). Subsequently, (b) shows the flow lines represented by red lines which trace this gradient field both inwards and outwards
from the initialization surface vertices represented by dots. These flow lines represent the graph columns trajectories. Two flow lines f 1(t) and f 2(t) indicated
by the green curves are selected. In (c), each of these two flow lines represent two graph columns: inner (green dots) and outer (blue dots) wall columns.
The graph column vertices are indicated by the dots. Here, some of the vertices labels are shown. The intra-column edges are depicted by arrows. The black
dots s and t are the source and sink vertices respectively, and the initialization surface is represented by the black curve. Further, the smooth penalty edges
are shown in (d) and the surface coupling edges in (e). Finally, a graph cut example represented by a red curve is depicted in (f).

in the graph by s
∞→ vmi,−Ii

, and all outermost vertices are

connected to the sink vertex t by vmi,Oi

Cost(vmi,Oi
→t)

→ t. Note:
Cost(vmi,Oi

→t) is equivalent to Cost(vmi,Oi
→vmi,Oi+1), where t

represents the nonexisting vertex vmi,Oi+1. A representation of
the intra-column edges is shown in Fig. 2(c).

The intra-column edge cost in column V mi should indi-
cate the border location, and therefore the minimum should
be at the position of surface m. We achieve a low cost
Cost(vmi,k→vmi,k+1) at the image border, by letting the cost
be inversely proportional to the first order derivative of the
image intensity ∂Ĩsq (fffi(t))

∂t along the graph column trajectory
fff i, where Ĩsq (fff i(t)) is a cubic interpolation of the MRI image
sequence sq: Isq : Z3 → R, at the position fff i(t). The MRI
image intensity transitions from low to high from the lumen
to the vessel wall, and usually from high to low intensity from
the vessel wall to the background. Therefore only the positive
part of ∂Ĩsq (fffi(t))

∂t is considered for Cost(vInneri,k →vInneri,k+1 ),
whereas for Cost(vOuteri,k →vOuteri,k+1 ) only the negative part is
considered.

Costs obtained from different spatially registered MR se-
quences are combined in a weighted sum, with the weights
for inner and outer surfaces tuned separately. This approach
may provide more accurate border locations since different
image sequences have better contrast either at the inner or

outer wall. Therefore, we define the intra-column cost by the
equation:

Cost(vmi,k→vmi,k+1) =

Km −
∑
sq∈S

βm,sq

∣∣∣∣∣∂Ĩsq (f i(kδ))

∂t

Sign(m)
∣∣∣∣∣ , (5)

with Sign(m) =

{
+ if m = Inner
− if m = Outer

, S represents

the set of MRI image sequences, and βm,sq ∈ [0, 1] is a
weighting parameter that indicates the contribution of each
image sequence, such that

∑
sq∈S

βm,sq = 1. In Eq. 5, KInner

and KOuter represent respectively the most positive and most
negative part of the weighted sum of the first order derivatives
in the entire graph, such that Cost(vmi,k→vmi,k+1) ≥ 0. The
derivatives in Eq. 5 are computed using central differences
from the interpolated image intensity values along the flow-
lines.

-Inter-column edges: The edges between columns Einter
incorporate information from different graph columns. Using
these, the wall position can be determined in graph columns
in which the boundaries are not clearly visible. There are two
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types of edges: smooth penalty edges, and surface coupling
edges.

Smooth penalty edges represented by vmi,k ←→ vmj,k between
the neighboring columns V mi and V mj , penalize irregularities,
ensuring smooth segmentations. When the length of two
neighboring columns is different, the remaining vertices at
the innermost part of the column are connected to the source
vertex s, and the remaining vertices at the outermost part
of the column are connected to the sink t [18]. As in [11],
we linearly penalize (Eq. 1) displacements of the graph cut
between neighboring columns. To do this, the cost of these
edges is given by a constant value pm for each surface m:
vmi,k

pm←→ vmj,k. A representation of the smooth penalty edges is
shown in Fig. 2(d).

Surface coupling edges are used to obtain topologically cor-
rect segmentations by constraining or penalizing the distance
between the inner and outer walls. To ensure that the outer
surface is outside the inner surface with a minimum distance of
∆ vertices, we assign edges an infinite cost: vInneri,k

∞→ vOuteri,k+∆;
and to linearly penalize the distance between the inner and
outer wall, we assign the edges vInneri,k

q← vOuteri,k with a
constant cost value q. A representation of the surface coupling
edges is shown in Fig. 2(e).

III. EXPERIMENTS AND RESULTS

A. Image Data

To validate the proposed method, we used MRI of the
carotid bifurcation from 31 subjects with carotid artery plaques
with at least one artery with a maximum wall thickness
≥ 2.5mm measured in ultrasound from the Rotterdam study
[23]. Five arteries were excluded due to manual annotation
errors. Therefore, 57 carotid arteries were used to evaluate the
proposed method. We used both PDw-BBMRI and Phase Con-
trast MRI (PCMRI) images to compute the lumen centerline
[6], which serves as initialization to construct the graph. In
addition, we used PDw Echo Planar Imaging MRI (EPIMRI)
and/or BBMRI images to compute the intra-column edge cost
in Eq. 5. The acquisition time for each sequence is between
∼3 min and ∼6 min. EPIMRI images clearly distinguish the
carotid artery wall [11], while in BBMRI the artery lumen is
well defined [24]. In this study we compare segmentation re-
sults using either one of the two images (EPIMRI or BBMRI),
and the combination of those. The BBMRI images have an
in-plane voxel size of 0.507 × 0.507mm and 0.9mm slice
thickness, while the PCMRI images have 0.703×0.703×1mm,
and the EPIMRI images 0.507×0.507×1.2mm (see Van den
Bouwhuijsen et al. [23] for details of the acquisition protocol).

B. Manual annotations

To evaluate and to optimize the parameters of the presented
method, we used manual annotations in all BBMRI images.
We used a similar manual annotation framework as described
for CTA images in [5]. Here, the manual annotation process
starts with a manual definition of the centerline. Subsequently,
longitudinal contours along this centerline were drawn in a

curved planar reformatted image for both the inner and outer
border. These longitudinal contours were then used to create
cross-sectional contour images at 1mm intervals perpendicular
to the centerline. Subsequently, all cross-sectional images
were checked and contours were adjusted when needed. The
resulting cross-sectional contour images were re-sampled at a
resolution of 0.05× 0.05mm, so ten times higher than the in-
plane original image resolution, which permits validating the
proposed method at a higher accuracy. Since the length of the
automatic and manual centerlines may differ, cross-sections
for which the automatic centerline is not defined are discarded
from the evaluation.

For cases where it is not possible to evaluate the cross-
sectional contours (Subsection III-D and III-H), we compared
3D masks for the lumen and the complete vessel. These 3D
masks were obtained by generating a 3D implicit function
from the cross-sectional contours, which subsequently is filled
to create the 3D masks [25]. The 3D masks of the lumen are
obtained from the inner wall contours and the complete vessel
3D mask from the outer wall contours.

C. Preprocessing

The BBMRI and EPIMRI images suffer from intensity
inhomogeneity within the neck area [12]. This was corrected
using N4 bias field correction [26], which is one of the most
popular methods to correct intensity nonuniformity in MRI
data. We used the default parameters of the method on the
complete image as described in [26].

To compute the lumen centerline for initialization we fol-
lowed the same procedure as in [6]. First we registered PCMRI
to BBMRI using 3D rigid transformation followed by a 3D
affine transformation, with mutual information as similarity
metric. Subsequently, three seed points were manually placed
by an expert in the BBMRI images and the centerlines were
computed using a cost obtained from BBMRI and PCMRI
images as described in section II-B.

The graph initializations were obtained by dilating the
resulting centerlines using a disk structuring element with
radius R of 2.5mm. The value of R was selected based on the
average radius of the carotid artery which is between 2.3mm
and 3.05mm depending on gender and section of the artery
[27].

Subsequently, all EPI images were non-rigidly registered
to the BBMRI data. We used the registration configuration
presented in [28]. Here, a circular registration mask of 10mm
diameter which covers the complete vessel was required. We
obtained this by dilating the centerlines using a disk structuring
element with a radius of 5mm. As suggested in [28], we used
a 3D B-spline transformation with 15mm grid spacing, and
mutual information as similarity metric.

Finally, we normalized the image intensities by a lin-
ear intensity normalization. For each image Isq with sq ∈
{BBMRI,EPIMRI}, we computed the intensity values
that accumulate 5%: Isq5%, and 95%: Isq95% of the intensities
distribution inside the same 10mm-diameter circular mask.
Subsequently, these intensity values were scaled between 0
and 255 to obtain the normalized image I

sq
N by: IsqN (x) =
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TABLE I
DETERMINED BEST SET OF PARAMETERS USING EACH IMAGE SEQUENCE AND THE COMBINATION. THESE WERE OBTAINED APPLYING A THREE-FOLD
CROSS-VALIDATION AND AN ITERATIVE RANDOM BINARY SEARCH ALGORITHM [18]. REMARK: THE VALUES ARE THE MEANS OBTAINED FROM THE

THREE FOLDS, AND BETWEEN BRACKETS THE RANGE IS SHOWN.

Image Sequence Best set of Parameters
σ(mm) pInner pOuter q βInner,BBMRI βOuter,BBMRI

BBMRI 2.25 [2 2.5] 66.3 [43.8 103.9] 573.3 [529.5 625] 0 1 1
EPIMRI 1.7 [1.5 2] 189.6 [127.7 257.8] 548.6 [412.9 700] 0 0 0
BBMRI & EPIMRI 1.63 [0.9 2] 107.81 [92.5 121.87] 387.47 [98.7 550] 0 0.91 [0.75 1] 0.58 [0 0.93]

255
Isq (x)−Isq

5%

I
sq
95%
−Isq

5%

. These images are used to compute the intra-
column cost defined in Eq. 5. A schematic of the preprocessing
including the segmentation is shown in Fig. 1.

D. Inter-observer variability

We compared manual annotations performed by two dif-
ferent experts with similar experience to assess inter-observer
agreement. ICA and CCA were manually annotated by both
observers in a subset of 28 carotid arteries. However, the
generated cross-sectional contours for the two observers are at
different positions due to differences in the manually annotated
centerlines. Therefore, comparing the manually annotated
cross-sections was not possible, and instead we generated 3D
masks for the lumen and the complete vessel based on the
cross-sectional contours of the inner and outer wall. To com-
pare the 3D masks, we axially cropped the volumes such that
the masks of both observers were defined on the same axial
image slices in the cropped volume. We measured the volume
overlap between observers by computing the Dice Similarity
Coefficient (DSC) [29]. The obtained average DSC between
observers was 0.81± 0.04 for the lumen and 0.91± 0.04 for
the complete vessel. Fig. 3 shows scatter plots describing the
correlation of lumen and vessel wall (complete vessel seg-
mentation minus lumen segmentation) volumes between the
two observers. The obtained Intraclass Correlation Coefficient
(ICC) for the lumen volumes was ICC = 0.82, and for the
wall ICC = 0.63. We performed Friedman analysis, which
is a non-parametric statistical test that allows comparing > 2
results at the same time. We found that the volumes from both
observers were significantly different for the lumen and for the
wall (p < 0.01) .

(a) (b)

Fig. 3. Scatter plots comparing observer 1 and observer 2 for segmented
lumen volumes (a), and wall volumes (complete vessel minus lumen segmen-
tation) (b), for 28 carotid arteries.

E. Parameter Tuning

Three-fold cross-validation experiments were performed in
which the best set of parameters were determined on 20-21
images and subsequently used to segment the held out 10-11
images. This cross-validation allows evaluating the method on
the complete data set, and the results represent performance
on unseen data acquired with a similar scan protocol. To
approximate the best set of parameters, we used an iterative
random binary search algorithm [18] to find the parameter
set that maximizes the average vessel wall DSC between the
automatically and manually segmented cross-sections from
observer 1. Based on our previous work [11], we fixed the sam-
pling interval of the flow lines δ described in section II-C2a
to 0.35mm. The minimum distance between inner and outer
borders in the graph ∆ is fixed to two vertices: ∆ = 2, which
represents a distance of 0.7mm (the minimum carotid wall
thickness is about 0.8mm [30]). The parameters to optimize
are then: the σ of the Gaussian kernel used to smooth the initial
segmentation defined in section II-C1; the smoothness penal-
ties pInner, pOuter, the inner-outer border separation penalty
q defined in section II-C2b; and the weighting parameters in
Eq. 4: βInner,BBMRI , βOuter,BBMRI , βInner,EPIMRI , and
βOuter,EPIMRI . Since βInner,EPIMRI = 1−βInner,BBMRI

and βOuter,EPIMRI = 1 − βOuter,BBMRI , we only need
to optimize two weighting parameters: βInner,BBMRI and
βOuter,BBMRI .

The average of the resulting best set of parameters for the
three folds using each image sequence and combination are
shown in Table I. In general, low parameter variation was
observed, however, higher variations were observed in the
parameters of the combination method. In BBMRI, a high
variation was observed in pInner. We observed that the best
wall separation penalty q is zero in all cases. This indicates
that it is preferred not to penalize the distance between borders
to allow segmentations of thick vessel walls in the presence
of plaque. When combining several image sequences, the
contribution of the BBMRI image information was larger
than EPIMRI for detecting both the inner and outer wall.
As EPIMRI is registered to BBMRI, small alignment errors
may occur causing the lower contribution of EPIMRI image
information. However, EPIMRI contributed more to detecting
the outer wall, which could be explained by the high outer
border contrast in the EPIMRI images. We observed higher
values for pOuter than for pInner. As in our MR images the
inner border contrast is better than the outer border contrast,
more smoothing of the segmentation is required for the outer
border, while for the inner border it is possible to rely more
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Fig. 4. Cross-sectional segmentation results using the proposed method
combining BBMRI and EPIMRI image sequences. The BBMRI images are
shown in the first column, and the EPIMRI image in the second column. The
automatic segmentations are depicted by green (inner wall) and blue (outer
wall) contours in the third column. The manual annotations are shown by
the yellow surface (lumen) and the red surface (vessel wall) in the fourth
column, with automatic segmentation results overlaid. The blue areas are
excluded from evaluation, as the manual annotation described only part of
the cross-section in the bifurcations.

Fig. 5. Obtained 3D manual annotation (left) and automatic segmentation
result (right) for the same carotid artery. The transparent green layer depicts
the outer vessel border. The colors in the inner wall represent the wall
thickness (mm).

on the local derivative information.

F. Comparison with manual annotations

Based on the best set of parameters determined in two of
the folds, we applied the proposed segmentation method in
the held out folds. Fig. 4 shows cross-sectional segmentation
results using the proposed method combining BBMRI and
EPIMRI. Further, Fig. 5 shows a 3D mask obtained from the
manual annotations and the corresponding 3D segmentation
result.

Table II shows the mean DSC between the automatic and
manually annotated cross-sections from observer 1 for inner
DSCInner and outer vessel borders DSCOuter for the 57
carotid arteries. Additionally, the signed and absolute wall
thickness differences (manual minus automatic) are shown
in the table. To measure the wall thickness in the automatic
and manual segmentations, we measured the mean distance
between the inner border and the outer border over all points
for each segmented cross-section. The distance for each point
is measured along a ray from the centerline position and is
given by the length of the segment stretching from inner
border to outer border. We performed Friedman analysis and
subsequently a post-hoc analysis based on Tukey-Kramer
testing for multiple comparisons to determine which of the
differences were significant. The highest average DSC for the
inner border was obtained by combining BBMRI and EPIMRI
image sequences, and this was significantly higher (p = 0.01)
than for using only EPIMRI, but not significantly higher than
for using only BBMRI. For the outer border the highest DSC
was obtained using BBMRI only, which was significantly
higher than using EPIMRI alone (p = 0.04). Thus, for both
inner and outer wall segmentation no significant differences
were observed between using both sequences and using only
BBMRI. The mean wall thickness differences for the three
options were very close, and no significant differences were
observed. In all three cases a slight over-segmentation of the
wall with respect to manual annotations of less than the voxel
size was observed.

To evaluate how the method performs in the presence of
disease represented as a wall thickening; we evaluated the
inner and outer DSC of all manual and automatic cross-
sections as a function of the wall thickness. The wall thickness
per cross-section was measured as the 90% percentile distance
between inner border points to the outer border (we do not use
the maximum wall thickness as this is more sensitive to noise
in the measures). The DSC for increasing wall thickness is
shown in Fig. 6. From the figure we see that similar results
were obtained for BBMRI and the combination of BBMRI
and EPIMRI. For these two options the results are very robust
to thickening of the wall, both for the inner and outer wall. In
the remainder of this section, all results reported are for the
method combining BBMRI and EPIMRI images.

TABLE II
DSC OVERLAP FOR INNER BORDER (DSCInner ) AND OUTER BORDER

(DSCOuter ), AND SIGNED AND ABSOLUTE WALL THICKNESS
DIFFERENCES (SWTD, AWTD) BETWEEN THE AUTOMATIC AND MANUAL

ANNOTATED CROSS-SECTIONS FOR EACH IMAGE SEQUENCE
COMBINATION († SHOWS THAT THOSE RESULTS WERE SIGNIFICANTLY

DIFFERENT TO EPIMRI).

BBMRI EPIMRI BBMRI & EPIMRI

DSCInner 0.88± 0.06 0.88± 0.03 0.89± 0.05†

DSCOuter 0.86± 0.06† 0.85± 0.05 0.85± 0.06
SWTD (mm) −0.15± 0.3 −0.19± 0.4 −0.22± 0.4
AWTD (mm) 0.26± 0.2 0.34± 0.3 0.37± 0.2

Scatter plots of the volumes for automated segmentations
against the manual annotations from observer 1, as measured
in the upsampled cross-sectional slices, are given in Fig. 7
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(a) DSCInner

(b) DSCOuter

Fig. 6. DSC as a function of maximum wall thickness for each image
sequence and their combination, for all cross-sections. The wall thickness
is represented by the 90% percentile thickness in the manually segmented
cross-section. Finally, polynomial curves that fit the points for each of the
sequence combinations are shown in the figures.

for lumen and vessel wall. We found an excellent correlation
ICC = 0.99 between lumen volumes and a good correlation
ICC = 0.72 between wall volumes.

(a) (b)

Fig. 7. Scatter plots comparing manual and the automatic segmented lumen
volumes (a), and wall volumes (complete vessel-lumen segmentation) (b)
using the proposed segmentation method combining BBMRI and EPIMRI
image sequences.

Finally, we compared the results of the proposed method
to the manual segmentations from the second observer. As
the second observer segmented only ICA and CCA, the ECA
sections of the segmentations by the proposed method and by
observer 1 were excluded. Using the manual ECA segmenta-
tions of observer 1, we created the exclusion area by creating a
3D mask of this manually annotated ECA section, and applied

an axial dilation with a disk structuring element of 3mm radius
to guarantee the exclusion of the automatically segmented
ECA. Subsequently, we cropped the segmented volumes such
that all segmentations were defined in all axial slices. Finally,
we computed DSC outside the excluded area. The results for
the subset of 28 carotid arteries that were manually annotated
by both observers are described in Table III. The overlap of
the automatic lumen segmentations and the segmentations of
observer 1, was significantly higher (p < 0.001) than the
overlap between observer 1 and observer 2, and the overlap
between observer 2 and the automatic segmentations. For the
outer border, the overlap between observer 1 and observer 2
was significantly higher than the overlap between observer
1 and the automatic segmentation, and between observer 2
and the automatic segmentation. From the SWTD results, we
observed an over-segmentation of the wall with respect to
observer 1 and an under-segmentation with respect to observer
2. Based on the AWTD, agreement of wall thickness measures
was better between the automated approach and both observers
than between observers.

G. Reproducibility analysis

Scan-rescan reproducibility was assessed on 30 patients who
were imaged twice within a short time interval (15± 9 days).
Significant changes in carotid anatomy were therefore not
expected, and lumen and wall volume must be similar. The
proposed method, combining BBMRI and EPIMRI images
using the average set of parameters as described in Table
II, was applied to the baseline and follow-up images of 60
carotid arteries. All segmented volumes were cropped from
13.5mm below up to 9mm above a manually allocated carotid
bifurcation point in order to compare similar regions on base-
line and follow-up. Scatter plots describing the correlations for
lumen and vessel wall volumes between baseline and follow-
up are shown in Figures 8(a) and 8(b). The obtained intraclass
correlation for the lumen volumes is ICC = 0.96, and for the
wall ICC = 0.74. The mean absolute wall volume difference
between scan-rescan was 23% ± 23%. Figures 8(c) and 8(d)
show an example of a baseline and follow-up segmentation
pair.

H. Comparison with Other methods

Finally, we compared the proposed method to another
carotid artery wall segmentation method in MRI on a public
data set. Hameeteman et al. [12] proposed a cylindrical de-
formable surface model with a learning-based postprocessing
step to segment the carotid artery wall in MRI. We choose this
method because these results were made publicly available at
http://ergocar.bigr.nl. In addition, to date their reported results
are among the best for carotid artery wall segmentation in
MRI. As only ICA and CCA were segmented using the method
presented in [12] the segmented ECA sections were excluded
from our resulting segmentations as described in section
III-F. Subsequently, we cropped the segmented volumes 25mm
centered at the bifurcation point as described in [12]. Fourteen
subjects were used for the evaluation. From the 28 carotid
arteries, one was discarded due to manual annotation errors
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TABLE III
AGREEMENT BETWEEN THE AUTOMATIC METHOD, OBSERVER 1 (OBS. 1) AND OBSERVER 2 (OBS. 2). 1 , 2 AND 3 INDICATE THAT THE OBTAINED RESULT

IS SIGNIFICANTLY BETTER THAN THE CORRESPONDING RESULTS IN ROW 1, 2 OR 3, RESPECTIVELY. FOR THE AUTOMATIC SEGMENTATIONS, WE
COMBINED BBMRI AND EPIMRI. THE ECA HAS BEEN EXCLUDED FOR THIS ANALYSIS, SO VALUES ARE DIFFERENT FROM TABLE II.

DSCInner DSCOuter SWTD (mm) AWTD (mm)

Obs. 1 Vs. Obs. 2 0.81± 0.04 0.91± 0.042,3 −0.62± 0.25 0.62± 0.25

Obs. 1 Vs. Auto 0.88± 0.061,3 0.83± 0.06 −0.27± 0.43 0.41± 0.241

Obs. 2 Vs. Auto 0.78± 0.04 0.84± 0.08 0.34± 0.4 0.39± 0.41

(a) (b)

(c) (d)

Fig. 8. Comparison of baseline and short-term follow-up segmentations.
(a) and (b) depict scatter plots comparing baseline and follow-up segmented
lumen volumes (a), and wall volumes (b). The scatter plots show the results
for 60 carotid arteries. In (c) a segmented baseline is shown, and (d) shows
the corresponding segmented follow-up.

and four others because we observed big displacements on the
ECA sections between automatic and manual segmentations
and it was not possible to exclude the ECA using the method
described in section III-F. Table IV shows the DSC on the
manually annotated volumes from observer 1 for inner and
outer border using both methods in 23 arteries. For the
inner border, the presented method was significantly better
(p < 0.01), while for the outer border it was not significantly
different (p = 0.06). In addition, Table IV shows the SWTD
and AWTD (manual-automatic) for both methods, here we
observed lower SWTD and significantly lower AWTD using
the method proposed by Hameeteman et al. [12] (p < 0.01).

IV. DISCUSSION

In this paper, we presented a new 3D method for carotid
artery wall segmentation in MRI. This finds a globally optimal
solution based on a cost function and jointly segments the
complete lumen and outer wall including the bifurcation sec-
tion. The method requires an initialization to build the graph.
However, as the graph column trajectories extend both inwards

TABLE IV
COMPARISON OF THE PROPOSED METHOD TO THE METHOD PROPOSED BY

HAMEETEMAN ET AL. [12] USING DSC FOR INNER (DSCInner ) AND
OUTER BORDER (DSCOuter ) BETWEEN AUTOMATIC RESULTS AND 3D

MANUAL ANNOTATIONS, AND SIGNED AND ABSOLUTE WALL THICKNESS
DIFFERENCES (SWTD, AWTD) BETWEEN AUTOMATIC AND MANUAL
ANNOTATED CROSS-SECTIONS († SHOWS THAT THOSE RESULTS WERE

SIGNIFICANTLY BETTER THAN THE OTHER METHOD).

Hameeteman et al. [12] Proposed Method

DSCInner 0.87± 0.09 0.91± 0.04†

DSCOuter 0.88± 0.08 0.86± 0.05
SWTD (mm) −0.02± 0.24 −0.14± 0.54
AWTD (mm) 0.20± 0.15† 0.46± 0.30

and outwards from this initialization, a coarse approximation
of the lumen is sufficient.

We evaluated the quality of the automatic segmentations by
cross-validation and comparison with manual segmentations
performed by two experts. We also evaluated the method using
several image combinations (BBMRI, EPIMRI, and BBMRI
& EPIMRI). Based on the cross-validation, we did not observe
big DSC variances using different parameter settings as shown
in Table II. This means that the methods are able to generalize
to unseen data acquired with a similar scan protocol. However,
to apply the method to data acquired with a different scan
protocol, the method parameters need to be re-tuned, as is
the case for most segmentation approaches. The results for all
combinations were good, with lumen overlap DSCInner >
0.88 and complete vessel overlap DSCOuter > 0.85, and
absolute wall thickness differences AWTD < 0.37mm, less
than the in-plane voxel size. Segmentations based on EPIMRI
had the lowest accuracy. This can be partly explained by the
fact that the manual annotations were performed in BBMRI.
Therefore possible misregistrations of EPIMRI to BBMRI are
measured as segmentation errors in EPIMRI, and in cases
where low image contrast or artefacts in BBMRI lead to a
certain annotation, this is more likely to be reproduced by
an automatic segmentation using BBMRI than by one using
EPIMRI. Similar results with no significant differences were
observed between BBMRI and the combination of BBMRI
and EPIMRI. This similarity was also observed in the relation
with wall thickness, where both methods had similar good
performances in healthy and diseased sections of the artery.
We conclude that the proposed edge cost function that can
integrate information from several images will give better or
similar results than using only one image. In cases where the
available images only have good contrast in one of the borders
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to segment, such combined cost function can be beneficial.
However, as BBMRI itself has a good inner and a fair outer
wall contrast, combining BBMRI with EPIMRI did not make
a difference in our experiments.

The segmentation errors we obtained for the artery lumen
are comparable to the inter-observer variation. As can be
seen in Figure 3(a), Observer 2 showed a strong, consistent
undersegmentation of the lumen with respect to Observer 1,
which resulted in a relatively low agreement of this observer
with both the automated method and Observer 1. This under-
lines the importance of objective measurements, such as those
obtained automatically in this paper, in the analysis of carotid
MR images. For the outer border, the overlap with the manual
annotations of both observers was significantly lower than
between observers. This lower accuracy at the outer border
was also visible in the reproducibility study in the scatter plots
in Figure 8(b) where the variation in wall volume measured
in repeated scans is larger than the variation in lumen volume.
Even though the correlation for the wall volumes is lower, we
believe the proposed method presents a good reproducibility
for lumen and wall volumes, as these correlations were higher
compared to the inter-observer volume correlations. This is an
important result: if we can measure similar volumes for the
scan-rescan images, we should be able to do volume tracking
for longitudinal analysis in clinical intervals. One possible
reason for the lower performance at the outer border could be
that the outer border contrast is often lower. The proposed cost
function based on intensity image derivatives may therefore
fail. In such cases, a cost function that integrates more features
in addition to image intensity derivatives might give a better
representation of the location of the outer border.

We compared the proposed method to the method presented
in [12], which is an improved version of [9]. In [12], they
reported statistically better results than those obtained using
van ‘t Klooster et al. [9] (DSCInner = 0.83 and outer
border DSCOuter = 0.85). In this paper, the comparisons
were performed on CCA and ICA only, because the method
presented in [12] cannot segment the complete bifurcation. We
obtained better DSCInner and the method presented in [12]
resulted in lower wall thickness differences. Despite the simi-
larity of the results, we consider our method relevant for this
application as it can segment the complete bifurcation, which
is medically relevant using a single graph cut segmentation.
On the other hand, methods such as [12], which search a single
tubular shape, could be used to segment the entire bifurcation
by segmenting the individual vessel segments separately and
joining the resulting segmentations. However, this may result
in errors in the bifurcation region where the model of a single
tube shape is not appropriate. Methods to segment only the
lumen such as [6] reported a DSCInner = 0.89, which is
similar to the reported DSCInner for the proposed method.
Further, Ukwatta et al. [10] reported an average inner border
DSCInner > 0.85 and outer border DSCOuter > 0.87 using
similar images. These results are comparable to the results
obtained by our method, however, results cannot be compared
directly as the data used for validation is different. Advantages
of the proposed method are that it requires less user interaction
than the method presented by Ukwatta et al. [10] therefore it is

easier to fully automate using automated seed point detection
or lumen detection methods as in [31], and that it can segment
the complete bifurcation in one global optimization in contrast
to Hameeteman et al. [12] and van ‘t Klooster et al. [9].

Because of the good quality inner border segmentations,
the presented method can be used in clinical practice for
lumen stenosis detection, or to analyze abnormalities in the
carotid artery geometry. Additionally, the method can be used
to analyze the vessel wall in large population studies. For wall
analysis in clinical practice, an interactive approach that would
allow more accurate quantitative wall measurements may be
desirable.

V. CONCLUSION

To conclude, we have presented an optimal surface graph-
based method for segmenting the complete carotid artery wall,
which requires minimal user interaction and can combine
information from several images. The method shows good
agreement with manual segmentations. In contrast to previous
approaches, our method jointly optimizes both surfaces: inner
and outer border, finds a globally optimal solution, and can
reliably segment the bifurcation section which is the most
clinically relevant area to assess.
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[20] M. A. Gülsün and H. Tek, “Robust vessel tree modeling,” in MICCAI,
ser. MICCAI ’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 602–
611.

[21] H. Ishikawa, “Exact optimization for markov random fields with convex
priors,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 25, no. 10, pp. 1333–1336, 2003.

[22] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 9, pp. 1124–1137, 2004.

[23] Q. J. van den Bouwhuijsen, M. W. Vernooij, A. Hofman, G. P. Krestin,
A. van der Lugt, and J. C. Witteman, “Determinants of magnetic
resonance imaging detected carotid plaque components: the rotterdam
study,” European Heart Journal, 2011.

[24] M. H. Rodallec, V. Marteau, S. Gerber, L. Desmottes, and M. Zins,
“Craniocervical arterial dissection: Spectrum of imaging findings and
differential diagnosis1,” Radiographics, vol. 28, no. 6, pp. 1711–1728,
2008.

[25] G. Turk and J. F. O’Brien, “Shape transformation using variational
implicit functions,” in Proceedings of the 26th annual conference on
Computer graphics and interactive techniques, ser. SIGGRAPH ’99.
ACM Press/Addison-Wesley Publishing Co., 1999, pp. 335–342.

[26] N. Tustison, B. Avants, P. Cook, Y. Zheng, A. Egan, P. Yushkevich, and
J. Gee, “N4ITK: Improved N3 bias correction,” IEEE Transactions on
Medical Imaging, vol. 29(6), pp. 1310 – 1320, 2010.

[27] J. Krejza, M. Arkuszewski, S. E. Kasner, J. Weigele, A. Ustymowicz,
R. W. Hurst, B. L. Cucchiara, and S. R. Messe, “Carotid artery diameter
in men and women and the relation to body and neck size,” Stroke,
vol. 37, no. 4, pp. 1103–1105, 2006.

[28] R. van ’t Klooster, M. Staring, S. Klein, R. Kwee, M. Kooi, J. H. C.
Reiber, B. Lelieveldt, and R. van der Geest, “Automated registration

of multispectral MR vessel wall images of the carotid artery,” Medical
Physics, vol. 40, no. 12, pp. 121 904–1 – 121 904–12, 2013.

[29] L. R. Dice, “Measures of the amount of ecologic association between
species,” Ecology, vol. 26(3), pp. 297–302, 1945.

[30] M. Silvestrini, B. Rizzato, F. Placidi, R. Baruffaldi, A. Bianconi, and
M. Diomedi, “Carotid artery wall thickness in patients with obstructive
sleep apnea syndrome,” Stroke, vol. 33, no. 7, pp. 1782–1785, 2002.

[31] S. Liu, D. Padfield, and P. Mendonca, “Tracking of carotid arteries
in ultrasound images,” in Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2013, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, vol. 8150, pp. 526–533.


