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Tetrahydrobiopterin (BH4) is an essential co-factor of nitric oxide synthases and is easily
oxidized to dihydrobiopterin (BH2) which promotes endothelial nitric oxide synthase
uncoupling and deleterious superoxide production. Vitamin C has been shown to improve
endothelial function by different mechanisms, some involving BH4. The hypothesis of the
present study was that vitamin C status, in particular low levels, influences biopterin
redox status in vivo. Like humans, the guinea pig lacks the ability to synthesize vitamin C
and was therefore used as model. Seven day old animals (n = 10/group) were given a diet
containing 100, 250, 500, 750, 1000, or 1500 ppm vitamin C until euthanasia at age 60–64
days. Blood samples were drawn from the heart and analyzed for ascorbate,
dehydroascorbic acid (DHA), BH4 and BH2 by high-performance liquid chromatography.
Plasma BH4 levels were found to be significantly lower in animals fed 100 ppm vitamin C
compared to all other groups (P < .05 or less). BH2 levels were not significantly different
between groups but the BH2-to-BH4 ratio was higher in the group fed 100 ppm vitamin C
(P < .001 all cases). Significant positive correlations between BH4 and ascorbate and
between BH2-to-BH4 ratio and DHA were observed (P < .0001 both cases). Likewise, BH2-to-
BH4 ratio was negatively correlated with ascorbate (P < .0001) as was BH4 and DHA (P <
.005). In conclusion, the redox status of plasma biopterins, essentially involved in
vasodilation, depends on the vitamin C status in vivo. Thus, ingestion of insufficient
quantities of vitamin C not only leads to vitamin C deficiency but also to increased BH4

oxidation which may promote endothelial dysfunction.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

The endothelium plays a crucial role in maintaining vascular
homeostasis. A dysfunctional endothelium is observed in
many diseases and conditions such as diabetes, coronary
artery disease, atherosclerosis and hypertension [1]. Endothe-
lial dysfunction (ED) is in part due to an imbalance between
vasoconstricting and vasodilating substances produced by or
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acting on the endothelium. ED is commonly associated
with decreased bioavailability of nitric oxide (NO) due to less
NO production by the endothelium and/or an increase in
reaction between NO and reactive oxygen species [2]. NO is
produced by nitric oxide synthase (NOS), of which there
are three types: endothelial NOS (eNOS), inducible NOS
and neuronal NOS. Tetrahydrobiopterin (BH4) is an essential
co-factor of the three NOSs [3]. BH4 is easily oxidized to
HA, dehydroascorbic acid; DTE, dithioerythritol; ED, endothelial
rmance liquid chromatography; MPA, meta-phosphoric acid; NOS,
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dihydrobiopterin (BH2), which may be further oxidized to
biopterin. During BH4 deficiency, eNOS enters what is called
an ‘uncoupled’ state and produces superoxide rather than NO
[4], which may react to form the strong oxidant peroxynitrite.
It has been found that BH4 and BH2 bind to eNOS with equal
affinity [5,6], but whereas binding of BH4 leads to production of
NO, binding of BH2 leads to formation of superoxide [4].
Superoxide can oxidize BH4 directly or through the formation
of peroxynitrite [7] leading to decreased production of NO and
further increased production of superoxide. It has been
suggested that the ratio of BH2 to BH4, rather than the absolute
levels of BH4 and BH2, is the best predictor of endothelial
function [5,6,8–11].

Vitamin C deficiency has been associated with increased
risk of cardiovascular disease inmany epidemiological studies
[12] and this has prompted investigations into the potential
mechanisms by which ascorbate may influence cardiovascu-
lar function. Ascorbate has been shown in in vitro studies to
act as specific redoxmodulator in the NO synthesis by keeping
BH4 reduced [13–15]. Also, severalmechanisms involving eNOS
have been suggested through which ascorbate can potentially
increase the bioavailability of NO (Fig. 1). Moreover, high doses
of vitamin C has been shown to improve endothelial function
in people with compromised endothelial function [1]. We
therefore hypothesized that commonly observed hypovitami-
nosis C whilst not leading to scurvy—the ultimate clinical
manifestation of vitamin C deficiency—may indirectly affect
endothelial function by resulting in an unfavorable ratio of
BH4/BH2. In the present study, we used our guinea pigmodel to
test, if dietary vitamin C predicts the plasma concentrations
and ratio of BH4/BH2 in vivo. In contrast to all other mammals,
primates (including humans), bats and guinea pigs specifically
lack the ability to synthesizevitaminCdue to amutation in the
gene encoding for gulonolactone oxidase catalyzing the last
step in the biosynthesis [16]. Thus, the guinea pig constitutes a
unique and well-validated model for studying low levels of
vitamin C comparable to those found in large human sub-
populations [17–20].
Fig. 1 – Putative mechanisms by which vitamin C may increase N
increasing phosphorylation [46] and decreasing S-nitrosylation [
scavenging peroxynitrite [45] and superoxide [7] or by recycling on
nitrite to yield NO [48], though this process is likely only relevan
2. Methods and materials

2.1. Materials

7,8-dihydro-L-biopterin (BH2) and (6R)-5,6,7,8-tetrahydrobiop-
terin (BH4) were from Shircks Laboratories (Jena, Switzerland).
Tris(2-carboxyethyl)phosphine hydrochloride and disodium
ethylenediaminetetraacetate dihydrate (Na2-EDTA) were pur-
chased from VWR–Bie & Berntsen A/S (Herlev, Denmark). 1,4-
Dithioerythritol (DTE), and meta-phosphoric acid (MPA) were
obtained from Sigma-Aldrich (Brøndby, Denmark). All other
chemicals were of the highest quality available. All solutions
were made in Milli-Q water.

2.2. Animals

The experiment was approved by the Animal Experiments
Inspectorate under the Ministry of Food, Agriculture and
Fisheries. Sixty Hartley guinea pigs (HA-SIFE150200, Charles
River Laboratories, Kisslegg, Germany), 7 days of age, were
marked with a subcutaneous microchip in the neck, weight
stratified and randomized into six feeding groups upon arrival
to our animal facility. All groups received a purified diet
(Research Diets, Inc, New Brunswick, NJ, USA), the only
difference being the amount of vitamin C. Ingredients are
provided in Table. Diets with a final concentration of 100, 250,
500, 750, 1000, or 1500 ppm vitamin C were made from feed
containing 0 ppm vitamin C (D11091304), 727.6 ppm vitamin C
(D11091305) and 2128.4 ppm vitamin C (D11091306) by
analysis. The animals had free access to water and hay. We
have previously shown that even the lowest dose of vitamin C
provided does not result in scurvy [17,21,22]. Animals were
group housed in floor pens in an enriched environment at 22±
2°C with a 12:12 h light–dark cycle, inspected daily by trained
personnel and weighted twice weekly. At 60–64 days of age,
the guinea pigs were anaesthetized by using isofluran
inhalation (Isoba vet, MSD Animal Health, the Netherlands).
O bioavailability. Vitamin C may increase eNOS activity by
47]. Vitamin C may also increase BH4 bioavailability by
e-electron oxidized BH4 [7,41]. Ascorbic acidmay also reduce
t at low pH.



Table – Ingredient composition of the diets fed to guinea
pigs.

Ingredient g

Diet (stock) a #D11081304 #D11081305 #D11081306

Soy protein 80 80 80
Casein 120 120 120
L-Methionine 5 5 5
Corn starch 315 315 315
Maltodextrin,10 35 35 35
Sucrose 350 350 350
Cellulose, Bw200 100 100 100
Guar gum 25 25 25
Lard 20 20 20
Soybean oil 25 25 25
Mineral mix b 75 75 75
Vitamin mix c 10 10 10
Ascorbic acid
phosphate, L
(33% active) d

0 2.5 7.1

Choline bitatrate 2 2 2
Total 1162 1164.5 1169.1

a All dietswere produced byResearchDiets Inc. Individual vitaminC
regimes applied in the different experimental groups (100-250-500-
750-1000 and 1500 ppm vitamin C) were achieved by titrating the
three diets to meet the desired levels. Batch # 0 ppm vitamin C
(D11091304), 700 ppm (727.6 ppm by analysis) vitamin C (D11091305),
and 2000 ppm (2128.4 ppm by analysis) vitamin C (D11091306).
b Mineral mix S20001.
c Vitamin mix V23901.
d Provided by Rovimix Stay-C 35.
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Subsequently, a thoracotomy was performed and an intracar-
dial blood sample obtained using a syringe with an 18G, 40
mmneedle that had been flushed with 15% K3-EDTA. Animals
were finally euthanized by decapitation.

2.3. Ascorbic acid determination

Blood samples were immediately centrifuged for 2 minutes at
16000×g (4°C) and stabilized with 10% (w/v) MPA containing 2
mmol/L Na2-EDTA as reported previously [23] and stored at
−80°C until analysis . The stability of ascorbate and
dehydroascorbic acid (DHA) in MPA stabilized plasma has
been studied previously and found adequate in preserving
the in vivo equilibrium [24,25]. Ascorbate and total vitamin C
(ascorbate + DHA) following reduction were quantified by
high-performance liquid chromatography (HPLC) with coulo-
metric determination and DHA concentrations were assessed
by subtraction of ascorbate from total vitaminCusing uric acid
as endogenous internal standard [24]. The within- and
between-day coefficients of variation for the complete assay
were less than 1.5% and 3.5%, respectively [26].

2.4. Biopterin determination

Blood samples for biopterin analysis were immediately added
4% DTE to yield a final concentration of 0.1% DTE. The blood
sample was centrifuged for 1 min and the plasma was
separated and frozen at −80°C until further analysis.

BH2 and BH4 were determined by HPLC modified from
Hyland [27]. The HPLC system consisted of an Agilent 1100
thermostatted autosampler, an Agilent 1200 binary pump, an
Agilent 1200 fluorescence detector, and an Ultimate 3000
column compartment from Dionex. BH4 was determined
using a 5011A analytical cell (ESA, Inc) with potentials of
−400 mV (electrode 1) and 125 mV (electrode 2) controlled by a
CouloChemII detector (ESA, Inc.) –detectionwasat electrode2.
BH2 was determined by fluorescence (excitation wavelength
275 nm and emission wavelength 442 nm) after oxidation of
BH2 to the more strongly fluorescent biopterin by a condition-
ing cell (5021A from ESA, Inc) running at 500 mV.

The column was a Gemini C18 (250×4.6 mm, 5 μm) from
Phenomenex. The samples were eluted with 100% aqueous
buffer containing 50 μmol/L Na2-EDTA and 50 mmol/L
ammonium acetate-acetic acid buffer at pH 4.8. The column
was thermostatted at 30°C and the eluent flow was 1 mL/min.

Plasma samples were thawed immediately prior to anal-
ysis. After thawing, plasma was added 50% MPA in the ratio
9:1 (v/v). After spinning for 1 min. (16000×g), the supernatant
was neutralized with 5 mol/L NaOH and analyzed immedi-
ately. Quantification was done using external standards. The
within- and between-day coefficients of variation for the
complete assay were less than 5 and 3.5%, respectively.

2.5. Statistical analyses

Data are presented as means ± SD unless otherwise indicated.
A sample size of 10was chosenwith the purpose of identifying
a 30% effect of vitamin C deficiency with a 30% SD on each
average measurement and a power of 80%. Multiple regres-
sion analysis and analysis of variance were performed using
Statistica (Statsoft version 9.0, Tulsa, OK, USA). In case of
significance, Tukey’s post hoc test was used for individual
comparisons. P < .05 was considered statistically significant.
3. Results

As expected, plasma vitamin C was found to increase
significantly with level of vitamin C in the diet (Fig. 2).
However, plasma BH4 levels were also affected by the amount
of vitamin C in the diet. Thus, guinea pigs fed 100 ppmvitamin
C had lower plasma levels of BH4 (P < .05 or less) than animals
fed higher doses of vitamin C (Fig. 3A); there were no
significant differences between the other groups. BH2 levels
were unaffected by the level of vitamin C in the diet, leading to
a significantly higher BH2-to-BH4 ratio in the group fed 100
ppm vitamin C (P < .0001) with no differences among the other
groups (Fig. 3B).

Plasma ascorbate levels were in the range 5–100 M, while
biopterin levels ranged from around 100 nmol/L to around 400
nmol/L. Plasma levels of biopterins and ascorbate were highly
correlated. As Fig. 4A shows, the BH4 plasma level was
positively correlated with total vitamin C:

C BH4ð Þ=nM ¼ 146þ 1:24� C vitamin Cð Þ=M P < :0001

BH4 plasma concentration was also negatively correlated
with the vitamin C oxidation ratio (percentage of DHA of total
vitamin C) (Fig. 4B):

C BH4ð Þ=nM ¼ 271−4:04 DHA=% P < :005
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BH2 plasma concentration, on the other hand, was not
correlated with vitamin C plasma levels. However, the ratio of
BH2 to BH4 was. Thus, guinea pigs with high levels of total
vitamin C tended to have lower BH2-to-BH4 ratios (Fig. 5A):

C BH2ð Þ=C BH4ð Þ ¼ 0:12 − 0:00103� C vitamin Cð Þ=M P < :0001

and higher percentage of DHA correlated with higher BH2-to-
BH4 ratio (Fig. 5B):

C BH2ð Þ=C BH4ð Þ ¼ −0:0055þ 0:0046� DHA=% P < :0001:
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Fig. 3 – Plasma BH4 level and BH2-to-BH4 ratio as a function of
vitamin C in the diet. Guinea pigs (n = 10 in each group) were
exposed to different vitamin C concentrations for two
months. BH4 levels (A) were significantly lower and BH2-to-
BH4 ratio (B) was significantly higher of the 100 ppm group
compared to the other groups. Data are presented asmeans ±
SD. *P < .05, **P < .01, ***P < .001.
4. Discussion

A considerable epidemiological literature has found that
vitamin C deficiency in humans is consistently associated
with increased risk of developing cardiovascular disease and
stroke (for recent studies see [28–31]). In contrast, all major
intervention studies have been unable to demonstrate an
effect of vitamin C supplementation on cardiovascular risk
(for recent studies see [32–35]). However, as pointed out by us
elsewhere, none of the latter studies has unfortunately
recruited and thus studied the effect of supplementation in
deficient individuals which is of major importance consider-
ing the particular non-linear saturation kinetics of vitamin C
[20,12,36]. Thus, properly performed animal model studies of
vitamin C deficiency are indeed warranted. In the present
study, we wanted to investigate the in vivo relationship
between plasma biopterin redox status, vitamin C ingestion
and plasma vitamin C using guinea pigs as a model as a
negative effect of vitamin C deficiency on biopterin redox
status in vivo may constitute an indirect rationale underlying
the association between poor vitamin C status and increased
risk of heart disease observed in humans.

Somesmaller intervention studieshave shownabeneficial—
but typically transient—effect of vitamin C on endothelial
function in people suffering from various conditions such as
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Fig. 2 – Plasma vitamin C as a function of vitamin C in diet.
Guinea pigs (n = 10 in each group) were exposed to different
vitamin C concentrations for two months. Plasma vitamin C
was significantly lower in the group fed 100 ppm vitamin C
compared to all other groups. Data are presented as means ±
SD. ***P < .001.
diabetes, coronary artery disease, hypertension, and inflam-
mation, while other studies found no effect of such interven-
tion (for a review see [1]). Numerous possible mechanisms
behind a putative effect of vitamin C on endothelial function
have been suggested, e.g. decrease in low-density lipoprotein
oxidation, scavenging of superoxide, release of nitric oxide
from S-nitrosothiols, reduction of nitrite to nitric oxide, and
activation of either eNOS or smooth muscle guanylate cyclase
[37]. Of particular relevance to our observations are studies
looking at the relationship between vitamin C and eNOS
activity, since BH4 is a necessary co-factor of eNOS and
plasma levels of vitamin C and redox status of biopterins are
linked. Vitamin C could exert its positive effect on eNOS
activity directly through regulation of eNOS activity or
indirectly by increasing the BH4 bioavailability. Several
potential mechanisms involving eNOS have been suggested
through which ascorbate could increase the bioavailability of
NO. In a number of studies, it was found that incubation of
endothelial cells in the presence of vitamin C increased
intracellular BH4 levels [13–15], whereas another study found
only a non-significant increase of intracellular BH4 when
endothelial cells were incubated with vitamin C alone but a
marked 176% increase when cells were treated with E. coli
endotoxin and vitamin C together [38]. Likewise, incubation of
mouse macrophages with vitamin C was found to increase
intracellular levels of BH4 [39]. Based on in vitro experiments it
has been suggested that vitamin C exerted its positive effect
on BH4 levels by preventing oxidation of BH4 or by recycling
one-electron oxidized BH4 [7,14,40,41]. One way that ascorbate
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could prevent oxidation of BH4 is by scavenging reactive
oxygen species before they react with BH4, which is very
easily oxidized. Several reactive oxygen species exist but of
particular relevance to NO bioavailability is superoxide and
peroxynitrite. Superoxide reacts with both ascorbate and BH4

with a rate constant of 3 to 4·105 mol/L−1 s−1 [42,43]. The much
higher plasma concentration of ascorbate compared to BH4

means that ascorbate at least theoretically is capable of
protecting BH4 from oxidation by superoxide. However,
superoxide reacts much faster with NO forming peroxynitrite
than with either ascorbate or BH4. Thus, the typically
micromolar plasma concentrations of ascorbate have been
found inadequate in preventing superoxide from reacting with
NO. In fact, ascorbate concentrations of 10 mmol/L are needed
to compete with NO for superoxide [44]. In contrast, in vitro
experiments with endothelial cells, ascorbate concentrations
were found in the low millimolar range [45] suggesting that
ascorbate would be able to scavenge at least part of the
superoxide generated intracellularly. Moreover, although per-
oxynitrite reacts 10 times faster with BH4 than with ascorbate
[7], the 1000-fold higher concentration of ascorbate compared
to BH4 in human plasma suggests that peroxynitrite may
react with ascorbate over BH4 in vivo. Another possible
mechanism by which ascorbate could affect the bioavailability
of BH4 is through regulation of the synthesis of BH4. BH4 is
synthesized in vivo by two mechanisms referred to as de novo
synthesis and the salvage pathway, respectively [3]. It was
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Fig. 4 – Correlation between BH4 and vitamin C. Data from all
animals (n=60) were included in the analysis. Plasma BH4

levels were highly (P < .0001) positively correlated with
plasma vitamin C (A) and highly (P < .0001) negatively
correlated with DHA (B).

ata from all animals (n = 60) were included in the analysis.
lasma BH2-to-BH4 ratio is highly (P < .0001) negatively
orrelated with plasma vitamin C (A) and highly (P < .0001)
ositively correlated with DHA (B).
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found that ascorbate had no effect on the expression or
activity of the rate-limiting enzyme (GTPCH-I) in the de novo
synthesis of BH4 [14] and, so far, no effect of ascorbate on the
salvage pathway has been reported.

Ascorbate could also affect the NO bioavailability by
directly influencing the activity of eNOS. In a very recent
report, it was shown that vitamin C increases phosphorylation
of eNOS-Ser1177 and decreases phosphorylation of eNOS-
Thr495, which is indicative of increased eNOS activity [46].
Besides phosphorylation, eNOS activity is also regulated by S-
nitrosylation of its cysteins, whereby S-nitrosylation leads to
reduced activity. It has been shown that ascorbate was able to
denitrosylate eNOS, hereby increasing eNOS activity [47].
Finally, ascorbic acid could also increase NO bioavailability
directly by reducing nitrite—formed by oxidation of NO—to
NO, a process utilized in the curing of meat. However, this
reaction requires an acidic environment, such as that found in
the stomach, to proceed at an appreciable rate. Thus, at pH
3.63 the reaction was found to proceed at an appreciable rate
but was found to be much slower at pH 5.49 [48]. Consequent-
ly, in the vasculature, enzymatic reduction of nitrite to NO is
more likely than reduction by ascorbate [49].

Few studies have looked at the effect of vitamin C on in
vivo biopterin levels. d'Uscio et al observed that long-term
vitamin C supplementation increased aortic BH4 levels and
decreased BH2-to-BH4 levels in wild-type mice, whereas BH2

levels were unaffected [50], findings that are in-line with our
observations although their study was conducted in a species
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capable of synthesizing vitamin C. Likewise, it was found that
BH4 levels were decreased and BH2 levels were increased in
diabetic rat hearts compared to control rat hearts and that
vitamin C could alleviate these changes [51]. In a study in
guinea pigs, neutrophils isolated from scorbutic guinea pigs
were found to contain less BH4 than the neutrophils from
control animals [52].

In the present study, the BH4 plasma level ranged from
100 to 400 nmol/L with a mean of around 200 nmol/L. BH2

levels were typically between 5 and 30 nmol/L with an
average of 15 nmol/L. The biopterin plasma levels have, to
the best of our knowledge, not previously been measured in
guinea pigs. The level of plasma BH4 in our guinea pigs is an
order of magnitude higher than that found in humans, which
in various studies have been found to range from a few
nmol/L up to 35 nmol/L [8,53–84]. BH4 in human plasma
typically comprises around 50% to 80% of total biopterins
whereas in guinea pigs, more than 90% is on the reduced
form. Compared to other animal species, guinea pig biopterin
plasma levels are comparable to those found in studies using
mice and rats [57,66,83,85–91], whereas larger animals such
as dogs, cats, and monkeys have biopterin levels more
similar to those found in humans [65,66,83,92]. Thus, one
limitation of our study is that the impact of vitamin C
deficiency on biopterin status may not translate between
guinea pigs and humans as only the vitamin C level is
similar between the two species while guinea pig biopterin
levels are higher. On the other hand one might speculate
that the impact of vitamin C deficiency could be even larger
in humans as the low biopterin levels presumably are more
prone to oxidation.

Our studies show that high plasma vitamin C levels
correlate with high BH4 plasma levels and a low BH2-to-BH4

ratio in guinea pigs. However, plasma concentration of
vitamin C is not the only predictor of BH4 plasma levels and
BH2-to-BH4 ratio: DHA, a measure of oxidative stress, also
correlates with BH4 and BH2-to-BH4 ratio. Thus, a high
proportion of DHA was found to correlate with a high
BH2-to-BH4 ratio, also indicating a state of increased
oxidative stress.

In conclusion, we can accept our hypothesis that biopterin
redox status depends on plasma vitamin C levels in that low
levels of plasma vitamin C leads to a higher BH2-to-BH4 ratio.
Thus, our data provide in vivo support for a relationship
between ascorbate status and biopterin bioavailability and
may therefore indirectly explain clinical observations show-
ing a negative impact of vitamin C deficiency on cardiovas-
cular health since a high BH2-to-BH4 ratio has been linked to
endothelial dysfunction in several studies [5,6,8–11]. However,
the human relevance of the ascorbate-dependent mainte-
nance of a reduced BH4 pool clearly needs to be confirmed in
controlled clinical studies.
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