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Abstract: The paper deals with the mathematical and numerical modeling of the aerodynamic noise 
generated by the fluid flow interaction with the solid structure of a rotor blade. 
Our analysis use Lighthill’s acoustic analogy. Lighthill idea was to express the fundamental equations 
of motion into a wave equation for acoustic fluctuation with a source term on the right-hand side. The 
obtained wave equation is solved numerically by the spatial discretization. The method is applied in 
the case of monopole source placed in different points of blade surfaces to find this effect of noise 
propagation. 
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1. INTRODUCTION 

The sound (noise) can be regarded as a pressure disturbance which propagates through a 
fluid at acoustic velocity. The disturbances are usually associated with fluctuations 
overlapping the atmospheric pressure and are emitted by certain sources. 

The sound sources are generated by motion, either by the free fluid motion, either by a 
solid body-fluid interaction. Additionally, heat sources may lead to noise generation. Sound 
sources can also be generated by the fluid flow interaction with a solid structure (such as a 
propeller). In this case, acoustic sources, beside those due to the turbulence, arise from the 
motion of the blades. Fig.1 presents possible sources of noise for the outer part of a rotor 
blade, surrounded by a fluid flow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Sources of noise, flow around the outer part of the rotor blade 
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One can have the turbulent flow approaching the leading edge of the blade. The 
boundary layer that develops initially along the blade can be laminar. However, the transition 
from laminar to turbulent is expected due to the high Reynolds number flow. Close to the 
leading edge on the upper side of the blade, the flow accelerates first. Further downstream 
the flow decelerates again. Boundary-layer separation may occur due to sufficiently large 
adverse pressure gradient, which decelerates the fluid close to the solid surface to rest. A 
separation point will appear and the boundary layer detaches from the surface. Behind the 
trailing edge, due to the differences in the velocity streams (pressures) with the vorticity shed 
from the blade. At the tip of the blade the pressure difference between the suction and 
pressure side forms the tip vortex. All these phenomena contribute to noise generation. 

2. LIGHTHILL’S ACOUSTIC ANALOGY [1] 

Lighthill’s acoustic analogy was the first attempt to describe the radiation of the sound 
generated by a turbulent flow. The analogy is based on the hypothesis that the part of the 
flow field which is the source for acoustics is distinct, so that the acoustic wave does not 
interfere with the flow. The governing equations for a compressible fluid motion are the 
conservation laws of mass, momentum and energy: 
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where are the density, velocity, pressure and the mixture enthalpy per unit mass, 
respectively. 

pui ,,

ij  is the Kronecker delta function,   represents the molecular viscosity and Pr is Prandtl 

number. The viscous stress tensor ij  is defined as: 
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The system is completed by the equation of state: 

TRp gaz  (5) 

where  is the gas constant and T represents the temperature. gazR

Lighthill idea was to express the fundamental equations of motion into a wave equation 
for acoustic fluctuation with a source term on the right-hand side. Subtracting the space 
derivative of the momentum equation, Eqn. (1) one obtains: 
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This expression is equivalent 
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where  denotes the speed of sound in the uniform medium. Equation (7) can be rearranged 
in order to obtain a wave equation on the left-hand side and the acoustic sources on the right-
hand side: 
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The acoustic source due to the viscosity effects can be neglected since it can be proved 
that is proportional with the inverse of the Reynolds number. Accordingly, the contribution 
of the viscous stresses to the total acoustic source term is therefore unimportant. Lighthill’s 
wave equation for the density becomes: 
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A decomposition of the flow variables can be introduced: 
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where  are defined as small perturbations (acoustic fluctuations) from a state where 

the fluid is at rest with a uniform density  and a uniform pressure ; one can obtain 

Lighthill acoustic analogy, formulated in terms of acoustic density fluctuation ( ): 
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Equation (11) describes a distributed source of sound, where the acoustic source term 
can be seen as negligible outside the flow where only generated sound waves are present. 
The inhomogeneity in Eqn.(11) is given by the “forcing term” (total acoustic source term) on 
the right-hand side, which is responsible for generation of sound and is a second order spatial 
derivative of the Lighthill stress tensor : ijT

     ijjiij cppuuT  0
2
00  (12) 

The acoustic source is due to the flow field gradients and due to the compressibility 
effects. 

Thus, the total acoustic source term (Ttotal) can be decomposed into velocity variations 
related acoustic (TI) and entropy effects related acoustic (TII) source terms, respectively: 
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3. NUMERICAL METHODS 

In this section, the numerical methods are presented for the Lighthill’s analogy. A solution 
procedure can have several steps. First, a computational grid that depends upon the 
geometrical configuration of the flow field is introduced. For the spatial discretization of the 
governing equations, a Cartesian stagnation grid is used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Computational cell in a three dimensional staggered grid 
 

Staggered grid means that the variables are stored at different locations in each 
computational cell. The velocity components are stored at the cell faces, while the pressure, 
temperature and density are stored in the cell center, fig. 2. 

The governing equations are discretized on the grid. This means that the differential 
equations are converted into a system of algebraic equations that can be solved numerically. 
For the discretization of Eqs. (11), the following relations are used: 

 
  3,2,1,

2
2

2
,1,,1

,
2

2















  ixO

xx i
i

lklklk

lki

  

),(
44

221,11,11,11,1
2

lk
ji

lklk

ji

lklk

ji

xxO
xxxxxx





















    



7 Theoretical and numerical method in aeroacoustics 
 

INCAS BULLETIN, Volume 2, Number 2/ 2010 

 
 2

2

1
,,

1

2

2 2
tO

tt

n
lk

n
lk

n
lk

n















 

   

lk
lk

ij

xx

T
,

2





  

The Lighthill wave equation has the discretized form: 
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The discretized equation is solved in the cell [-3,3]x[-3,3]x[-3,3], where the spatial steps 
are  and time step, 001.0 ix 01.0t . For the function lk , , constant values in the plane 

(x,y,0) are considered so that they represent the function’s image depending on  and the 

curves . , the wave front. 


const

The wall boundary condition requires a zero value of the . 

4. RESULTS AND CONCLUSIONS 

Solving the Lighthill’s wave equation one can obtain the numerical simulation of noise 
source generation and research the phenomenon propagation and wave interference of 
acoustic waves over the surface of aerodynamic profile. 

The first example is the numerical simulation for the generation of acoustic source 
monopole located in surface centre (0,0). In fig. 3 the distribution of radiant intensity of 
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source (fluid density over aerodynamic surface) can be observed and fig. 4 shows the 
constant density curves (wave front). The concentricity of wave front can be observed, 
because the environment of propagation is homogeneous and isotropic. Near the boundary of 
the aerodynamic profile, the wave front is similar to profile. This fact denotes the strong 
influence of boundary conditions that are considered for solving the equations. Possibly, the 
wave interference phenomenon can be noticed in the profile corner, where practically there 
is no acoustics wave. The next example is the numerical generation of monopole acoustic 
source placed at the edge of profile, in the stagnation point (-3,0). 

In fig. 5 are presented the constant density curves for this case. 
Fig. 6 presents the distribution of constant density curves for two monopole sources 

placed as follows: the first in the stagnation point and the second in the detachment point. 
The symmetry of curves distribution around the two noise sources can be noticed. 

If a point obstacle placed in detachment point over the profile surface (3.0) is examined 
the interference between incident wave and reflected wave by the total reflection conditions 
can be observed. 

Fig. 7 shows the 3D the image of the radiant intensity of distribution of two sources and 
in fig. 8 are represented the constant density curves. It is possible to observe that the level of 
intensity is low because through the interference of two waves, which are in phase 
opposition, his resultant minimizes or is zero. 

To highlight the results of the  previous experiment, let’s consider the  interference 
between the incident wave and two reflected wave on two  obstacles placed  in corners of an 
aerodynamic surface, in coordinated points,(3,-3) and (3,3). 

In fig. 9 are represented in 3D the radiant intensities distribution of the three sources, 
and in fig. 10 are represented the level constant density curves. 

As in the previous experiment it was found that the level of this curves is very low, and 
the zero zones of profile surface prevail. 

In the previous cases, the numerical results are for the extreme time moments, when the 
equations solutions and the flow are stabilized, and monopole source generated waves with 
fundamental frequency. When the equations are numerically solved for a monopole source 
that generates a higher frequency (the source with many tonal) and for short time moments 
(before the stabilization of equations solutions), the results are represented in fig. 11 and 12. 
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Fig.3. The 3D image of monopol source 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The density’s constant curves 
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Fig.5. The density’s constant curves 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6 The density’s constant curves 
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Fig.7. The 3D image of monopol source 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8. The density’s constant curves 
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Fig.9 The 3D image of monopol source 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.10. The density’s constant curves 
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Fig.11 The 3D image of monopol source Fig.11 The 3D image of monopol source 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

  

Fig.12. The density’s constant curves Fig.12. The density’s constant curves 

 




