UNIVERSITY OF COPENHAGEN

Gorenstein derived functions

Holm, Henrik Granau

Published in: Proceedings of the American Mathematical Society

Publication date: 2004

Document version Publisher's PDF, also known as Version of record

Citation for published version (APA): Holm, H. G. (2004). Gorenstein derived functions. *Proceedings of the American Mathematical Society*, 132(7), 1913-1923. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 132, Number 7, Pages 1913–1923 S 0002-9939(04)07317-4 Article electronically published on February 13, 2004

GORENSTEIN DERIVED FUNCTORS

HENRIK HOLM

(Communicated by Bernd Ulrich)

ABSTRACT. Over any associative ring R it is standard to derive $\operatorname{Hom}_R(-,-)$ using projective resolutions in the first variable, or injective resolutions in the second variable, and doing this, one obtains $\operatorname{Ext}_R^n(-,-)$ in both cases. We examine the situation where projective and injective modules are replaced by Gorenstein projective and Gorenstein injective ones, respectively. Furthermore, we derive the tensor product $-\otimes_R -$ using Gorenstein flat modules.

1. INTRODUCTION

When R is a two-sided Noetherian ring, Auslander and Bridger [2] introduced in 1969 the G-dimension, $\operatorname{G-dim}_R M$, for every *finite* (that is, finitely generated) R-module M. They proved the inequality $\operatorname{G-dim}_R M \leq \operatorname{pd}_R M$, with equality $\operatorname{G-dim}_R M = \operatorname{pd}_R M$ when $\operatorname{pd}_R M < \infty$, along with a generalized Auslander-Buchsbaum formula (sometimes known as the Auslander-Bridger formula) for the G-dimension.

The (finite) modules with G-dimension zero are called *Gorenstein projectives*. Over a general ring R, Enochs and Jenda in [6] defined Gorenstein projective modules. Avramov, Buchweitz, Martsinkovsky and Reiten proved that if R is two-sided Noetherian, and G is a finite Gorenstein projective module, then the new definition agrees with that of Auslander and Bridger; see the remark following [4, Theorem (4.2.6)]. Using Gorenstein projective modules, one can introduce the Gorenstein projective dimension for arbitrary R-modules. At this point we need to introduce:

1.1 (Notation). Throughout this paper, we use the following notation:

- *R* is an associative ring. All modules are—if not specified otherwise—*left R*-modules, and the category of all *R*-modules is denoted \mathcal{M} . We use \mathcal{A} for the category of abelian groups (that is, \mathbb{Z} -modules).
- We use \mathcal{GP} , \mathcal{GI} and \mathcal{GF} for the categories of *Gorenstein projective*, *Gorenstein injective* and *Gorenstein flat R*-modules; please see [6] and [8], or Definition 2.7 below.
- Furthermore, for each R-module M we write $\operatorname{Gpd}_R M$, $\operatorname{Gid}_R M$ and $\operatorname{Gfd}_R M$ for the Gorenstein projective, Gorenstein injective, and Gorenstein flat dimension of M, respectively.

©2004 American Mathematical Society

Received by the editors May 14, 2002 and, in revised form, April 16, 2003.

²⁰⁰⁰ Mathematics Subject Classification. Primary 13D02, 13D05, 13D07, 13H10, 16E05, 16E10, 16E30.

 $Key\ words\ and\ phrases.$ Gorenstein dimensions, homological dimensions, derived functors, Tor-modules, Ext-modules.

Now, given our base ring R, the usual right derived functors $\operatorname{Ext}_{R}^{n}(-,-)$ of $\operatorname{Hom}_{R}(-,-)$ are important in homological studies of R. The material presented here deals with the Gorenstein right derived functors $\operatorname{Ext}_{\mathcal{GP}}^{n}(-,-)$ and $\operatorname{Ext}_{\mathcal{GI}}^{n}(-,-)$ of $\operatorname{Hom}_{R}(-,-)$.

More precisely, let N be a fixed R-module. For an R-module M that has a proper left \mathcal{GP} -resolution $\mathbf{G} = \cdots \to G_1 \to G_0 \to 0$ (please see 2.1 below for the definition of proper resolutions), we define

$$\operatorname{Ext}^{n}_{\mathcal{CP}}(M,N) := \operatorname{H}^{n}(\operatorname{Hom}_{R}(\boldsymbol{G},N)).$$

From 2.4 it will follow that $\operatorname{Ext}_{\mathcal{GP}}^{n}(-, N)$ is a well-defined contravariant functor, defined on the full subcategory, LeftRes_{\mathcal{M}}(\mathcal{GP}), of \mathcal{M} , consisting of all *R*-modules that have a proper left \mathcal{GP} -resolution.

For a fixed *R*-module M' there is a similar definition of the functor $\operatorname{Ext}^n_{\mathcal{GI}}(M', -)$, which is defined on the full subcategory, RightRes_{\mathcal{M}}(\mathcal{GI}), of \mathcal{M} , consisting of all *R*-modules that which have a proper right \mathcal{GI} -resolution. Now, the best one could hope for is the existence of isomorphisms,

$$\operatorname{Ext}^{n}_{\mathcal{GP}}(M,N) \cong \operatorname{Ext}^{n}_{\mathcal{GI}}(M,N),$$

which are functorial in each variable $M \in \text{LeftRes}_{\mathcal{M}}(\mathcal{GP})$ and $N \in \text{RightRes}_{\mathcal{M}}(\mathcal{GI})$. The aim of this paper is to show a slightly weaker result.

When R is n-Gorenstein (meaning that R is both left and right Noetherian, with self-injective dimension $\leq n$ from both sides), Enochs and Jenda [9, Theorem 12.1.4] have proved the existence of such functorial isomorphisms $\operatorname{Ext}^{n}_{\mathcal{GP}}(M, N) \cong \operatorname{Ext}^{n}_{\mathcal{GI}}(M, N)$ for all R-modules M and N.

It is important to note that for an *n*-Gorenstein ring R, we have $\operatorname{Gpd}_R M < \infty$, $\operatorname{Gid}_R M < \infty$, and also $\operatorname{Gfd}_R M < \infty$ for all R-modules M; please see [9, Theorems 11.2.1, 11.5.1, 11.7.6]. For any ring R, [12, Proposition 2.18] (which is restated in this paper as Proposition 3.1) implies that the category LeftRes_{\mathcal{M}}(\mathcal{GP}) contains all R-modules M with $\operatorname{Gpd}_R M < \infty$; that is, every R-module with finite G-projective dimension has a proper left \mathcal{GP} -resolution. Also, every R-module with finite G-injective dimension has a proper right \mathcal{GI} -resolution. So RightRes_{\mathcal{M}}(\mathcal{GI}) contains all R-modules N with $\operatorname{Gid}_R N < \infty$.

Theorem 3.6 in this text proves that the functorial isomorphisms $\operatorname{Ext}^n_{\mathcal{GP}}(M, N) \cong \operatorname{Ext}^n_{\mathcal{GI}}(M, N)$ hold over *arbitrary* rings R, provided that $\operatorname{Gpd}_R M < \infty$ and $\operatorname{Gid}_R N < \infty$. By the remarks above, this result generalizes that of Enochs and Jenda.

Furthermore, Theorems 4.8 and 4.10 give similar results about the Gorenstein left derived of the tensor product $-\otimes_R -$, using proper left \mathcal{GP} -resolutions and proper left \mathcal{GF} -resolutions. This has also been proved by Enochs and Jenda [9, Theorem 12.2.2] in the case when R is n-Gorenstein.

2. Preliminaries

Let $T: \mathcal{C} \to \mathcal{E}$ be any additive functor between abelian categories. One usually derives T using resolutions consisting of projective or injective objects (if the category \mathcal{C} has enough projectives or injectives). This section is a very brief note on how to derive functors T with resolutions consisting of objects in some subcategory $\mathcal{X} \subseteq \mathcal{C}$. The general discussion presented here will enable us to give very short proofs of the main theorems in the next section.

2.1 (Proper Resolutions). Let $\mathcal{X} \subseteq \mathcal{C}$ be a full subcategory. A proper left \mathcal{X} -resolution of $M \in \mathcal{C}$ is a complex $\mathbf{X} = \cdots \to X_1 \to X_0 \to 0$ where $X_i \in \mathcal{X}$, together with a morphism $X_0 \to M$, such that $\mathbf{X}^+ := \cdots \to X_1 \to X_0 \to M \to 0$ is also a complex, and such that the sequence

 $\operatorname{Hom}_{\mathcal{C}}(X, \boldsymbol{X}^{+}) = \cdots \to \operatorname{Hom}_{\mathcal{C}}(X, X_{1}) \to \operatorname{Hom}_{\mathcal{C}}(X, X_{0}) \to \operatorname{Hom}_{\mathcal{C}}(X, M) \to 0$

is exact for every $X \in \mathcal{X}$. We sometimes refer to $\mathbf{X}^+ = \cdots \to X_1 \to X_0 \to M \to 0$ as an *augmented* proper left \mathcal{X} -resolution. We do not require that \mathbf{X}^+ itself is exact. Furthermore, we use LeftRes_{\mathcal{C}}(\mathcal{X}) to denote the full subcategory of \mathcal{C} consisting of those objects that have a proper left \mathcal{X} -resolution. Note that \mathcal{X} is a subcategory of LeftRes_{\mathcal{C}}(\mathcal{X}).

Proper right \mathcal{X} -resolutions are defined dually, and the full subcategory of \mathcal{C} consisting of those objects that have a proper right \mathcal{X} -resolution is RightRes_{\mathcal{C}}(\mathcal{X}).

The importance of working with *proper* resolutions comes from the following:

Proposition 2.2. Let $f: M \to M'$ be a morphism in C, and consider the diagram

$$\cdots \longrightarrow X_2 \longrightarrow X_1 \longrightarrow X_0 \longrightarrow M \longrightarrow 0$$

$$\downarrow f_2 \qquad \qquad \downarrow f_1 \qquad \qquad \downarrow f_0 \qquad \qquad \downarrow f$$

$$\cdots \longrightarrow X'_2 \longrightarrow X'_1 \longrightarrow X'_0 \longrightarrow M' \longrightarrow 0$$

where the upper row is a complex with $X_n \in \mathcal{X}$ for all $n \ge 0$, and the lower row is an augmented proper left \mathcal{X} -resolution of M'. Then the following conclusions hold:

- (i) There exist morphisms f_n: X_n → X'_n for all n ≥ 0, making the diagram above commutative. The chain map {f_n}_{n≥0} is called a lift of f.
- (ii) If $\{f'_n\}_{n \ge 0}$ is another lift of f, then the chain maps $\{f_n\}_{n \ge 0}$ and $\{f'_n\}_{n \ge 0}$ are homotopic.

Proof. The proof is an exercise; please see [9, Exercise 8.1.2].

Remark 2.3. A few comments are in order:

- In our applications, the class \mathcal{X} contains all projectives. Consequently, all the augmented proper left \mathcal{X} -resolutions occurring in this paper will be exact. Also, all augmented proper right \mathcal{Y} -resolutions will be exact, when \mathcal{Y} is a class of R-modules containing all injectives.
- Recall (see [15, Definition 1.2.2]) that an \mathcal{X} -precover of $M \in \mathcal{C}$ is a morphism $\varphi \colon X \to M$, where $X \in \mathcal{X}$, such that the sequence

 $\operatorname{Hom}_{\mathcal{C}}(X',X) \xrightarrow{\operatorname{Hom}_{\mathcal{C}}(X',\varphi)} \operatorname{Hom}_{\mathcal{C}}(X',M) \longrightarrow 0$

is exact for every $X' \in \mathcal{X}$. Hence, in an augmented proper left \mathcal{X} -resolution \mathbf{X}^+ of M, the morphisms $X_{i+1} \to \text{Ker}(X_i \to X_{i-1}), i > 0$, and $X_0 \to M$ are \mathcal{X} -precovers.

• What we have called *proper* X-resolutions, Enochs and Jenda [9, Definition 8.1.2] simply call X-resolutions. We have adopted the terminology *proper* from [3, Section 4].

2.4 (Derived Functors). Consider an additive functor $T: \mathcal{C} \to \mathcal{E}$ between abelian categories. Let us assume that T is covariant, say. Then (as usual) we can define the n^{th} left derived functor

$$\mathrm{L}_n^{\mathcal{X}}T\colon \mathsf{LeftRes}_{\mathcal{C}}(\mathcal{X})\to \mathcal{E}$$

of T, with respect to the class \mathcal{X} , by setting $L_n^{\mathcal{X}}T(M) = H_n(T(\mathbf{X}))$, where \mathbf{X} is any proper left \mathcal{X} -resolution of $M \in \mathsf{LeftRes}_{\mathcal{C}}(\mathcal{X})$. Similarly, the n^{th} right derived functor

$$\mathrm{R}^n_{\mathcal{X}}T\colon \mathsf{RightRes}_{\mathcal{C}}(\mathcal{X})\to \mathcal{E}$$

of T with respect to \mathcal{X} is defined by $\mathbb{R}^n_{\mathcal{X}}T(N) = \mathbb{H}_n(T(\mathbf{Y}))$, where \mathbf{Y} is any proper right \mathcal{X} -resolution of $N \in \mathsf{RightRes}_{\mathcal{C}}(\mathcal{X})$. These constructions are well-defined and functorial in the arguments M and N by Proposition 2.2.

The situation where T is contravariant is handled similarly. We refer to [9, Section 8.2] for a more detailed discussion on this matter.

2.5 (Balanced Functors). Next we consider yet another abelian category \mathcal{D} , together with a full subcategory $\mathcal{Y} \subseteq \mathcal{D}$ and an additive functor $F: \mathcal{C} \times \mathcal{D} \to \mathcal{E}$ in *two* variables. We will assume that F is contravariant in the first variable, and covariant in the second variable.

Actually, the variance of the variables of F is not important, and the definitions and results below can easily be modified to fit the situation where F is covariant in both variables, say.

For fixed $M \in \mathcal{C}$ and $N \in \mathcal{D}$ we can then consider the two right derived functors as in 2.4:

 $\mathrm{R}^n_{\mathcal{X}}F(-,N)$: Left $\mathrm{Res}_{\mathcal{C}}(\mathcal{X}) \to \mathcal{E}$ and $\mathrm{R}^n_{\mathcal{Y}}F(M,-)$: Right $\mathrm{Res}_{\mathcal{D}}(\mathcal{Y}) \to \mathcal{E}$.

If furthermore $M \in \text{LeftRes}_{\mathcal{C}}(\mathcal{X})$ and $N \in \text{RightRes}_{\mathcal{D}}(\mathcal{Y})$, we can ask for a sufficient condition to ensure that

$$\mathbf{R}^n_{\mathcal{X}}F(M,N) \cong \mathbf{R}^n_{\mathcal{V}}F(M,N),$$

functorial in M and N. Here we wrote $\mathbb{R}^n_{\mathcal{X}}F(M,N)$ for the functor $\mathbb{R}^n_{\mathcal{X}}F(-,N)$ applied to M. Another, and perhaps better, notation could be

$$\mathbf{R}^n_{\mathcal{X}}F(-,N)[M].$$

Enochs and Jenda have in [5] developed a machinery for answering such questions. They operate with the term left/right balanced functor (hence the headline), which we will not define here (but the reader might consult [5, Definition 2.1]). Instead we shall focus on the following result:

Theorem 2.6. Consider the functor $F: \mathcal{C} \times \mathcal{D} \to \mathcal{E}$ which is contravariant in the first variable and covariant in the second variable, together with the full subcategories $\mathcal{X} \subseteq \mathcal{C}$ and $\mathcal{Y} \subseteq \mathcal{D}$. Assume that we have full subcategories $\widetilde{\mathcal{X}}$ and $\widetilde{\mathcal{Y}}$ of LeftRes_{\mathcal{C}}(\mathcal{X}) and RightRes_{\mathcal{D}}(\mathcal{Y}), respectively, satisfying:

- (i) $\mathcal{X} \subseteq \widetilde{\mathcal{X}}$ and $\mathcal{Y} \subseteq \widetilde{\mathcal{Y}}$.
- (ii) Every $M \in \widetilde{\mathcal{X}}$ has an augmented proper left \mathcal{X} -resolution $\cdots \to X_1 \to X_0 \to M \to 0$, such that $0 \to F(M, Y) \to F(X_0, Y) \to F(X_1, Y) \to \cdots$ is exact for all $Y \in \mathcal{Y}$.
- (iii) Every $N \in \widetilde{\mathcal{Y}}$ has an augmented proper right \mathcal{Y} -resolution $0 \to N \to Y^0 \to Y^1 \to \cdots$, such that $0 \to F(X, N) \to F(X, Y^0) \to F(X, Y^1) \to \cdots$ is exact for all $X \in \mathcal{X}$.

Then we have functorial isomorphisms

$$\mathbf{R}^n_{\mathcal{X}}F(M,N) \cong \mathbf{R}^n_{\mathcal{Y}}F(M,N),$$

for all $M \in \widetilde{\mathcal{X}}$ and $N \in \widetilde{\mathcal{Y}}$.

Proof. Please see [5, Proposition 2.3]. That the isomorphisms are functorial follows from the construction. The functoriality becomes more clear if one consults the proof of [9, Proposition 8.2.14], or the proofs of [14, Theorems 2.7.2 and 2.7.6]. \Box

In the next paragraphs we apply the results above to special categories \mathcal{X} , \mathcal{X} , \mathcal{C} and \mathcal{Y} , $\tilde{\mathcal{Y}}$, \mathcal{D} , including the categories mentioned in 1.1. For completeness we include a definition of Gorenstein projective, Gorenstein injective and Gorenstein flat modules:

Definition 2.7. A *complete projective resolution* is an exact sequence of projective modules,

$$\boldsymbol{P} = \cdots \to P_1 \to P_0 \to P_{-1} \to \cdots,$$

such that $\operatorname{Hom}_R(\mathbf{P}, Q)$ is exact for every projective *R*-module *Q*. An *R*-module *M* is called *Gorenstein projective* (*G*-projective for short), if there exists a complete projective resolution \mathbf{P} with $M \cong \operatorname{Im}(P_0 \to P_{-1})$. Gorenstein injective (*G*-injective for short) modules are defined dually.

A complete flat resolution is an exact sequence of flat (left) R-modules,

$$F = \cdots \rightarrow F_1 \rightarrow F_0 \rightarrow F_{-1} \rightarrow \cdots,$$

such that $I \otimes_R \mathbf{F}$ is exact for every injective right *R*-module *I*. An *R*-module *M* is called *Gorenstein flat* (*G*-flat for short), if there exists a complete flat resolution \mathbf{F} with $M \cong \text{Im}(F_0 \to F_{-1})$.

3. Gorenstein deriving $\operatorname{Hom}_{R}(-,-)$

We now return to categories of *modules*. We use \mathcal{GP} , \mathcal{GI} and \mathcal{GF} to denote the class of *R*-modules with finite Gorenstein projective dimension, finite Gorenstein injective dimension, and finite Gorenstein flat dimension, respectively.

Recall that every projective module is Gorenstein projective. Consequently, \mathcal{GP} -precovers are always surjective, and $\widetilde{\mathcal{GP}}$ contains all modules with finite projective dimension.

We now consider the functor $\operatorname{Hom}_R(-,-): \mathcal{M} \times \mathcal{M} \to \mathcal{A}$, together with the categories

$$\mathcal{X} = \mathcal{GP}, \ \widetilde{\mathcal{X}} = \widetilde{\mathcal{GP}} \quad ext{ and } \quad \mathcal{Y} = \mathcal{GI}, \ \widetilde{\mathcal{Y}} = \widetilde{\mathcal{GI}}.$$

In this case we define, in the sense of section 2.4,

 $\operatorname{Ext}_{\mathcal{GP}}^{n}(-,N) = \operatorname{R}_{\mathcal{GP}}^{n}\operatorname{Hom}_{R}(-,N)$ and $\operatorname{Ext}_{\mathcal{GI}}^{n}(M,-) = \operatorname{R}_{\mathcal{GI}}^{n}\operatorname{Hom}_{R}(M,-),$ for fixed *R*-modules *M* and *N*. We wish, of course, to apply Theorem 2.6 to this situation. Note that by [12, Proposition 2.18], we have:

Proposition 3.1. If M is an R-module with $\operatorname{Gpd}_R M < \infty$, then there exists a short exact sequence $0 \to K \to G \to M \to 0$, where $G \to M$ is a \mathcal{GP} -precover of M (please see Remark 2.3), and $\operatorname{pd}_R K = \operatorname{Gpd}_R M - 1$ (in the case where M is Gorenstein projective, this should be interpreted as K = 0).

Consequently, every R-module with finite Gorenstein projective dimension has a proper left \mathcal{GP} -resolution (that is, there is an inclusion $\widetilde{\mathcal{GP}} \subseteq \mathsf{LeftRes}_{\mathcal{M}}(\mathcal{GP})$).

Furthermore, we will need the following from [12, Theorem 2.13]:

Theorem 3.2. Let M be any R-module with $\operatorname{Gpd}_{R}M < \infty$. Then

 $\operatorname{Gpd}_R M = \sup\{n \ge 0 \mid \operatorname{Ext}^n_R(M, L) \ne 0 \text{ for some } R \text{-module } L \text{ with } \operatorname{pd}_R L < \infty\}.$

Remark 3.3. It may be useful to compare Theorem 3.2 to the classical projective dimension, which for an R-module M is given by

$$pd_R M = \{n \ge 0 \mid Ext_R^n(M, L) \ne 0 \text{ for some } R\text{-module } L\}.$$

It also follows that if $\mathrm{pd}_R M < \infty$, then every projective resolution of M is actually a proper left \mathcal{GP} -resolution of M.

Lemma 3.4. Assume that M is an R-module with finite Gorenstein projective dimension, and let $\mathbf{G}^+ = \cdots \to G_1 \to G_0 \to M \to 0$ be an augmented proper left \mathcal{GP} -resolution of M (which exists by Proposition 3.1). Then $\operatorname{Hom}_R(\mathbf{G}^+, H)$ is exact for all Gorenstein injective modules H.

Proof. We split the proper resolution G^+ into short exact sequences. Hence it suffices to show exactness of $\text{Hom}_R(S, H)$ for all Gorenstein injective modules H and all short exact sequences

$$S = 0 \to K \to G \to M \to 0$$
,

where $G \to M$ is a \mathcal{GP} -precover of some module M with $\operatorname{Gpd}_R M < \infty$ (recall that \mathcal{GP} -precovers are always surjective). By Proposition 3.1, there is a special short exact sequence,

$${\boldsymbol S}' = \ 0 \longrightarrow K' \stackrel{\iota}{\longrightarrow} G' \stackrel{\pi}{\longrightarrow} M \longrightarrow 0 \ ,$$

where $\pi: G' \to M$ is a \mathcal{GP} -precover and $\mathrm{pd}_R K' < \infty$.

It is easy to see (as in Proposition 2.2) that the complexes S and S' are homotopy equivalent, and thus so are the complexes $\operatorname{Hom}_R(S, H)$ and $\operatorname{Hom}_R(S', H)$ for every (Gorenstein injective) module H. Hence it suffices to show the exactness of $\operatorname{Hom}_R(S', H)$ whenever H is Gorenstein injective.

Now let H be any Gorenstein injective module. We need to prove the exactness of

$$\operatorname{Hom}_{R}(G',H) \xrightarrow{\operatorname{Hom}_{R}(\iota,H)} \operatorname{Hom}_{R}(K',H) \longrightarrow 0 .$$

To see this, let $\alpha \colon K' \to H$ be any homomorphism. We wish to find $\varrho \colon G' \to H$ such that $\varrho \iota = \alpha$. Now pick an exact sequence

$$0 \longrightarrow \widetilde{H} \longrightarrow E \xrightarrow{g} H \longrightarrow 0 ,$$

where E is injective, and \tilde{H} is Gorenstein injective (the sequence in question is just a part of the complete injective resolution that defines H). Since \tilde{H} is Gorenstein injective and $\mathrm{pd}_R K' < \infty$, we get $\mathrm{Ext}^1_R(K', \tilde{H}) = 0$ by [7, Lemma 1.3], and thus a lifting $\varepsilon \colon K' \to E$ with $g\varepsilon = \alpha$:

Next, injectivity of E gives $\tilde{\varepsilon}: G' \to E$ with $\tilde{\varepsilon}\iota = \varepsilon$. Now $\varrho = g\tilde{\varepsilon}: G' \to H$ is the desired map.

With a similar proof we get:

Lemma 3.5. Assume that N is an R-module with finite Gorenstein injective dimension, and let $\mathbf{H}^+ = 0 \rightarrow N \rightarrow H^0 \rightarrow H^1 \rightarrow \cdots$ be an augmented proper right \mathcal{GI} -resolution of N (which exists by the dual of Proposition 3.1). Then $\operatorname{Hom}_R(G, \mathbf{H}^+)$ is exact for all Gorenstein projective modules G.

Comparing Lemmas 3.4 and 3.5 with Theorem 2.6, we obtain:

Theorem 3.6. For all *R*-modules *M* and *N* with $\operatorname{Gpd}_R M < \infty$ and $\operatorname{Gid}_R N < \infty$, we have isomorphisms

$$\operatorname{Ext}^{n}_{\mathcal{GP}}(M, N) \cong \operatorname{Ext}^{n}_{\mathcal{GI}}(M, N),$$

which are functorial in M and N.

3.7 (Definition of GExt). Let M and N be R-modules with $\operatorname{Gpd}_R M < \infty$ and $\operatorname{Gid}_R N < \infty$. Then we write

$$\operatorname{GExt}^n_R(M,N) := \operatorname{Ext}^n_{\mathcal{GP}}(M,N) \cong \operatorname{Ext}^n_{\mathcal{GI}}(M,N)$$

for the isomorphic abelian groups in Theorem 3.6 above.

Naturally we want to compare GExt with the classical Ext. This is done in:

Theorem 3.8. Let M and N be any R-modules. Then the following conclusions hold:

(i) There are natural isomorphisms $\operatorname{Ext}^n_{\mathcal{GP}}(M,N) \cong \operatorname{Ext}^n_R(M,N)$ under each of the conditions

(†) $\operatorname{pd}_{R}M < \infty$ or (†) $M \in \operatorname{LeftRes}_{\mathcal{M}}(\mathcal{GP})$ and $\operatorname{id}_{R}N < \infty$.

(ii) There are natural isomorphisms $\operatorname{Ext}^n_{\mathcal{GI}}(M,N) \cong \operatorname{Ext}^n_R(M,N)$ under each of the conditions

(†) $\operatorname{id}_R N < \infty$ or (†) $N \in \operatorname{RightRes}_{\mathcal{M}}(\mathcal{GI})$ and $\operatorname{pd}_R M < \infty$.

(iii) Assume that ${\rm Gpd}_RM<\infty$ and ${\rm Gid}_RN<\infty.$ If either ${\rm pd}_RM<\infty$ or ${\rm id}_RN<\infty,$ then

$$\operatorname{GExt}_R^n(M,N) \cong \operatorname{Ext}_R^n(M,N)$$

is functorial in M and N.

Proof. (i) Assume that $pd_R M < \infty$, and pick any projective resolution \boldsymbol{P} of M. By Remark 3.3, \boldsymbol{P} is also a proper left \mathcal{GP} -resolution of M, and thus

$$\operatorname{Ext}^{n}_{\mathcal{GP}}(M,N) = \operatorname{H}^{n}(\operatorname{Hom}_{R}(\boldsymbol{P},N)) = \operatorname{Ext}^{n}_{R}(M,N)$$

In the case where $M \in \text{LeftRes}_{\mathcal{M}}(\mathcal{GP})$ and $\text{id}_R N = m < \infty$, we see that Gorenstein projective modules are acyclic for the functor $\text{Hom}_R(-, N)$, that is, $\text{Ext}^i_R(G, N) = 0$ (the usual Ext) for every Gorenstein projective module G, and every integer i > 0.

This is because, if G is a Gorenstein projective module, and i > 0 is an integer, then there exists an exact sequence $0 \to G \to Q^0 \to \cdots \to Q^{m-1} \to C \to 0$, where Q^0, \ldots, Q^{m-1} are projective modules. Breaking this exact sequence into short exact ones, and applying $\operatorname{Hom}_R(-, N)$, we get $\operatorname{Ext}^i_R(G, N) \cong \operatorname{Ext}^{m+i}_R(C, N) = 0$, as claimed.

Therefore [11, Chapter III, Proposition 1.2A] implies that $\operatorname{Ext}_{R}^{n}(-, N)$ can be computed using (proper) left Gorenstein projective resolutions of the argument in the first variable, as desired.

The proof of (ii) is similar. The claim (iii) is a direct consequence of (i) and (ii), together with the Definition 3.7 of $\operatorname{GExt}_{R}^{n}(-,-)$.

HENRIK HOLM

4. Gorenstein deriving $-\otimes_R -$

In dealing with the tensor product we need, of course, both left and right R-modules. Thus the following addition to Notation 1.1 is needed:

If C is any of the categories in Notation 1.1 (\mathcal{M} , \mathcal{GP} , etc.), we write $_{R}C$, respectively, C_{R} , for the category of left, respectively, right, R-modules with the property describing the modules in C.

Now we consider the functor $-\otimes_R -: \mathcal{M}_R \times_R \mathcal{M} \to \mathcal{A}$. For fixed $M \in \mathcal{M}_R$ and $N \in {}_R\mathcal{M}$ we define, in the sense of section 2.4:

$$\operatorname{Tor}_{n}^{\mathcal{GP}_{R}}(-,N) := \operatorname{L}_{n}^{\mathcal{GP}_{R}}(-\otimes_{R}N) \quad \text{and} \quad \operatorname{Tor}_{n}^{\mathcal{RGP}}(M,-) := \operatorname{L}_{n}^{\mathcal{RGP}}(M\otimes_{R}-),$$

together with

 $\operatorname{Tor}_{n}^{\mathcal{GF}_{R}}(-,N) := \operatorname{L}_{n}^{\mathcal{GF}_{R}}(-\otimes_{R}N) \quad \text{and} \quad \operatorname{Tor}_{n}^{R\mathcal{GF}}(M,-) := \operatorname{L}_{n}^{R\mathcal{GF}}(M\otimes_{R}-).$

The first two Tors use proper left Gorestein *projective* resolutions, and the last two Tors use proper left Gorenstein *flat* resolutions. In order to compare these different Tors, we wish, of course, to apply (a version of) Theorem 2.6 to different combinations of

$$(\mathcal{X}, \widetilde{\mathcal{X}}) = (\mathcal{GP}_R, \widetilde{\mathcal{GP}}_R) \text{ or } (\mathcal{GF}_R, \widetilde{\mathcal{GF}}_R),$$

and

$$(\mathcal{Y}, \widetilde{\mathcal{Y}}) = (_R \mathcal{GP}, _R \widetilde{\mathcal{GP}}) \text{ or } (_R \mathcal{GF}, _R \widetilde{\mathcal{GF}}),$$

namely, the covariant-covariant version of Theorem 2.6, instead of the stated contravariant-covariant version. We will need the classical notion:

Definition 4.1. The *left finitistic projective dimension* LeftFPD(R) of R is defined as

 $\mathsf{LeftFPD}(R) = \sup\{ \mathrm{pd}_R M \mid M \text{ is a } left \ R \text{-module with } \mathrm{pd}_R M < \infty \}.$

The right finitistic projective dimension RightFPD(R) of R is defined similarly.

Remark 4.2. When R is commutative and Noetherian, the dimensions LeftFPD(R) and RightFPD(R) coincide and are equal to the Krull dimension of R, by [10, Théorème (3.2.6) (Seconde partie)].

We will need the following three results, [12, Proposition 3.3], [12, Theorem 3.5] and [12, Proposition 3.18], respectively:

Proposition 4.3. If R is right coherent with finite LeftFPD(R), then every Gorenstein projective left R-module is also Gorenstein flat. That is, there is an inclusion $_R \mathcal{GP} \subseteq _R \mathcal{GF}$.

Theorem 4.4. For any left R-module M, we consider the following three conditions:

- (i) The left R-module M is G-flat.
- (ii) The Pontryagin dual $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ (which is a right R-module) is G-injective.
- (iii) M has an augmented proper right resolution $0 \to M \to F^0 \to F^1 \to \cdots$ consisting of flat left R-modules, and $\operatorname{Tor}_i^R(I, M) = 0$ for all injective right R-modules I, and all i > 0.

The implication $(i) \Rightarrow (ii)$ always holds. If R is right coherent, then also $(ii) \Rightarrow (iii) \Rightarrow (i)$, and hence all three conditions are equivalent.

Proposition 4.5. Assume that R is right coherent. If M is a left R-module with $\operatorname{Gfd}_R M < \infty$, then there exists a short exact sequence $0 \to K \to G \to M \to 0$, where $G \to M$ is an $_R \mathcal{GF}$ -precover of M, and $\operatorname{fd}_R K = \operatorname{Gfd}_R M - 1$ (in the case where M is Gorenstein flat, this should be interpreted as K = 0).

In particular, every left R-module with finite Gorenstein flat dimension has a proper left $_{R}\mathcal{GF}$ -resolution (that is, there is an inclusion $_{R}\widetilde{\mathcal{GF}} \subseteq \text{LeftRes}_{_{R}\mathcal{M}}(_{R}\mathcal{GF})$).

Our first result is:

Lemma 4.6. Let M be a left R-module with $\operatorname{Gpd}_R M < \infty$, and let $G^+ = \cdots \rightarrow G_1 \rightarrow G_0 \rightarrow M \rightarrow 0$ be an augmented proper left ${}_R \mathcal{GP}$ -resolution of M (which exists by Proposition 3.1). Then the following conclusions hold:

- (i) $T \otimes_R \mathbf{G}^+$ is exact for all Gorenstein flat right R-modules T.
- (ii) If R is left coherent with finite RightFPD(R), then $T \otimes_R \mathbf{G}^+$ is exact for all Gorenstein projective right R-modules T.

Proof. (i) By Theorem 4.4 above, the Pontryagin dual $H = \operatorname{Hom}_{\mathbb{Z}}(T, \mathbb{Q}/\mathbb{Z})$ is a Gorenstein injective left *R*-module. Hence $\operatorname{Hom}_R(\mathbf{G}^+, H) \cong \operatorname{Hom}_{\mathbb{Z}}(T \otimes_R \mathbf{G}^+, \mathbb{Q}/\mathbb{Z})$ is exact by Proposition 3.4. Since \mathbb{Q}/\mathbb{Z} is a faithfully injective \mathbb{Z} -module, $T \otimes_R \mathbf{G}^+$ is exact too.

(*ii*) With the given assumptions on R, the dual of Proposition 4.3 implies that every Gorenstein projective right R-module also is Gorenstein flat.

Lemma 4.7. Assume that R is right coherent with finite LeftFPD(R). Let M be a left R-module with $Gfd_RM < \infty$, and let $\mathbf{G}^+ = \cdots \to G_1 \to G_0 \to M \to 0$ be an augmented proper left ${}_R\mathcal{GF}$ -resolution of M (which exists by Proposition 4.5, since R is right coherent). Then the following conclusions hold:

- (i) $\operatorname{Hom}_R(G^+, H)$ is exact for all Gorenstein injective left R-modules H.
- (ii) $T \otimes_R \mathbf{G}^+$ is exact for all Gorenstein flat right R-modules T.
- (iii) If R is also left coherent with finite RightFPD(R), then $T \otimes_R \mathbf{G}^+$ is exact for all Gorenstein projective right R-modules T.

Proof. (i) Since $\operatorname{Gfd}_R M < \infty$ and R is right coherent, Proposition 4.5 gives a special short exact sequence $0 \to K' \to G' \to M \to 0$, where $G' \to M$ is an $_R \mathcal{GF}$ -precover of M, and $\operatorname{fd}_R K' < \infty$. Since R has $\operatorname{LeftFPD}(R) < \infty$, [13, Proposition 6] implies that also $\operatorname{pd}_R K' < \infty$. Now the proof of Lemma 3.4 applies.

(*ii*) If T is a Gorenstein flat right R-module, then the left R-module $H = \text{Hom}_{\mathbb{Z}}(T, \mathbb{Q}/\mathbb{Z})$ is Gorenstein injective, by (the dual of) Theorem 4.4 above. By the result (*i*), just proved, we have exactness of

$$\operatorname{Hom}_R(G^+, H) \cong \operatorname{Hom}_{\mathbb{Z}}(T \otimes_R G^+, \mathbb{Q}/\mathbb{Z}).$$

Since \mathbb{Q}/\mathbb{Z} is a faithfully injective \mathbb{Z} -module, we also have exactness of $T \otimes_R \mathbf{G}^+$, as desired.

(*iii*) Under the extra assumptions on R, the dual of Proposition 4.3 implies that every Gorenstein projective right R-module is also Gorenstein flat. Thus (*iii*) follows from (*ii*).

Theorem 4.8. Assume that R is both left and right coherent, and that both LeftFPD(R) and RightFPD(R) are finite. For every right R-module M, and every left R-module N, the following conclusions hold:

HENRIK HOLM

(i) If $\operatorname{Gfd}_R M < \infty$ and $\operatorname{Gfd}_R N < \infty$, then $\operatorname{Tor}_n^{\mathcal{GF}_R}(M,N) \cong \operatorname{Tor}_n^{\mathcal{RGF}}(M,N)$. (ii) If $\operatorname{Gpd}_R M < \infty$ and $\operatorname{Gfd}_R N < \infty$, then $\operatorname{Tor}_n^{\mathcal{GP}_R}(M,N) \cong \operatorname{Tor}_n^{\mathcal{GF}_R}(M,N) \cong \operatorname{Tor}_n^{\mathcal{RGF}}(M,N)$. (iii) If $\operatorname{Gfd}_R M < \infty$ and $\operatorname{Gpd}_R N < \infty$, then $\operatorname{Tor}_n^{\mathcal{GF}_R}(M,N) \cong \operatorname{Tor}_n^{\mathcal{RGP}}(M,N) \cong \operatorname{Tor}_n^{\mathcal{RGF}}(M,N)$. (iv) If $\operatorname{Gpd}_R M < \infty$ and $\operatorname{Gpd}_R N < \infty$, then $\operatorname{Tor}_n^{\mathcal{GP}_R}(M,N) \cong \operatorname{Tor}_n^{\mathcal{GF}_R}(M,N) \cong \operatorname{Tor}_n^{\mathcal{RGF}}(M,N)$.

All the isomorphisms are functorial in M and N.

Proof. Use Lemmas 4.6 and 4.7 as input in the covariant-covariant version of Theorem 2.6. $\hfill \Box$

4.9 (Definition of gTor and GTor). Assume that R is both left and right coherent, and that both LeftFPD(R) and RightFPD(R) are finite. Furthermore, let M be a right R-module, and let N be a left R-module. If $\text{Gfd}_R M < \infty$ and $\text{Gfd}_R N < \infty$, then we write

$$g\operatorname{Tor}_n^R(M,N) := \operatorname{Tor}_n^{\mathcal{GF}_R}(M,N) \cong \operatorname{Tor}_n^{\mathcal{GF}}(M,N)$$

for the isomorphic abelian groups in Theorem 4.8(i). If $\text{Gpd}_R M < \infty$ and $\text{Gpd}_R N < \infty$, then we write

$$\operatorname{GTor}_n^R(M,N) := \operatorname{Tor}_n^{\mathcal{GP}_R}(M,N) \cong \operatorname{Tor}_n^{\mathcal{GP}}(M,N)$$

for the isomorphic abelian groups in Theorem 4.8(iv).

We can now reformulate some of the content of Theorem 4.8:

Theorem 4.10. Assume that R is both left and right coherent, and that both $\mathsf{LeftFPD}(R)$ and $\mathsf{RightFPD}(R)$ are finite. For every right R-module M with finite $\mathrm{Gpd}_R M$, and for every left R-module N with $\mathrm{Gpd}_R N < \infty$, we have isomorphisms:

$$\operatorname{gTor}_n^R(M, N) \cong \operatorname{GTor}_n^R(M, N)$$

that are functorial in M and N.

Finally we compare gTor (and hence GTor) with the usual Tor.

Theorem 4.11. Assume that R is both left and right coherent, and that both $\mathsf{LeftFPD}(R)$ and $\mathsf{RightFPD}(R)$ are finite. Furthermore, let M be a right R-module with $\mathsf{Gfd}_R M < \infty$, and let N be a left R-module with $\mathsf{Gfd}_R N < \infty$. If either $\mathsf{fd}_R M < \infty$ or $\mathsf{fd}_R N < \infty$, then there are isomorphisms

$$g \operatorname{Tor}_{n}^{R}(M, N) \cong \operatorname{Tor}_{n}^{R}(M, N)$$

that are functorial in M and N.

Proof. If $\operatorname{fd}_R M < \infty$, then we also have $\operatorname{pd}_R M < \infty$ by [13, Proposition 6] (since RightFPD(R) $< \infty$). Let \boldsymbol{P} be any projective resolution of M. As noted in Remark 3.3, \boldsymbol{P} is also a proper left \mathcal{GP}_R -resolution of M. Hence, Theorem 4.8(*ii*) and the definitions give:

$$g\operatorname{Tor}_{n}^{R}(M,N) = \operatorname{Tor}_{n}^{\mathcal{GP}_{R}}(M,N) = \operatorname{H}_{n}(\boldsymbol{P}\otimes_{R}N) = \operatorname{Tor}_{n}^{R}(M,N),$$

sired.

as desired.

Acknowledgments

I would like to express my gratitude to my Ph.D. advisor Hans-Bjørn Foxby for his support and our helpful discussions. Furthermore, I would like to thank the referee for correcting many of my misprints.

References

- M. Auslander, Anneaux de Gorenstein et torsion en algèbre commutative, Séminaire d'algèbre commutative 1966/67, notes by M. Mangeney, C. Peskine and L. Szpiro, École Normale Supérieure de Jeunes Filles, Paris, Secrétariat mathématique, 1967. MR 37:1435
- [2] M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94, American Mathematical Society, Providence, RI, 1969. MR 42:4580
- [3] L. L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, Proc. London Math. Soc. 85, Part 2 (2002), 393 – 440. MR 2003g:16009
- [4] L. W. Christensen, Gorenstein dimensions, Lecture Notes in Math. 1747, Springer-Verlag, Berlin, 2000. MR 2002e:13032
- [5] E. E. Enochs and O. M. G. Jenda, Balanced functors applied to modules, J. Algebra 92 (1985), 303 - 310. MR 86h:16025
- [6] E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), 611-633. MR 97c:16011
- [7] E. E. Enochs and O. M. G. Jenda, Gorenstein balance of hom and tensor, Tsukuba J. Math. 19, No. 1 (1995), 1 – 13. MR 97a:16019
- [8] E. E. Enochs and O. M. G. Jenda, Gorenstein injective and flat dimensions, Math. Japonica 44, No. 2 (1996), 261 – 268. MR 97k:13019
- [9] E. E. Enochs and O. M. G. Jenda, *Relative Homological Algebra*, de Gruyter Expositions in Math. 30, Walter de Gruyter, Berlin, 2000. MR 2001h:16013
- [10] L. Gruson and M. Raynaud, Critères de platitude et de projectivité. Techniques de "platification" d'un module, Invent. Math. 13 (1971), 1-89. MR 46:7219
- R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York-Heidelberg, 1977. MR 57:3116
- [12] H. Holm, Gorenstein homological dimensions, J. Pure and Appl. Algebra (to appear).
- [13] C. U. Jensen, On the vanishing of $\lim^{(i)}$, J. Algebra 15 (1970), 151 166. MR 41:5460
- [14] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38, Cambridge University Press, Cambridge, 1994. MR 95f:18001
- [15] J. Xu, Flat covers of modules, Lecture Notes in Math. 1634, Springer-Verlag, Berlin, 1996. MR 98b:16003

Matematisk Afdeling, Københavns Universitet, Universitetsparken 5, 2100 København $\emptyset,$ DK–Danmark

E-mail address: holm@math.ku.dk