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GORENSTEIN DERIVED FUNCTORS

HENRIK HOLM

(Communicated by Bernd Ulrich)

Abstract. Over any associative ring R it is standard to derive HomR(−,−)
using projective resolutions in the first variable, or injective resolutions in the
second variable, and doing this, one obtains ExtnR(−,−) in both cases. We
examine the situation where projective and injective modules are replaced by
Gorenstein projective and Gorenstein injective ones, respectively. Further-
more, we derive the tensor product −⊗R − using Gorenstein flat modules.

1. Introduction

When R is a two-sided Noetherian ring, Auslander and Bridger [2] introduced
in 1969 the G-dimension, G-dimRM , for every finite (that is, finitely generated)
R-module M . They proved the inequality G-dimRM 6 pdRM , with equality
G-dimRM = pdRM when pdRM < ∞, along with a generalized Auslander-
Buchsbaum formula (sometimes known as the Auslander-Bridger formula) for the
G-dimension.

The (finite) modules with G-dimension zero are called Gorenstein projectives.
Over a general ring R, Enochs and Jenda in [6] defined Gorenstein projective mod-
ules. Avramov, Buchweitz, Martsinkovsky and Reiten proved that if R is two-sided
Noetherian, and G is a finite Gorenstein projective module, then the new definition
agrees with that of Auslander and Bridger; see the remark following [4, Theorem
(4.2.6)]. Using Gorenstein projective modules, one can introduce the Gorenstein
projective dimension for arbitrary R-modules. At this point we need to introduce:

1.1 (Notation). Throughout this paper, we use the following notation:
• R is an associative ring. All modules are—if not specified otherwise—left
R-modules, and the category of all R-modules is denotedM. We use A for
the category of abelian groups (that is, Z-modules).
• We use GP , GI and GF for the categories of Gorenstein projective, Goren-

stein injective and Gorenstein flat R-modules; please see [6] and [8], or
Definition 2.7 below.
• Furthermore, for each R-module M we write GpdRM , GidRM and GfdRM

for the Gorenstein projective, Gorenstein injective, and Gorenstein flat di-
mension of M , respectively.
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Now, given our base ring R, the usual right derived functors ExtnR(−,−) of
HomR(−,−) are important in homological studies of R. The material presented
here deals with the Gorenstein right derived functors ExtnGP(−,−) and ExtnGI(−,−)
of HomR(−,−).

More precisely, let N be a fixed R-module. For an R-module M that has a proper
left GP-resolution G = · · · → G1 → G0 → 0 (please see 2.1 below for the definition
of proper resolutions), we define

ExtnGP (M,N) := Hn(HomR(G, N)).

From 2.4 it will follow that ExtnGP(−, N) is a well-defined contravariant functor,
defined on the full subcategory, LeftResM(GP), of M, consisting of all R-modules
that have a proper left GP-resolution.

For a fixedR-moduleM ′ there is a similar definition of the functor ExtnGI(M
′,−),

which is defined on the full subcategory, RightResM(GI), of M, consisting of all
R-modules that which have a proper right GI-resolution. Now, the best one could
hope for is the existence of isomorphisms,

ExtnGP (M,N) ∼= ExtnGI(M,N),

which are functorial in each variable M ∈ LeftResM(GP) and N ∈ RightResM(GI).
The aim of this paper is to show a slightly weaker result.

When R is n-Gorenstein (meaning that R is both left and right Noetherian,
with self-injective dimension 6 n from both sides), Enochs and Jenda [9, Theorem
12.1.4] have proved the existence of such functorial isomorphisms ExtnGP(M,N) ∼=
ExtnGI(M,N) for all R-modules M and N .

It is important to note that for an n-Gorenstein ring R, we have GpdRM <∞,
GidRM <∞, and also GfdRM <∞ for all R-modules M ; please see [9, Theorems
11.2.1, 11.5.1, 11.7.6]. For any ring R, [12, Proposition 2.18] (which is restated in
this paper as Proposition 3.1) implies that the category LeftResM(GP) contains all
R-modules M with GpdRM <∞; that is, every R-module with finite G-projective
dimension has a proper left GP-resolution. Also, every R-module with finite G-
injective dimension has a proper right GI-resolution. So RightResM(GI) contains
all R-modules N with GidRN <∞.

Theorem 3.6 in this text proves that the functorial isomorphisms ExtnGP(M,N)
∼= ExtnGI(M,N) hold over arbitrary rings R, provided that GpdRM < ∞ and
GidRN < ∞. By the remarks above, this result generalizes that of Enochs and
Jenda.

Furthermore, Theorems 4.8 and 4.10 give similar results about the Gorenstein
left derived of the tensor product − ⊗R −, using proper left GP-resolutions and
proper left GF-resolutions. This has also been proved by Enochs and Jenda
[9, Theorem 12.2.2] in the case when R is n-Gorenstein.

2. Preliminaries

Let T : C → E be any additive functor between abelian categories. One usually
derives T using resolutions consisting of projective or injective objects (if the cat-
egory C has enough projectives or injectives). This section is a very brief note on
how to derive functors T with resolutions consisting of objects in some subcategory
X ⊆ C. The general discussion presented here will enable us to give very short
proofs of the main theorems in the next section.
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2.1 (Proper Resolutions). Let X ⊆ C be a full subcategory. A proper left X -
resolution of M ∈ C is a complex X = · · · → X1 → X0 → 0 where Xi ∈ X ,
together with a morphism X0 → M , such that X+ := · · · → X1 → X0 →M → 0
is also a complex, and such that the sequence

HomC(X,X+) = · · · → HomC(X,X1)→ HomC(X,X0)→ HomC(X,M)→ 0

is exact for every X ∈ X . We sometimes refer to X+ = · · · → X1 → X0 →M → 0
as an augmented proper left X -resolution. We do not require thatX+ itself is exact.
Furthermore, we use LeftResC(X ) to denote the full subcategory of C consisting of
those objects that have a proper left X -resolution. Note that X is a subcategory
of LeftResC(X ).

Proper right X -resolutions are defined dually, and the full subcategory of C
consisting of those objects that have a proper right X -resolution is RightResC(X ).

The importance of working with proper resolutions comes from the following:

Proposition 2.2. Let f : M →M ′ be a morphism in C, and consider the diagram
. . . // X2

f2

��

// X1

f1

��

// X0

f0

��

// M

f

��

// 0

. . . // X ′2 // X ′1 // X ′0 // M ′ // 0

where the upper row is a complex with Xn ∈ X for all n > 0, and the lower row is
an augmented proper left X -resolution of M ′. Then the following conclusions hold:

(i) There exist morphisms fn : Xn → X ′n for all n > 0, making the diagram
above commutative. The chain map {fn}n>0 is called a lift of f .

(ii) If {f ′n}n>0 is another lift of f , then the chain maps {fn}n>0 and {f ′n}n>0

are homotopic.

Proof. The proof is an exercise; please see [9, Exercise 8.1.2]. �
Remark 2.3. A few comments are in order:

• In our applications, the class X contains all projectives. Consequently, all
the augmented proper left X -resolutions occurring in this paper will be
exact. Also, all augmented proper right Y-resolutions will be exact, when
Y is a class of R-modules containing all injectives.
• Recall (see [15, Definition 1.2.2]) that an X -precover of M ∈ C is a mor-

phism ϕ : X →M , where X ∈ X , such that the sequence

HomC(X ′, X)
HomC(X′,ϕ)

// HomC(X ′,M) // 0

is exact for every X ′ ∈ X . Hence, in an augmented proper left X -resolution
X+ of M , the morphisms Xi+1 → Ker(Xi → Xi−1), i > 0, and X0 → M
are X -precovers.
• What we have called proper X -resolutions, Enochs and Jenda [9, Definition

8.1.2] simply call X -resolutions. We have adopted the terminology proper
from [3, Section 4].

2.4 (Derived Functors). Consider an additive functor T : C → E between abelian
categories. Let us assume that T is covariant, say. Then (as usual) we can define
the nth left derived functor

LXn T : LeftResC(X )→ E
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of T , with respect to the class X , by setting LXn T (M) = Hn(T (X)), where X is
any proper left X -resolution of M ∈ LeftResC(X ). Similarly, the nth right derived
functor

Rn
XT : RightResC(X )→ E

of T with respect to X is defined by Rn
XT (N) = Hn(T (Y )), where Y is any proper

right X -resolution of N ∈ RightResC(X ). These constructions are well-defined and
functorial in the arguments M and N by Proposition 2.2.

The situation where T is contravariant is handled similarly. We refer to [9,
Section 8.2] for a more detailed discussion on this matter.

2.5 (Balanced Functors). Next we consider yet another abelian category D,
together with a full subcategory Y ⊆ D and an additive functor F : C × D → E
in two variables. We will assume that F is contravariant in the first variable, and
covariant in the second variable.

Actually, the variance of the variables of F is not important, and the definitions
and results below can easily be modified to fit the situation where F is covariant in
both variables, say.

For fixed M ∈ C and N ∈ D we can then consider the two right derived functors
as in 2.4:

Rn
XF (−, N) : LeftResC(X )→ E and Rn

YF (M,−) : RightResD(Y)→ E .
If furthermore M ∈ LeftResC(X ) and N ∈ RightResD(Y), we can ask for a sufficient
condition to ensure that

Rn
XF (M,N) ∼= Rn

YF (M,N),

functorial in M and N . Here we wrote Rn
XF (M,N) for the functor Rn

XF (−, N)
applied to M . Another, and perhaps better, notation could be

Rn
XF (−, N)[M ].

Enochs and Jenda have in [5] developed a machinery for answering such questions.
They operate with the term left/right balanced functor (hence the headline), which
we will not define here (but the reader might consult [5, Definition 2.1]). Instead
we shall focus on the following result:

Theorem 2.6. Consider the functor F : C × D → E which is contravariant in the
first variable and covariant in the second variable, together with the full subcate-
gories X ⊆ C and Y ⊆ D. Assume that we have full subcategories X̃ and Ỹ of
LeftResC(X ) and RightResD(Y), respectively, satisfying:

(i) X ⊆ X̃ and Y ⊆ Ỹ.
(ii) Every M ∈ X̃ has an augmented proper left X -resolution · · · → X1 →

X0 → M → 0, such that 0 → F (M,Y ) → F (X0, Y ) → F (X1, Y ) → · · · is
exact for all Y ∈ Y.

(iii) Every N ∈ Ỹ has an augmented proper right Y-resolution 0→ N → Y 0 →
Y 1 → · · · , such that 0→ F (X,N)→ F (X,Y 0)→ F (X,Y 1)→ · · · is exact
for all X ∈ X .

Then we have functorial isomorphisms

Rn
XF (M,N) ∼= Rn

YF (M,N),

for all M ∈ X̃ and N ∈ Ỹ.
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Proof. Please see [5, Proposition 2.3]. That the isomorphisms are functorial follows
from the construction. The functoriality becomes more clear if one consults the
proof of [9, Proposition 8.2.14], or the proofs of [14, Theorems 2.7.2 and 2.7.6]. �

In the next paragraphs we apply the results above to special categories X , X̃ ,
C and Y, Ỹ, D, including the categories mentioned in 1.1. For completeness we
include a definition of Gorenstein projective, Gorenstein injective and Gorenstein
flat modules:

Definition 2.7. A complete projective resolution is an exact sequence of projective
modules,

P = · · · → P1 → P0 → P−1 → · · · ,
such that HomR(P , Q) is exact for every projective R-module Q. An R-module M
is called Gorenstein projective (G-projective for short), if there exists a complete
projective resolution P with M ∼= Im(P0 → P−1). Gorenstein injective (G-injective
for short) modules are defined dually.

A complete flat resolution is an exact sequence of flat (left) R-modules,

F = · · · → F1 → F0 → F−1 → · · · ,
such that I ⊗R F is exact for every injective right R-module I. An R-module M
is called Gorenstein flat (G-flat for short), if there exists a complete flat resolution
F with M ∼= Im(F0 → F−1).

3. Gorenstein deriving HomR(−,−)

We now return to categories of modules. We use G̃P , G̃I and G̃F to denote the
class of R-modules with finite Gorenstein projective dimension, finite Gorenstein
injective dimension, and finite Gorenstein flat dimension, respectively.

Recall that every projective module is Gorenstein projective. Consequently, GP-
precovers are always surjective, and G̃P contains all modules with finite projective
dimension.

We now consider the functor HomR(−,−) : M×M → A, together with the
categories

X = GP , X̃ = G̃P and Y = GI , Ỹ = G̃I.
In this case we define, in the sense of section 2.4,

ExtnGP (−, N) = Rn
GPHomR(−, N) and ExtnGI(M,−) = Rn

GIHomR(M,−),

for fixed R-modules M and N . We wish, of course, to apply Theorem 2.6 to this
situation. Note that by [12, Proposition 2.18], we have:

Proposition 3.1. If M is an R-module with GpdRM < ∞, then there exists a
short exact sequence 0 → K → G → M → 0, where G → M is a GP-precover of
M (please see Remark 2.3), and pdRK = GpdRM − 1 (in the case where M is
Gorenstein projective, this should be interpreted as K = 0).

Consequently, every R-module with finite Gorenstein projective dimension has a
proper left GP-resolution (that is, there is an inclusion G̃P ⊆ LeftResM(GP)).

Furthermore, we will need the following from [12, Theorem 2.13]:

Theorem 3.2. Let M be any R-module with GpdRM <∞. Then

GpdRM = sup{n > 0 | ExtnR(M,L) 6= 0 for some R-module L with pdRL <∞}.
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Remark 3.3. It may be useful to compare Theorem 3.2 to the classical projective
dimension, which for an R-module M is given by

pdRM = {n > 0 | ExtnR(M,L) 6= 0 for some R-module L}.

It also follows that if pdRM <∞, then every projective resolution of M is actually
a proper left GP-resolution of M .

Lemma 3.4. Assume that M is an R-module with finite Gorenstein projective
dimension, and let G+ = · · · → G1 → G0 → M → 0 be an augmented proper
left GP-resolution of M (which exists by Proposition 3.1). Then HomR(G+, H) is
exact for all Gorenstein injective modules H.

Proof. We split the proper resolution G+ into short exact sequences. Hence it
suffices to show exactness of HomR(S, H) for all Gorenstein injective modules H
and all short exact sequences

S = 0→ K → G→M → 0 ,

where G→M is a GP-precover of some module M with GpdRM <∞ (recall that
GP-precovers are always surjective). By Proposition 3.1, there is a special short
exact sequence,

S′ = 0 // K ′
ι // G′

π // M // 0 ,

where π : G′ →M is a GP-precover and pdRK ′ <∞.
It is easy to see (as in Proposition 2.2) that the complexes S and S′ are homo-

topy equivalent, and thus so are the complexes HomR(S, H) and HomR(S′, H) for
every (Gorenstein injective) module H . Hence it suffices to show the exactness of
HomR(S′, H) whenever H is Gorenstein injective.

Now let H be any Gorenstein injective module. We need to prove the exactness
of

HomR(G′, H)
HomR(ι,H)

// HomR(K ′, H) // 0 .

To see this, let α : K ′ → H be any homomorphism. We wish to find % : G′ → H
such that %ι = α. Now pick an exact sequence

0 // H̃ // E
g

// H // 0 ,

where E is injective, and H̃ is Gorenstein injective (the sequence in question is just
a part of the complete injective resolution that defines H). Since H̃ is Gorenstein
injective and pdRK

′ <∞, we get Ext1
R(K ′, H̃) = 0 by [7, Lemma 1.3], and thus a

lifting ε : K ′ → E with gε = α:

K ′

ε

��

α

~~||||||||

ι // G′

ε̃
}}

H Eg
oo

Next, injectivity of E gives ε̃ : G′ → E with ε̃ι = ε. Now % = gε̃ : G′ → H is the
desired map. �

With a similar proof we get:
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Lemma 3.5. Assume that N is an R-module with finite Gorenstein injective di-
mension, and let H+ = 0 → N → H0 → H1 → · · · be an augmented proper
right GI-resolution of N (which exists by the dual of Proposition 3.1). Then
HomR(G,H+) is exact for all Gorenstein projective modules G. �

Comparing Lemmas 3.4 and 3.5 with Theorem 2.6, we obtain:

Theorem 3.6. For all R-modules M and N with GpdRM <∞ and GidRN <∞,
we have isomorphisms

ExtnGP(M,N) ∼= ExtnGI(M,N),

which are functorial in M and N . �
3.7 (Definition of GExt). Let M and N be R-modules with GpdRM <∞ and
GidRN <∞. Then we write

GExtnR(M,N) := ExtnGP (M,N) ∼= ExtnGI(M,N)

for the isomorphic abelian groups in Theorem 3.6 above.

Naturally we want to compare GExt with the classical Ext. This is done in:

Theorem 3.8. Let M and N be any R-modules. Then the following conclusions
hold:

(i) There are natural isomorphisms ExtnGP(M,N) ∼= ExtnR(M,N) under each of
the conditions

(†) pdRM <∞ or (‡) M ∈ LeftResM(GP) and idRN <∞.
(ii) There are natural isomorphisms ExtnGI(M,N) ∼= ExtnR(M,N) under each of

the conditions

(†) idRN <∞ or (‡) N ∈ RightResM(GI) and pdRM <∞.
(iii) Assume that GpdRM < ∞ and GidRN < ∞. If either pdRM < ∞ or

idRN <∞, then
GExtnR(M,N) ∼= ExtnR(M,N)

is functorial in M and N .

Proof. (i) Assume that pdRM < ∞, and pick any projective resolution P of M .
By Remark 3.3, P is also a proper left GP-resolution of M , and thus

ExtnGP (M,N) = Hn(HomR(P , N)) = ExtnR(M,N).

In the case where M ∈ LeftResM(GP) and idRN = m <∞, we see that Gorenstein
projective modules are acyclic for the functor HomR(−, N), that is, ExtiR(G,N) = 0
(the usual Ext) for every Gorenstein projective module G, and every integer i > 0.

This is because, if G is a Gorenstein projective module, and i > 0 is an integer,
then there exists an exact sequence 0→ G→ Q0 → · · · → Qm−1 → C → 0, where
Q0, . . . , Qm−1 are projective modules. Breaking this exact sequence into short
exact ones, and applying HomR(−, N), we get ExtiR(G,N) ∼= Extm+i

R (C,N) = 0,
as claimed.

Therefore [11, Chapter III, Proposition 1.2A] implies that ExtnR(−, N) can be
computed using (proper) left Gorenstein projective resolutions of the argument in
the first variable, as desired.

The proof of (ii) is similar. The claim (iii) is a direct consequence of (i) and
(ii), together with the Definition 3.7 of GExtnR(−,−). �
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4. Gorenstein deriving −⊗R −

In dealing with the tensor product we need, of course, both left and right R-
modules. Thus the following addition to Notation 1.1 is needed:

If C is any of the categories in Notation 1.1 (M, GP, etc.), we write RC, respec-
tively, CR, for the category of left, respectively, right, R-modules with the property
describing the modules in C.

Now we consider the functor −⊗R− : MR×RM→A. For fixed M ∈MR and
N ∈ RM we define, in the sense of section 2.4:

TorGPRn (−, N) := LGPRn (−⊗RN) and TorRGPn (M,−) := LRGPn (M ⊗R−),

together with

TorGFRn (−, N) := LGFRn (−⊗RN) and TorRGFn (M,−) := LRGFn (M⊗R−).

The first two Tors use proper left Gorestein projective resolutions, and the last
two Tors use proper left Gorenstein flat resolutions. In order to compare these
different Tors , we wish, of course, to apply (a version of) Theorem 2.6 to different
combinations of

(X , X̃ ) = (GPR , G̃PR) or (GFR , G̃FR),

and
(Y , Ỹ) = (RGP , RG̃P) or (RGF , RG̃F),

namely, the covariant-covariant version of Theorem 2.6, instead of the stated contra-
variant-covariant version. We will need the classical notion:

Definition 4.1. The left finitistic projective dimension LeftFPD(R) of R is defined
as

LeftFPD(R) = sup{pdRM | M is a left R-module with pdRM <∞}.
The right finitistic projective dimension RightFPD(R) of R is defined similarly.

Remark 4.2. When R is commutative and Noetherian, the dimensions LeftFPD(R)
and RightFPD(R) coincide and are equal to the Krull dimension of R, by [10,
Théorème (3.2.6) (Seconde partie)].

We will need the following three results, [12, Proposition 3.3], [12, Theorem 3.5]
and [12, Proposition 3.18], respectively:

Proposition 4.3. If R is right coherent with finite LeftFPD(R), then every Goren-
stein projective left R-module is also Gorenstein flat. That is, there is an inclusion
RGP ⊆ RGF . �
Theorem 4.4. For any left R-module M , we consider the following three condi-
tions:

(i) The left R-module M is G-flat.
(ii) The Pontryagin dual HomZ(M,Q/Z) (which is a right R-module) is G-

injective.
(iii) M has an augmented proper right resolution 0 → M → F 0 → F 1 → · · ·

consisting of flat left R-modules, and TorRi (I,M) = 0 for all injective right
R-modules I, and all i > 0.

The implication (i) ⇒ (ii) always holds. If R is right coherent, then also (ii) ⇒
(iii)⇒ (i), and hence all three conditions are equivalent. �
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Proposition 4.5. Assume that R is right coherent. If M is a left R-module with
GfdRM < ∞, then there exists a short exact sequence 0 → K → G → M → 0,
where G → M is an RGF-precover of M , and fdRK = GfdRM − 1 (in the case
where M is Gorenstein flat, this should be interpreted as K = 0).

In particular, every left R-module with finite Gorenstein flat dimension has a
proper left RGF-resolution (that is, there is an inclusion RG̃F ⊆ LeftRes

RM(RGF)).
�

Our first result is:

Lemma 4.6. Let M be a left R-module with GpdRM < ∞, and let G+ = · · · →
G1 → G0 → M → 0 be an augmented proper left RGP-resolution of M (which
exists by Proposition 3.1). Then the following conclusions hold:

(i) T ⊗RG+ is exact for all Gorenstein flat right R-modules T .
(ii) If R is left coherent with finite RightFPD(R), then T ⊗R G+ is exact for

all Gorenstein projective right R-modules T .

Proof. (i) By Theorem 4.4 above, the Pontryagin dual H = HomZ(T,Q/Z) is a
Gorenstein injective left R-module. Hence HomR(G+, H) ∼= HomZ(T ⊗RG+,Q/Z)
is exact by Proposition 3.4. Since Q/Z is a faithfully injective Z-module, T ⊗RG+

is exact too.
(ii) With the given assumptions on R, the dual of Proposition 4.3 implies that

every Gorenstein projective right R-module also is Gorenstein flat. �

Lemma 4.7. Assume that R is right coherent with finite LeftFPD(R). Let M be
a left R-module with GfdRM <∞, and let G+ = · · · → G1 → G0 →M → 0 be an
augmented proper left RGF-resolution of M (which exists by Proposition 4.5, since
R is right coherent). Then the following conclusions hold:

(i) HomR(G+, H) is exact for all Gorenstein injective left R-modules H.
(ii) T ⊗RG+ is exact for all Gorenstein flat right R-modules T .

(iii) If R is also left coherent with finite RightFPD(R), then T ⊗R G+ is exact
for all Gorenstein projective right R-modules T .

Proof. (i) Since GfdRM < ∞ and R is right coherent, Proposition 4.5 gives a
special short exact sequence 0 → K ′ → G′ → M → 0, where G′ → M is an RGF -
precover of M , and fdRK ′ < ∞. Since R has LeftFPD(R) < ∞, [13, Proposition
6] implies that also pdRK ′ <∞. Now the proof of Lemma 3.4 applies.

(ii) If T is a Gorenstein flat right R-module, then the left R-module H =
HomZ(T,Q/Z) is Gorenstein injective, by (the dual of) Theorem 4.4 above. By the
result (i), just proved, we have exactness of

HomR(G+, H) ∼= HomZ(T ⊗R G+,Q/Z).

Since Q/Z is a faithfully injective Z-module, we also have exactness of T ⊗R G+,
as desired.

(iii) Under the extra assumptions on R, the dual of Proposition 4.3 implies
that every Gorenstein projective right R-module is also Gorenstein flat. Thus (iii)
follows from (ii). �

Theorem 4.8. Assume that R is both left and right coherent, and that both
LeftFPD(R) and RightFPD(R) are finite. For every right R-module M , and ev-
ery left R-module N , the following conclusions hold:
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(i) If GfdRM <∞ and GfdRN <∞, then

TorGFRn (M,N) ∼= TorRGFn (M,N).

(ii) If GpdRM <∞ and GfdRN <∞, then

TorGPRn (M,N) ∼= TorGFRn (M,N) ∼= TorRGFn (M,N).

(iii) If GfdRM <∞ and GpdRN <∞, then

TorGFRn (M,N) ∼= TorRGPn (M,N) ∼= TorRGFn (M,N).

(iv) If GpdRM <∞ and GpdRN <∞, then

TorGPRn (M,N) ∼= TorGFRn (M,N) ∼= TorRGPn (M,N) ∼= TorRGFn (M,N).

All the isomorphisms are functorial in M and N .

Proof. Use Lemmas 4.6 and 4.7 as input in the covariant-covariant version of The-
orem 2.6. �
4.9 (Definition of gTor and GTor). Assume that R is both left and right
coherent, and that both LeftFPD(R) and RightFPD(R) are finite. Furthermore,
let M be a right R-module, and let N be a left R-module. If GfdRM < ∞ and
GfdRN <∞, then we write

gTorRn (M,N) := TorGFRn (M,N) ∼= TorRGFn (M,N)

for the isomorphic abelian groups in Theorem 4.8(i). If GpdRM <∞ and GpdRN
<∞, then we write

GTorRn (M,N) := TorGPRn (M,N) ∼= TorRGPn (M,N)

for the isomorphic abelian groups in Theorem 4.8(iv).

We can now reformulate some of the content of Theorem 4.8:

Theorem 4.10. Assume that R is both left and right coherent, and that both
LeftFPD(R) and RightFPD(R) are finite. For every right R-module M with finite
GpdRM , and for every left R-module N with GpdRN <∞, we have isomorphisms:

gTorRn (M,N) ∼= GTorRn (M,N)

that are functorial in M and N .

Finally we compare gTor (and hence GTor) with the usual Tor.

Theorem 4.11. Assume that R is both left and right coherent, and that both
LeftFPD(R) and RightFPD(R) are finite. Furthermore, let M be a right R-module
with GfdRM < ∞, and let N be a left R-module with GfdRN < ∞. If either
fdRM <∞ or fdRN <∞, then there are isomorphisms

gTorRn (M,N) ∼= TorRn (M,N)

that are functorial in M and N .

Proof. If fdRM < ∞, then we also have pdRM < ∞ by [13, Proposition 6] (since
RightFPD(R) <∞). Let P be any projective resolution of M . As noted in Remark
3.3, P is also a proper left GPR-resolution of M . Hence, Theorem 4.8(ii) and the
definitions give:

gTorRn (M,N) = TorGPRn (M,N) = Hn(P ⊗R N) = TorRn (M,N),

as desired. �
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