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Abstract: The paper presents an (ACSA) Ant colony search Algorithm for 

Optimal Reactive Power Optimization and voltage control of power systems.  

ACSA is a new co-operative agents’ approach, which is inspired by the 

observation of the behavior of real ant colonies on the topic of ant trial formation 

and foraging methods.  Hence, in the ACSA a set of co-operative agents called 

“Ants” co-operates to find good solution for Reactive Power Optimization 

problem. The ACSA is applied for optimal reactive power optimization is evalu-

ated on standard IEEE, 30, 57, 191 (practical) test bus system. The proposed 

approach is tested and compared to genetic algorithm (GA), Adaptive Genetic 

Algorithm (AGA). 

Keywords: Reactive power optimization, Ant colony search algorithm, Global 

optimization. 

1   Introduction 

The reactive power optimization problem has a significant influence on 

secure and economic operation of power systems. The reactive power genera-

tion, although itself having no production cost, does however affect the overall 

generation cost by the way of the transmission loss. A procedure, which 

allocates the reactive power generation so as to minimize the transmission loss, 

will consequently result on the lowest production cost for which the operation 

constraints are satisfied. The operation constraints may include reactive power 

optimization problem. The conventional gradient based optimization algorithm 

has been widely used to solve this problem for decades. Obviously, this problem 

is in nature a global optimization problem which may have several local minima 

and the conventional optimization methods easily lead to local optimum. 

On the other hand, in the conventional optimization algorithms, many 

mathematical assumptions, such as analytic and differential properties of the 

objective functions and unique minima existing in problem domains, have to be 

given to simplify the problem. Otherwise it is very difficult to calculate the 

gradient variables in the conventional methods. Further, in practical power 
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system operation, the data acquired by the SCADA (Supervisory Control and 

Data Acquisition) system are contaminated by noise. Such data may cause 

difficulties in computation of gradients. Consequently, the optimization could 

not be carried out in many occasions. In the last decade, many new stochastic 

search methods have been developed for the global optimization problems such 

as simulated annealing, genetic algorithms and evolutionary programming.  Here 

a new search algorithm ACSA is proposed to find the global solution for reactive 

power optimization problem. 

For the last few years, the algorithms inspired by the observation of natural 

phenomena to help solving complex combinatorial problems have been 

increasing interest. In analyzing the behaviors of real ants, it was found that the 

ants are capable of finding shortest path from food sources to the nest without 

using visual cues. In the application of this method to our reactive power 

optimization problem, the initial population of colony can be first randomly 

generated within the search space of problem. Then, the fitness of ants is 

individually assessed based on their corresponding objective function. With the 

selection of trail, the ant dispatch can be activated based on the level of 

pheromone and distance of the selected trail in order to find the best tour or the 

shortest path [1]. 

2   Problem Formulation 

The objective of the reactive power optimization problem is to minimize the 

active power loss in the transmission Network as well as to improve the voltage 

profile of the system.  

Adjusting reactive power controllers like Generator bus voltages, reactive 

Power of VAR sources and transformer taps performs reactive Power sche-

duling. We are starting the method by assuming that real power optimization has 

been already done. 

Main objective function for RPO is 

 
1

minimization ( , , )
NB

L i

i

P P X Y
=

= ˽∑  (1) 

Subject to three constraints: 

i) The control vector constraints 

 min maxX X X≤ ≤ . (2) 

ii) The dependent vector constraints  

 min maxY Y Y≤ ≤  (3) 

and 
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iii) The power flow constraint 

 ( , , ) 0F X Y ˽ = , (4) 

where:  

 [V , , ]G CX T Q= ; (5) 

 g LY=[Q ,V , I] ; (6) 

 NB  - Number of buses in the system; 

 ˽  -  Vector of bus phase angles; 

 iP  - Real Power injection into the i
th
 bus; 

 VG  -  Vector of Generator Voltage Magnitudes; 

 T  -  Vector of Tap settings of on load Transformer Tap changer; 

 CQ  -  Vector of reactive Power of switchable VAR sources; 

 VL  -  Vector of load bus Voltage magnitude; 

 I  -  Vector of  current in the lines; 

 LP  -  Vector of  real power flows; and 

 gQ  -  Vector of reactive power generations of the generator buses. 

3  ACSA Paradigm 

3.1  Behavior of Real Ants 

Ant colony search (ACS) studies are inspired from the behavior of real ant 

colonies that are used to solve function or combinatorial optimization problems. 

Currently, most work has been done in the direction of applying ACS to 

combinatorial optimization. The first ACS system was introduced by Marco 

Dorigo [2], and was called “ant system”. Ant colony search algorithms, to some 

extent; mimic the behavior of real ants. As it is well known, real ants are capable 

of finding the shortest path from food sources to the nest without using visual 

cues. They are also capable of adapting to changes in the environment; for 

example, finding a new shortest path once the old one is no longer feasible due 

to a new obstacle. The studies by ethnologists reveal that such capabilities are 

essentially due to what is called “pheromone trails”, which ants use to 

communicate information among individuals regarding path and to decide where 

to go. Ants deposit a certain amount of pheromone while walking, and each ant 

probabilistically prefers to follow a direction rich in pheromone rather than a 

poorer one [3]. 

The process can he clearly illustrated by Fig. 1a ants are moving on a 

straight line that connects a food source to their nest. An ant:  

• Ants deposit pheromone while walking.  
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• Probabilistically prefers to follow a direction rich in pheromone.  

 

(a) (b) 

(c) (d) 

Food Nest 

Food Nest 

Food  

Food  Nest 

Nest 

 

Fig. 1 – Behavior of ants. 

 

(a) Real ants follow a path between nest and food source. (b) An obstacle 

appears on the path: ants choose whether to turn left or right with equal 

probability. (c) Pheromone is deposited more quickly on the shorter path. (d) All 

ants have chosen the shorter path. 

This behavior can be explained how ants can find the shortest path that 

reconnects a line that is broken by an obstacle in Fig. 1b. On introducing, those 

ants are just in front of the obstacle and they cannot to continue to go. Therefore 

they have to choose between turning right or left. Half the ants choose to turn 

right and the other half choose to turn left. A similar situation arises on the other 

side of the obstacle Fig. 1c. Ants choosing the shorter path will more rapidly 

reconstitute the interrupted pheromone trail compared with those choosing the 

longer path. Thus, the shorter path will receive a greater amount of pheromone 

per time unit and, in turn, a larger number of ants will choose the shorter path. 

Due to this positive feedback, all the ants will rapidly choose the shorter path 

Fig. 1d. All ants move at approximately the same speed and deposit a 

pheromone trail at approximately the same rate. The time to go round the longer 

side of an obstacle is greater than the shorter. This makes the pheromone trail 

accumulate more quickly on the shorter side. Ants prefer higher pheromone trail 

levels causing this accumulation to build up still faster on the shorter path. This 

behavior of ants can be used to solve optimization problems and in particular the 

Traveling Salesman Problem (TSP). This is the problem of finding a shortest 
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closed tour, which visits all cities in a given set once. This was the first problem 

solved by using the ant colony metaphor [4]. 

3.2 Ant colony search algorithm 

3.2.1 ACS state transition rule 

In ACS the state transition rule is as follows: an ant positioned on node r 

chooses the city s to move to by applying the rule given by (7). 

 ( )

0
W

Arg max {[ ( , )][ ( , )] }, if , (exploitation)

, otherwise (biased exploration)

k rJ
r u r u q q

S
S

˻

∈
� ̍ ̀ ≤�

= �
�

 (7) 

where: 

− q  is a random number uniformly distributed in [0 1]… ; 

− 0q  is a parameter 0(0 1)q≤ ≤ ;and 

− S  is a random variable selected according to the probability distribution 

given in equation (8). 
 

The state transition rule used by ant system, called a random-proportional 

rule, is given by (8), which gives the probability with which ant k  in city r  

chooses to move to the city s . 

 
( )

[ ( , )][ ( , )]
,  if  ( )

[ ( , )][ ( , )]( , )

0,  otherwise
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˻
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� ̍ ̀
∈�� ̍ ̀= �

�
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∑  (8) 

where: 

− ̍  is the pheromone; 

− ( )kJ r  is the set of cities that remain to be visited by ant k  positioned on city 

r  (to make the solution feasible); 

− ˻  is a parameter, which determines the relative importance of pheromone 

versus distance ( 0)˻ > ;and 

− /Ì = ˽  is the inverse of the distance ( , )r s˽ . 

3.2.2 ACS Global Updating Rule 

Global updating is performed after all ants have completed their tours. The 

pheromone level is updated by applying the global updating rule of (9). 

 ( , ) (1 ) ( , ) ( , )r s a r s r s̍ չ − ̍ + ˺˝̍ , (9) 
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where: 

 
1

( ) , if ( , ) global-best-four
( , )

0, otherwise

ghL r s
r s

−� ∈
˝̍ = �


 

and ˺  is the pheromone decay parameter (0 1)< ˺ < .  

ghL  is the length of the globally best tour from the beginning of the trial. 

3.2.3 ACS local updating rule 

While building a solution of the UC, ants visit edges and change their 

pheromone level by applying the local updating rule of (10). 

 ( , ) (1 ) ( , ) ( , )r s p r s p r s̍ չ − ̍ + ˝̍ , (10) 

where: 

− p  is a heuristically defined coefficient (0 1)p< < ; 

− 0( , )r s˝̍ = ̍ ; and 

− 0̍  is the initial pheromone level. 

3.2.4 ACS parameter setting 

In this program of the following sections the numeric parameters, except 

when indicated differently, are set to the following values: 2˻ = , 0 0.9q = , 

0.1p˺ = =  and 1

0 ( )nnnL −̍ = , where nnL is the tour length produced by the 

nearest neighbor heuristic and n  is the number of cities [1]. 

4   Algorithm for Reactive Power Dispatch 

It is a combinational optimization problems, at back step the ants make a 

probabilistic decision according to some discrete probability distribution.  Since, 

our problem is a continuous optimization problem the domain changes from 

discrete to continuous. The adaptation of moving discrete to continuous by using 

probability density function. 

The function in the normal form is given by 

 

2( )

2 2
1

( , , )
2

X

g X e
−̅

−
̌̅ ̌ =

̌ ̉
 (11) 

and the pheromone distribution is based on a mixture of normal kernels. It is 

defined as a weighted sum of several normal PDFs, and denoted as G: 

 
1

( ) ( , , , ) ( , , )
k

j j j

j

P X G X g X
=

= ̒ ̅ ̌ ̒ ̅ ̌=∑ , (12) 
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where: 

− ̒  is the vector of weights associated with the components of the mixture; 

− ̅  is the vector of means; and 

− ̌  is the vector of standard deviations. 

The dimensions of all those vectors are equal to the number of normal PDFs 

constituting the mixture. For convenience we will use parameter k  to describe 

this number dimension of ̒= dimension of  ̅ =dimension of ǩ = . 

Such a distribution allows for reasonably easy generation of random 

numbers according to it, and yet it provides a much increased flexibility in the 

possible shape.  

4.1 Initialization of ants 

In the first step, the colonies of ants are first generated. Ants are positioned 

on initial state while the initial pheromone value is also given at this step. Fig. 2 

plots a multi-stage search space. All the possible permutations constitute this 

search space. Each stage contains several states, while the order of state selected 

at each stage can be combined as an achievable tour that is deemed a feasible 

solution to the problem. 

 

 
State 1 

State 1 State 2 State 3 State 4 

State 1 State 2 State 3 State 4 

State 1 State 2 State 3 

tc 

tc 

tc tc 

tc 

tc 

Stage 1 

 

 

State 2 

 

 

Stage 3 

 

 

Stage 4 

 

Fig. 2 – The Multi-state Scarch Space. 
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4.2 Fitness evaluation  

In the step the fitness of all ants is accessed based on the corresponding 

objective function. 

 lim, lim,
 , ,

1 1

     V ,  1,2, ,
NG NL

n n n

n L G j L j n

j j

f P Q n N+

= =

= ˺ + ˻ =∑ ∑ … , (13) 

where: 

− ,˺ ˻  is penalty factors for the constraint violations; 

− LP  is total real power loss; 

 
,min , , ,minlim,

 ,

, , max , ,max

       if   
 

      if   

n n

G G j G j Gn

G j n n

G j G G j G

Q Q Q Q
Q

Q Q Q Q

� − <�
= �

− >�
 (14) 

and 

 lim, , ,max , ,max

,

| V | V , if  | V | V
V

0, otherwise

n n

n L j L L j L

L j

� − >
= �


. (15) 

The values of penalty factors ˺  and ˻  are chosen such that if there are any 

constraints violations the fitness function value corresponding to that ant will be 

ineffective. The best solution is computed for given ants size for the first itera-

tion ( I bestS ). The global best solution G bestS  (best of I bestS  and previous G bestS ) 

is initially as taken as first iterations best solution. 

The penalty factors are chosen such that if there are any constraints 

violations the fitness function value corresponding to that ant will be ineffective. 

4.3 Pheromone update 

Pheromone update is a process of modifying the probability distribution 

used by the ants during the construction process, so that the ant moves towards 

the global best solution.  At each iteration, the iteration best solution is used for 

pheromone update for each dimension the update is given by incorporating 

probability density function and kernel probability density function. This process 

traditionally consists of two actions: 

(i) Positive update: reinforcing the probability of the choices that lead to 

good solutions and 

 1

( ) ( ) ( )

   

Sn
i i i i i i

j

i i

s

P X P X P X

k k n

=

�
= +�

�
� = +

∑
 (16) 
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where: 

− ( )i iP X=  for positive update, 

− 
iK  is kernel probability distributive function. 

(ii) Negative update: decreasing probability of other choices i.e. forgetting 

bad solutions. 

 1

( ) ( ) ( )

   

sn
i i i i i i

j

i i

s

P X P X P X

k k n

=

�
= +�

�
� = +

∑
 (17)           

where: 

− ( )i iP X=  for negative update; and 

− 
iK  is kernel probability distributive function. 

4.4 Stop criteria  

The computation process continues until the number of iterations reaches 

the predefined maximum threshold, or the iteration counter without improving 

the best objective function reaches the maximum allowable value. All the tour 

visited by ants in each iteration should be evaluated. If a better path found in the 

process, it will be saved for later reference. The best path selected among all 

iterations implies the optimal scheduling solution to the problem. 

 

Ant Production Initiation 

Start 

Fitness Evaluation 

Ant  Dispatch 

Local Pheromone Update 

End 

Stop 

 

Global Pheromone Update 

Yes 

No 

 

Fig. 3 – The flowchart of the ACSA unit commitment program. 
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5 Numerical Results 

The proposed method is tested on standard IEEE 30, 57, 191 (practical) test 

bus systems and the results shows that ACSA algorithm gives a best solution 

when compared to adaptive genetic algorithm. Table 1, Table 2 and Table 3 

shows the comparative results and Figs. 4, 5 and 6 shows comparison between 

the losses and iterations. 

 

For IEEE 30 Bus 

NG = 6, NL = 41, NB = 30, NTR = 4 

Table 1 

Comparison of algorithms for 30 bus system. 

 GA AGA ACSA 

No. of iteration 75 65 25 

Population size 5 5 5 

Time taken 

(sec.) 
20.2 15.7 4.5 

Loss 9.6770 9.5680 9.478 

 

For IEEE 57 Bus 

NG = 7, NB = 57, NTR = 17 NQ = 5 

Table 2 

Comparison of algorithms for 57 bus system. 

 GA AGA ACSA 

No. of iteration 125 100 76 

Population size 10 10 10 

Time taken 

(sec.) 
22.7 18.9 4.62 

Loss 26.7890 25.0012 24.7752 

             

For Practical 191 Bus 

NG = 20,  NL = 200,  NB = 199 NTR = 55 

                         
Table 3 

Comparison of algorithms for 191 bus system. 

 GA AGA ACSA 

No. of iteration 149 125 102 

Population size 20 20 20 

Time taken 

(sec.) 
59.7 45.7 6.920 

Loss 149.772 149.001 148.241 
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Fig. 4 - Convergence rate of algorithms for 30 bus system. 
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Fig. 5 - Convergence rate of algorithms for 57 bus system. 
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Fig. 6 - Convergence rate of algorithms for 191 bus system. 

Vmin 0.95 , Vmax 1.05, Tmin 0.9 , Tmax 1.1, susmax 0.15, susmin 0.0. 
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6 Nomenclature 

NB - total number of buses  

NL - total number of load buses 

NG - total number of generator buses 

NTR - total number of transformers 

       VG - generator voltage    

Qs - vector of switchable VAR sources  

T - vector of tap settings of on-load tap changing (OLTC) of transformers 

Qg - vector of reactive power generations of the generator buses  

VL  - vector of load bus voltages 

NQ - number of capacitances. 

7 Conclusion 

In this paper ACSA algorithm has been developed for determination of 

global optimum solution for reactive power optimization problem. The 

performance of the proposed algorithm demonstrated through its evaluation on 

IEEE 30, 57, 191 (practical 191) bus power system shows that ACSA is able to 

undertake global search with a fast converges rate and a future of robust 

computation.  From the simulation study it has been found that ACSA converges 

to the global optimum. 
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