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This paper studies the linear stability and dynamic structure for a generalized 
non-linear heat equation, and obtains novel analytic solutions such as homoclinc 
orbit and breather solitary solutions for the first time based on Hirota method.  
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Introduction  

The linear heat equation can be expressed in the form:  

 t xxu u  (1) 

or equivalently:  

 tt xxxxu u   (2) 

Introducing a non-linear term to eq. (2) results in:  

 ( , ) 0tt xxxx t xu u f u u   (3) 

where the non-linear term is a function of ut and ux. For simplicity, we write:  

 ( , )t x t xf u u u u   (4) 

or  

 ( , )t x x xxf u u u u   (5) 

We, therefore, obtain the following non-linear heat equation:  

 0tt x xx xxxxu u u u   (6) 

This equation has some special solution properties, which can explain some thermal 

phenomena.  
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Linear stability analysis 

Consider a periodic boundary condition: 

 
2π

( , ) , , 0u x t u x t t
p

  (7) 

where p is a constant. 

The periodic condition arises in many thermal problems, for example, heat conduc-

tion in an oscillation aerofoil and nuclear reaction.  

Assume that u0 is the solution of eq. (6), and we consider a small perturbation of 

the solution in the form:  

 0( , ) [1 ( , )]u x t u x t   (8) 

Substituting (8) into (6) and keeping only the linear term, we obtain:  

 0tt xxxx   (9) 

Introducing a new variable ν defined as ν = εt, we have: 

 
4

0 1

0
t

v k v
  (10) 

where εxx = –k
2
ε, then the eigenvalues for this matrix are: 

 
2k   (11) 

Exact homoclinic orbits and solitary solutions 

Equation (6) can be solved by various methods [1-5], such as the homotopy pertur-

bation method [3], the exp-function method [4, 5]. According to the Hirota method [1, 2], we 

introduce a transformation in the form:  

 12(ln )xu   (12) 

Equation (6) can be transformed into the following bi-linear equation: 

 
2 4( ) 0t xD D c   (13) 

where c is the integration constant and the Hirota bi-linear operator D is defined by: 

 
' ' ' ',

m n
m s

x t
x x t t

D D
x tx t

  (14) 

In order to explain the periodic thermal shock, we search for a solution in the form:  

 
2 2

1 21 cos( )e et tb px b   (15) 

where b1, b2, p, and ω are real parameters to be determined and δ and γ are arbitrary constants. 

Substitution of (15) into (13) leads to the following relations: 
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 2 2 2
2 1 ,b b p   (16) 

We, therefore, obtain the following solitary solution: 

 1

2 2 2
1 1

12 sin ( )e

1 cos ( )e e

t

t t

b px
u

b px b
  (17) 

where b1, and ω are arbitrary constants. 

It is obvious that u tends to zero when t  or t , and it is a homoclinic 

orbit of eq. (6), its dynamic structure is shown in fig. 1.  

The non-linear heat equation behaves 

sometimes also soliton in the form:  

2 2

1 1 11 cos( )e
p x c t

b p x c t  

 2 22 2
2e

p x c t
b   (18) 

where b1, b2, p1, p2, c1, and c2 are real pa-

rameters to be determined. Substitution 

(18) into (6) leads to the following rela-

tions:  

 

2 2
1 1 2 2 1 2

2 2
1 1

2 2 2
1 2

2 , ,

3

c p p c p p

b p
b

p p

 (19) 

or 

 
2 2

2 2 1 1
1 1 2 2 2 1 2 2 2

1 2

2 , ,
3

b p
c p p c p p b

p p
  (20) 

We can get a new class of solitary solutions in the form: 

 
2 2 2 2

2 2 2 2

2 2
1 2 1 1 1 1 1 2 2

2 2
1 1 1 2

12 e [ cos ( ) sin ( )] 24 e

1 cos ( )e e

p x c t p x c t

p x c t p x c t

b p p x c t p p x c t b p
u

b p x c t b
  (21) 

where p1, p2, and b1 are arbitrary constants. Its dynamic structure is illustrated in fig. 2.  

The criterion for a non-singular solution is 2 2
1 23 .p p  

Conclusions  

The non-linear heat equation reveals some special thermal properties, the thermal 

shock can be either periodic solitary wave (fig. 1) or various solitary waves (fig. 2).  

 
Figure 1. Homoclinic orbit of the generalized  
non-linear heat equation 
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Figure 2. Solitary solution of the generalized non-linear heat equation; (a) kink solution with b1 = 4,  
p1 = 1, p2 = 0.57, (b) kink-breath solution b1 = 4, p1 = 1, p2 = 0.3, (c) breath solution with b1 = 4, p1 = 1,  
p2 = 0.01, (d) singular solution with b1 = 4, p1 = 1, p2 = 0.6 
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