provided by Directory of Open Access Journals

150 Revista Informatica Economica nr. 1(45)/2008
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The pricing of options is a very important problem encountered in financial domain.
The famous Black-Scholes model provides explicit closed form solution for the values of cer-
tain (European style) call and put options. But for many other options, either there are no
closed form solution, or if such closed form solutions exist, the formulas exhibiting them are
complicated and difficult to evaluate accurately by conventional methods. The aim of this
paper is to study the possibility of obtaining the numerical solution for the Black-Scholes eq-
uation in parallel, by means of several processors, using the finite difference method. A com-

parison between the complexity of the parallel algorithm and the serial one is given.
Keywords: algorithm, model, Black-Scholes, price, evaluation.

Introduction

It is well-known that the Black-Scholes
equation is used in computing the value of an
option. In sume cases, e.g. a European op-
tions, it gives exact solutions, but for other,
more complex, numerical attempts are made
in order to obtain an approximation of the so-
lution. Several numerical methods are used
for solving the Black-Scholes equation.
A European call option is a contract such that
the owner may (without obligation) buy
some prescribed asset (called the underlying)
S at a prescribed time (expiry date) T at a
prescribed price (exercice or strike price) K,
the risk-free interest rate » (is an idealized in-
terest rate). A European put option is the
same as call option, except that “buy” is re-
placed by “sell”.

2. Black-Scholes Model for evaluating an
option price

Black-Scholes model for a European call op-
tion can be described ([7]) or [5] by the fol-
lowing (diffusion-type) partial differential
equation (PDE) for this value:

2
R S ey

—— —f =0 (1
ot 2 0S*? oS " M
with final condition
£(8,7) = max(S - K,0) (2)

and boundary conditions
7(0,£)=0,7(S,t)~S asS—>w (3)
The European put option satisfies the same
equation as (2), but with final condition
£(8,7)= max(K - 5,0) 4)
and boundary conditions

£(0,6)=Ke™"™), £(S,t)~ 0 as S — o (5)
In both cases, there are explicit closed form solution. For the call option, the solution is
£(8,6)=C(S,t)= SN(d,)- Ke"")N(d,) (6)

with

d, =

2
lnS+(r+GJ(T—t)
K 2

oNT —t

, dy=d,—oNT—-t (7)

and N(z) is the cumulative distribution function of the standard normal distribution. For the

put option,

£(S,6)=P(S,t)= Ke" "IN —(d,)-SN(-d,) (8)

with the same d;, d», and N(z). For most other
style option, however, there are no known

closed form solution. Thus, approximate me-

thod and numerical methods, such as lattice
methods ([3], [4]) and finite difference me-
thods ([6]) are used estimate their values.
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3. Models by using finite difference me-
thods

The finite difference method consists of dis-
cretizing the partial differential pricing equa-
tion and the boundary conditions using a
forward or a backward difference approxima-
tion.

We discretize the equation with respect to
time and to the underlying asset price. Divide
the (S, 7) plane into a sufficiently dense grid
or mesh, and approximate the infinitesimal
steps AS and Af by some small fixed finite
steps. Further, define an array of N + 1 equal-
ly spaced grid points ¢,,¢,,...,¢, to discretize

the time derivative with A¢,,, —¢, = At and

At=T/N.
We know that the stock price cannot go be-
low 0 and we have assumed that S =2S,.

We have M + 1 equally spaced grid points
Sy,S,,...,5,, to discretize the stock price de-
rivative with S.a—9S, =AS
AS=S_./M.

This gives us a rectangular region on the (S,
f) plane with sides (0,5, ) and (0,7). The

grid coordinates (n, m) enables us to compute
the solution at discrete points.

The time and stock price points define a grid
consisting of a total of (M +1)x(N+1)

points. The (n,m) point on the grid is the

and

point that corresponds to time nA¢ for

n=0,N, and stock price mAS for

m=0,M . We will denote the value of de-

rivative at time step ¢, when the underlying
asset has value S, as

fn,m = f(nAt’mAS): f(tn’Sm): f(t,S)(9)
where n and m are the number of discrete in-
crements in the time to maturity and stock
price respectively. The discrete increments in
the time to maturity and the stock price are
given by At and AS, respectively.

Let f, = f,0> S>> S Tor n=0,N. Then,
the quantities f,, and f, k for m=0,M

are referred to as the boundary values which
may or may not be known ahead of time but
in our PDE they are known. The quantities

S for n= L(N-1)and m=0,M are re-
ferred to as interior points or values.

3.1 The Implicit finite difference method.

We express f,,,, implicitly in-terms of the
unknowns f, ., f,, and f, . . We discret-

ize the Black Scholes PDE in (1) using the
forward difference for time and central dif-
ference for stock price to have:

fn+1,m _fn,m fn,m—i—l _fn,m—l
+rmAS
At 2AS
-2 + _
+lo_2m2AS2{fn,m+l fn,2m fn,m l}zrfnﬂ’m
2 AS (10)
Rearranging, we get
1

fn+1,m :1_—w[a1mfn,m—1 +a2mfn,m +a3mfn,m+l] (11)

forn=0,N—-1 and m =1,M —1. The implicit method is accurate to O(At,AS . ), the parame-

1 j— 3 .
ters «,,'s for k=1,2,3 are given as:

1 1
a,, =—rmAt——c’m’At, a,, =1+o0°m’At, a,, =
2 2

(12)

—lrmAt —lazmzAt
2 2

The system of equations can be expressed as a tridiagonal system([1])
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S0 _azo a, 0 0 ] Suo
fn+1,l a, @ Oy 0 fn,l
= (13)
St 0 0 Ay Uy Uy || Soss
L fn+1,M i L 0 0 0 alM azM dL fn,M B
which can be written of f,  at ¢, . We set the right hand side of
as: Af, . = [, form=0,M (14) the system to our initial condition and solve
Let f,=f, and f, =f.., then we the system to produce a solution to the equa-
n n,m n+ n+l,m?>

need to solve for f, given matrix 4 and col-

umn vector f,,, and this implies that

fn :A_lf;ﬁl (15)
We can de-
duce:
fn—l = A_lf;l :(A_l)zfn+13"*9f0 =(14_1)”-*—1](‘;%1
The matrix A has

a,, =1+o’m’At>0,m=0,M,

M

H%m #0, and therefore the matrix is
m=0

nonsingular. We can solve the system by
finding the inverse matrix 4~ .

When we apply the boundary conditions to-
gether with (11), this gives rise to some
changes in the elements of matrix 4 with

{

Our initial condition give values for N
time step, and we solve for f, at ¢, in terms

Qpys Ay =1 (16)
Q3> =0

ﬂ“n =y, t+ 2[alma3m ]1 /2 ¢

nrw
0S——
N

tion for time step N-1. By repeatedly iterating
in such a manner, we can obtain the value of
fat any time step 0,1,...,N —1.

A”

ﬁi,m+

ﬁz,m f;1+1,)

ﬁq,m-]

t

»

Fig.1. Trinomial tree of implicit finite differ-
ence discretization

3.2. The stability of implicit method. The
eigenvalues A, are given by

for nzl,iN—li (17)

Substituting the values ¢, ,,, ,a;, with values from (14), we have

p 2

(7471’1

A, :1+02m2At+02m2A{1— 3
Furthermore, applying the binomial expan-
sion on the square root part and re-arranging

we have

Ay =1+ 202m? At — 202 m> Atsin? 2=
2N
|4, = max]1+20%m>Ar -

1/2
} [1—2sin2 %} for n=L(N—-1) (18)

where there is change of sign due to the trun-
cation of the binomial expansion. Therefore
the equation are stable when

<1

202m2AtsinZﬂ
2N
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that is,

—1<1+202m? At — 262 m? At sin? % <1 for n=1(N—-1)(19)

2 (N—l)ﬂ'

As At —>0,N »>oand sin -1,

(19) reduces to |1| <1.

Alternatively, 1+ o?m?At =0 si ||A||OO =1

Therefore by Lax’s equivalence theorem([2],
[6]), the scheme is unconditionaly stable,
convergent and consistent.

3.3. The results concerning convergence
speed of implicit method. For a European
put option when: S =20, K=22,r=0.1, T =
0.5 si o= 0.25, the results content in table
Table 1 shows that when N and M are dif-
ferent, the finite difference methods con-
verges faster than N and M are the same.

Table 1. The comparison of the convergence of implicit method for increase N and M

Implicit Implicit | Function[P]=impl_method(S,K,r,sigma,T,N,M); 1
N=M Method N M  Method | dt=T/N;ds=2*S/M; A=sparse(M+1,M+1); 2
_ AN - S r
10 20574 |10 20 2.1326 :c_)rﬁa)nigi_l\(/lc—)lM) ds,0);// final conditions i
20 2,1546 | 20 40 2,2091 x=1/(1-r*dt); 5
30 22204 |30 60 22234 A(m+1,m)=x*(r*m*dt-sigma*sigma*m*m*dt)/2; 6
40 22177 40 80 22287 | a(m+l.mr1)=x*(Ll+sigma*sigma*m*m=dt); 7
50 22286 | 50 100 22328 | A(m+l,m+2)=x*(-r*m*dt-sigma*sigma*m*m*dt)/2; 8
60 22317 | 60 120 22352 | end 9
70 22342 |70 140 22366 | A(1,1)=1;A(M+1,M+1)=1; 10
80 22352 |80 160 22377 | for i=N:-1:1 11
90 2,2379 |90 180 2,2387 | T=A\F"; f=max(f,(K-(0:M)*ds)"); 12
100 22374 | 100 200 22393 |end 13
P=F(round((M+1)/2)); 14
The 11-13" lines of program from Table 1 4. Parallel algorithm for calculating the

are large consumption of computation time.
In practice, there are far more efficient solu-
tion techniques than matrix inversion, due to
the propriety of 4 being tridiagonal. Then,
methods like LU decomposition or SOR are
applied directly to (10), and the execution
time is O(N) per solution. In order to com-
pute A™', one needs (N?) operation and others
O(M) to find (4", using one processor, so
in a serial manner. But with several proces-
sors under a convenient network, we show in
what follows that we can obtain a time of ex-
ecution O(N), to compute the inverse 4™

a,;; dp
a a
0 21 2
A=
Ay Ay

Note. For the sake of the clearness, we de-
note by a

by

matrix 4, it means «,,,,,,a;, and 0. Fur-

numerical solution

4. 1 The Gauss Jordan method for solving
a inverse of matrix. If N = M then 4 is a
NxN-square matrix again f, and f,; are N-
dimensional vectors. We use the method of
elementary transformation to compute the in-
verse matrix, 4" ( [6]). In few words, we
start from the matrix 4', which is obtained
from 4 and a unit matrix, written on the right
side of A4, as follows:

a, 1 0 0
a,y 0 1 0
ay, 0 0 - 1

ther, making elementary transformation only

7 j=1,_N all the elements of ©on the lines of A", after several steps, we

bring it to the form 4", where
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1 0 0 ay, ay. Ao
gV 0 1 0 Ay Nyt Qo N2 aron
0 0 1 ayyn ayyo Ayoy
-1
The art( ..) — —— represents A .
p ah]i:LNJ:N#LZN p
The computation is made in the following manner:
Step 1.
| 1 1 1 1
1 a, Ay Gna  Gye Aan
1 1 1 1 |
4= 0 ay oy Aoy Dyne aroN
1 1 1 1 1
0 ay, Ayy Ay va AN+ Ayon
I _ —
where a,=a,/a,, j=12N
1 _ 1 .
a;,=a;—a,,a,,i=2,N, j=1L2N (20)
Step 2.
2 2 2 2 2
0 aj Ay G na e Ay
2 2 2 2 2
42 = 0 2% Ay Qyna oy asHn
2 2 2 2 2
0 0 ay, Aw Ay nea Ay v Ay on
2 1 1
where a,, =a,;/ay, j=12N
2 1 2 1 . . .
a;, =a;—a,a,, i=L,N,i#2,j=L2N (21)
and so on, till the matrix has the final form
N N %
10 0 ay, Ay N2 aon
N N N
0 1 0 a)na donn 0N
% % N
0 0 1 aN,N+1 aN,N+2 aN,ZN

and A" is read from the second part of this
matrix.

4.2. Analysis of sequential algorithm.
From (15) and previous section need first de-
crease the computing time of matrix 4. The

:Zn;[(N—1)+(N—1)(N+1—s)]

function x=

gaussjordan(S,K,r,sigma,T,N,M)

dt=T/N; ds=2*S/M; A=sparse(M+1,M+1);

%boundary conditions

A(l,D)=1;A(M+1,M+1)=1;

A(1,2)=0;A(M+1,M)=0;

% tridiagonal matrix form

for m=1:M-1
A(m+1,m)=0_5*r*m*dt-0.5*

number of operations, ng;, through Gauss
Jordan method is computing remarking a
each step s, we calculating N-1 multiplica-
tors. Then([6])

3 3
=N—+1\72—37Nz]\]T N’ (22)
for 1=2:M+1

for j=1:2*(M+1)
D(#,3)=C(i,j)- D(1,J)*C(i,1);
end
end
C=D;
for pas=2:M+1
for j=1:2*(M+1)
D(pas,j)=C(pas,j)/C(pas,pas);
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sigma*sigma*m*m*dt;
A(m+1,m+1)=(1+sigma*sigma*m*m*dt) ;
A(m+1,m+2)=-0._5*r*m*dt-
0.5*sigma*sigma*m*m*dt;
end
B=[A eye(size(A))]; % matrix [A 1]

end

for i=1:M+1
for j=1:2*(M+1)
if i~=pas

D(1,J)=C(i,J)-D(pas,j)*C(i,pas);
end

C=B;% Gauss Jordan Algorithm end
for j=1:2*(M+1) end
D(1.3)=C(1.5)/C(1.1); C=D;
end end
Here an example of execution for M = N =4:
The initial matrix |
1.0000 0 0 0 0 1.0000 0 0 0 0
0.0009 1.0025 -0.0034 0 0 1.0000 0 0 0
0 -0.006 1.0100 -0.0094 0 0 0 1.0000 0 0
0 0 -0.0047 1.0225 -0.0178 0 0 0 1.0000 0
0 0 0 O 1.0000 0 0 0 0 1.0000
The Gauss Jordan final matrix is identical with Matlab call: inv(A) |
1.0000 0 0 0 0 1.0000 0 0 0 0
0 1.0000 0 0 0 -0.0009 0.9975 0.0034 0.0000 0.0000
0 0 1.0000 0 -0.0000 0.0006 0.9901 0.0091 0.0002
0 0 0 1.0000 0 -0.0000 0.0000 0.0045 0.9780 0.0174
0 0 0 0 1.0000 0 0 0 0 0

It is clear that, using only one processor to
make all computations, the time of execution

is O(N : ), because we have N steps and every

step needs O(N 2) operations to be com-
puted. In order to reduce the execution time,
we can use the parallel calculus.
Having in mind the previous method, we
come back to the solving of system (1), using
more than one processor. This can be with
N x2N processors connected under a lattice
Step 0. (Initialization)

network. In every node of the network there
is a processor. According with [1], under this
connectivity, every processor £, is con-

nected and may transfer information with its
four neighbourhood P, P P P

i-1,j° i+l,j > i,j-1> ©i,j+1°

i, j =1, N —1. The computation of the inverse

matrix 4~ can be made in the following
manner:

P, < A°,i=1,N, j=12N (each processor save 4’ matrix)

Step 1. In parallel do:
I <—a11j :alj/a“,

j=12N

P, (—a;/. =a, —allja“, i=2,N,j
Step 2
In parallel do:

1,2N

2 1 1
P, «<ay;, =a,; /ay,

2 2 1 .
Py« ay=a;—aya,, i=l,

and so on, till step N, when the matrix in fi-
nal form is obtained and the inverse matrix

A™" can be read. The effort of computation is
of order O(N), because we still have N

steps, but in parallel, every step takes the

=

j=12N

,j=12N,i#2

time for doing a division, a multiplication
and a substraction.
Note. Due to the fact that at step 7, the line of

processor F,,j=12N executes a division

and all the other processors executes a sub-
traction and a multiplication, the problem of
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their synchronization has be taken into ac-
count.

4.3. Solving the final system in parallel. In
the previous paragraph we show how the in-
verse matrix 4~ can be computed in paral-
lel, with an execution time of order O(N). In

order to solve the system (11), which gives

o

the final numerical solution for the Black-
Scholes equation, we have to compute the

power m of matrix 4~'. According with [2]
and [4], this can be done in a logarithmic
time, O(log2 N ) using a binary-tree connec-
tivity among processors, like in Figure 2.

level 0

level (N —3)
level (N - 2)

level (N -1)

Fig.2. The binary-tree network

Note. In every node of this network there is a
processor. The idea of computation is the fol-
lowing:

Step 1. (Initialization)

Every processor leaf (at level (N-1)) memo-
rizes the matrix 4™ .

Step 2. Every processor at level (NV-2) com-

putes (A_l )2 =447,
Step 3. Every processor at level (N-3) com-
putes (A‘l )4 = (A_l )2 -(A_l )2 and so on.

After log, N steps, the final results (A"1 )N
will be computed by the processor root.

5. Conclusion

We presented an algorithm which generates
the numerical solution of the Black-Scholes
equation for European option in an execution
time of order O(N log, N ), using parallel

calculus. The binary-tree network can be in-
cluded in the lattice network, in order to use
the same processors.
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