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The pricing of options is a very important problem encountered in financial domain. 

The famous Black-Scholes model provides explicit closed form solution for the values of cer-
tain (European style) call and put options. But for many other options, either there are no 
closed form solution, or if such closed form solutions exist, the formulas exhibiting them are 
complicated and difficult to evaluate accurately by conventional methods.  The aim of this 
paper is to study the possibility of obtaining the numerical solution for the Black-Scholes eq-
uation in parallel, by means of several processors, using the finite difference method. A com-
parison between the complexity of the parallel algorithm and the serial one is given. 
Keywords: algorithm, model, Black-Scholes, price, evaluation. 
 

Introduction 
It is well-known that the Black-Scholes 

equation is used in computing the value of an 
option. In sume cases, e.g. a European op-
tions, it gives exact solutions, but for other, 
more complex, numerical attempts are made 
in order to obtain an approximation of the so-
lution. Several numerical methods are used 
for solving the Black-Scholes equation.  
A European call option is a contract such that 
the owner may (without obligation) buy 
some prescribed asset (called the underlying) 
S at a prescribed time (expiry date) T at a 
prescribed price (exercice or strike price) K, 
the risk-free interest rate r (is an idealized in-
terest rate). A European put option is the 
same as call option, except that “buy” is re-
placed by “sell”. 

2. Black-Scholes Model for evaluating an 
option price  
Black-Scholes model for a European call op-
tion can be described ([7]) or [5] by the fol-
lowing (diffusion-type) partial differential 
equation (PDE) for this value: 
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with final condition 
( ) ( )0,, KSmaxTSf −=   (2) 

and boundary conditions 
( ) ( ) ∞→= SasStSftf ~,,0,0  (3) 

The European put option satisfies the same 
equation as (2), but with final condition 

( ) ( )0,, SKmaxTSf −=   (4) 
and boundary conditions 

( ) ( ) ( ) ∞→= −− SastSfKetf tTr 0~,,,0    (5) 
In both cases, there are explicit closed form solution. For the call option, the solution is 
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and ( )zN  is the cumulative distribution function of the standard normal distribution. For the 
put option, 

( ) ( ) ( ) ( ) ( )12,, dSNdNKetSPtSf tTr −−−== −−   (8) 
with the same d1, d2, and N(z). For most other 
style option, however, there are no known 
closed form solution. Thus, approximate me-

thod and numerical methods, such as lattice 
methods ([3], [4]) and finite difference me-
thods ([6]) are used estimate their values. 
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3. Models by using finite difference me-
thods 
The finite difference method consists of dis-
cretizing the partial differential pricing equa-
tion and the boundary conditions using a 
forward or a backward difference approxima-
tion.  
We discretize the equation with respect to 
time and to the underlying asset price. Divide 
the (S, t) plane into a sufficiently dense grid 
or mesh, and approximate the infinitesimal 
steps ΔS  and Δt by some small fixed finite 
steps. Further, define an array of N + 1 equal-
ly spaced grid points Nttt ,,, 10 K  to discretize 
the time derivative with Δ ttt nn Δ=−+1  and 

NTt /=Δ .  
We know that the stock price cannot go be-
low 0 and we have assumed that 0max 2SS = . 
We have M + 1 equally spaced grid points 

MSSS ,,, 10 K  to discretize the stock price de-
rivative with SSS mm Δ=−+1  and 

MSS /max=Δ . 
This gives us a rectangular region on the (S, 
t) plane with sides ( )max,0 S  and ( )T,0 . The 
grid coordinates (n, m) enables us to compute 
the solution at discrete points. 
The time and stock price points define a grid 
consisting of a total of ( ) ( )11 +×+ NM  
points. The ( )mn,  point on the grid is the 
point that corresponds to time tnΔ  for 

Nn ,0= , and stock price SmΔ  for 
Mm ,0= . We will denote the value of de-

rivative at time step tn when the underlying 
asset  has value  Sm as 

( ) ( ) ( )StfStfSmtnff mnmn ,,,, ==ΔΔ= (9) 
where n and m are the number of discrete in-
crements in  the time to maturity and stock 
price respectively. The discrete increments in 
the time to maturity and the stock price are 
given by tΔ  and SΔ , respectively. 
Let Nnffff Mnnnn ,0for,,, ,10, == K . Then, 

the quantities mf ,0  and mNf ,  for Mm ,0=  
are referred to as the boundary values which 
may or may not be known ahead of time but 
in our PDE they are known. The quantities 

mnf ,  for ( ) MmNn ,0and1,1 =−=  are re-
ferred to as interior points or values. 
 
3.1 The Implicit finite difference method. 
We express mnf ,1+ implicitly in-terms of the 
unknowns 1,,1, and, +− mnmnmn fff . We discret-
ize the Black Scholes PDE in (1) using the 
forward difference for time and central dif-
ference for stock price to have: 
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Rearranging, we get 

                      [ ]1,3,21,1,1 1
1
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for 1,0 −= Nn  and  1,1 −= Mm . The implicit method is accurate to ( )2, StO ΔΔ , the parame-
ters skm 'α  for k = 1,2,3 are given as: 

  tmtrmtmtmtrm mmm Δ−Δ−=Δ+=Δ−Δ= 22
3
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The system of equations can be expressed as a tridiagonal system([1]) 
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which can be written 
as: MmfAf mnmn ,0for,1, == +  (14) 
Let mnn ff ,=  and mnn ff ,11 ++ = , then  we 
need to solve for nf  given matrix A and col-
umn vector 1+nf  and this implies that  

1
1

+
−= nn fAf   (15) 

We can de-
duce:

( ) ( ) 1
11

01
211

1 ,, +

+−
+

−−
− === n

n
nnn fAffAfAf K

.  
The matrix A has 

Mmtmm ,0,01 22
2 =>Δ+= σα , 

∏
=

≠
M

m
m

0
2 0α , and  therefore the matrix is 

nonsingular. We can solve the system by 
finding the inverse matrix 1−A . 
When we apply the boundary conditions to-
gether with (11), this gives rise to some 
changes in the elements of matrix A with  
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 (16) 

Our initial condition give values for thN  
time step, and we solve for nf  at nt  in terms 

of 1+nf  at 1+nt . We set the right hand side of 
the system to our initial condition and solve 
the system to produce a solution to the equa-
tion for time step N-1. By repeatedly iterating 
in such a manner, we can obtain the value of 
f at any time step 1,,1,0 −NK . 

 
Fig.1. Trinomial tree of implicit finite differ-

ence discretization 
 
3.2. The stability of implicit method. The 
eigenvalues nλ  are given by 
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N
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Substituting the values mmm 321 ,, ααα  with values from (14), we have 
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Furthermore, applying the binomial expan-
sion on the square root part and re-arranging 
we have 

N
ntmtmn 2

sin221 22222 πσσλ Δ−Δ+≈  

where there is change of sign due to the trun-
cation of the binomial expansion. Therefore 
the equation are stable when 
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that is,  

1
2

sin2211 22222 ≤Δ−Δ+≤−
N

ntmtm πσσ    for ( )1,1 −= Nn (19) 

As ∞→→Δ Nt ,0 and ( ) 1
2

1sin 2 →
−
N

N π , 

(19) reduces to  11 ≤ . 

Alternatively, 01 22 ≥Δ+ tmσ  şi 1=∞A  
Therefore by Lax’s equivalence theorem([2], 
[6]), the scheme is unconditionaly stable, 
convergent and consistent.  

3.3. The results concerning convergence 
speed of implicit method. For a European 
put option when: S = 20, K= 22, r = 0.1, T = 
0.5 şi σ = 0.25, the results  content in table 
Table  1 shows that when N and M are dif-
ferent, the finite difference methods con-
verges faster than N and M are the same. 

 
Table 1. The comparison of the convergence of implicit method for increase N and M 
 
N=M 

Implicit 
Method 

 
N 

 
M 

Implicit 
Method 

function[P]=impl_method(S,K,r,sigma,T,N,M);
dt=T/N;ds=2*S/M;A=sparse(M+1,M+1); 
f=max(K-(0:M)*ds,0);// final conditions 
for m=1:M-1 
 x=1/(1-r*dt); 
 A(m+1,m)=x*(r*m*dt-sigma*sigma*m*m*dt)/2; 
 A(m+1,m+1)=x*(1+sigma*sigma*m*m*dt); 
 A(m+1,m+2)=x*(-r*m*dt-sigma*sigma*m*m*dt)/2; 
end 
A(1,1)=1;A(M+1,M+1)=1; 
for i=N:-1:1 
 f=A\f'; f=max(f,(K-(0:M)*ds)'); 
end 
P=f(round((M+1)/2)); 

1
2
3
4
5
6
7
8
9
10
11
12
13
14

10 2,0574 10 20 2,1326 
20 2,1546 20 40 2,2091 
30 2.2204 30 60 2,2234 
40 2,2177 40 80 2,2287 
50 2,2286 50 100 2,2328 
60 2,2317 60 120 2,2352 
70 2,2342 70 140 2,2366 
80 2,2352 80 160 2,2377 
90 2,2379 90 180 2,2387 

100 2,2374 100 200 2,2393 

 
The 11-13th lines of program from Table 1 
are large consumption of computation time.  
In practice, there are far more efficient solu-
tion techniques than matrix inversion, due to 
the propriety of A being tridiagonal. Then, 
methods like LU decomposition or SOR are 
applied directly to (10), and the execution 
time is O(N) per solution. In order to com-
pute A-1, one needs (N2) operation and others 
O(M2) to find (A-1)m, using one processor, so 
in a serial manner. But with several proces-
sors under a convenient network, we show in 
what follows that we can obtain a time of ex-
ecution O(N), to compute the inverse A-1. 

4. Parallel algorithm for calculating  the 
numerical  solution 
4. 1 The Gauss Jordan method for solving 
a inverse of matrix. If  N = M then  A is a 
N×N-square matrix    again  fn and fn+1 are  N-
dimensional vectors. We  use the method of 
elementary transformation to compute the in-
verse matrix, A-1 ( [6]). In few words, we 
start from the matrix A1, which is obtained 
from A and a unit matrix, written on the right 
side of A, as follows: 
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Note. For the sake of the clearness, we de-
note by Njia ji ,1,, =  all the elements of 

matrix A, it means mmm 321 ,, ααα and 0. Fur-

ther, making elementary transformation only 
on the lines of A0, after several steps, we 
bring it to the form AN, where 
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The part ( )
NNjNijia

2,1,,1, +==
  represents  A-1.  

The computation is made in the following manner: 
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where            Njaaa jj 2,1,/ 111
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1 ==  
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and so on, till the matrix has the final form  
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and A-1 is read from the second part of this 
matrix.   
4.2. Analysis of sequential  algorithm. 
From (15) and previous section need first de-
crease the computing time of matrix A. The 

number of operations, nGJ, through Gauss 
Jordan method is computing remarking a 
each step s, we calculating   N-1 multiplica-
tors. Then([6]) 

          ( ) ( )( )[ ] 2
3

2

1

3

22
3

2
111 NNNNNsNNNn

n

s
GJ +≈−+=−+−+−=∑

=

                     (22) 

function x= 
gaussjordan(S,K,r,sigma,T,N,M) 
dt=T/N; ds=2*S/M; A=sparse(M+1,M+1); 
%boundary conditions 
A(1,1)=1;A(M+1,M+1)=1; 
A(1,2)=0;A(M+1,M)=0;  
% tridiagonal matrix form 
for m=1:M-1 
  A(m+1,m)=0.5*r*m*dt-0.5* 

for i=2:M+1 
   for j=1:2*(M+1) 
     D(i,j)=C(i,j)- D(1,j)*C(i,1); 
    end 
end 
C=D; 
for pas=2:M+1 
 for j=1:2*(M+1) 
    D(pas,j)=C(pas,j)/C(pas,pas); 
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           sigma*sigma*m*m*dt; 
  A(m+1,m+1)=(1+sigma*sigma*m*m*dt); 
  A(m+1,m+2)=-0.5*r*m*dt- 
            0.5*sigma*sigma*m*m*dt;  
end 
B=[A eye(size(A))]; % matrix [A I] 
C=B;% Gauss Jordan Algorithm 
for j=1:2*(M+1) 
    D(1,j)=C(1,j)/C(1,1); 
end 

 end 
 for i=1:M+1 
  for j=1:2*(M+1) 
  if i~=pas 
  D(i,j)=C(i,j)-D(pas,j)*C(i,pas); 
  end 
 end 
end 
C=D; 
end 

 
Here an example of execution for M = N = 4: 

 
It is clear that, using only one processor to 
make all computations, the time of execution 
is ( )3NO , because we have N steps and every 
step needs ( )2NO  operations to be com-
puted. In order to reduce the execution time, 
we can use the parallel calculus.       
Having in mind the previous method, we 
come back to the solving of system (1), using 
more than one processor. This can be with 

NN 2×  processors connected under a lattice 

network. In every node of the network there 
is a processor. According with [1], under this 
connectivity, every processor jiP  is con-
nected and may transfer information with its 
four neighbourhood jiP ,1− , jiP ,1+ , 1, −jiP , 1, +jiP , 

1,1, −= Nji . The computation of the inverse 
matrix 1−A  can be made in the following 
manner: 

Step 0. (Initialization) 
NjNiAPij 2,1,,1,0 ==← (each  processor save 0A  matrix) 

Step 1. In parallel do: 
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Step  2   
    In parallel  do: 
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and so on, till step N, when the matrix in fi-
nal form is obtained and the inverse matrix 

1−A  can be read. The effort of computation is 
of order ( )NO , because we still have N 
steps, but in parallel, every step takes the 

time for doing a division, a multiplication 
and a substraction. 
Note. Due to the fact that at step i, the line of 
processor NjPij 2,1, =  executes a division 
and all the other processors executes a sub-
traction and a multiplication, the problem of 

The  initial matrix 
1.0000 0 0 0 0 1.0000 0 0 0 0 
0.0009 1.0025 -0.0034  0 0 1.0000 0 0 0 

0 -0.006 1.0100 -0.0094 0 0 0 1.0000 0 0 
0 0 -0.0047 1.0225 -0.0178 0 0 0 1.0000 0 
0 0 0 0 1.0000 0 0 0 0 1.0000 

The Gauss Jordan final matrix is identical  with Matlab call:   inv(A)  
1.0000 0 0 0 0 1.0000 0 0 0 0 

0 1.0000 0 0 0 -0.0009  0.9975  0.0034  0.0000  0.0000  
0 0 1.0000  0 -0.0000  0.0006  0.9901  0.0091  0.0002 
0 0 0 1.0000 0 -0.0000 0.0000  0.0045  0.9780  0.0174 
0 0 0 0 1.0000 0 0 0 0 0 



Revista Informatica Economică nr. 1(45)/2008 
 

156

their synchronization has be taken into ac-
count. 
4.3.  Solving the final system in parallel. In 
the previous paragraph we show how the in-
verse matrix 1−A  can be computed in paral-
lel, with an execution time of order ( )NO . In 
order to solve the system (11), which gives 

the final numerical solution for the Black-
Scholes equation, we have to compute the 
power m of matrix 1−A . According with [2] 
and [4], this can be done in a logarithmic 
time, ( )NO 2log  using a binary-tree connec-
tivity among processors, like in Figure 2. 

 
Fig.2. The binary-tree network 

 
Note. In every node of this network there is a 
processor. The idea of computation is the fol-
lowing: 
Step 1. (Initialization) 
Every processor leaf (at level (N-1)) memo-
rizes the matrix A-1. 
Step 2. Every processor at level (N-2) com-
putes ( ) 1121 −−− ⋅= AAA . 
Step 3. Every processor at level (N-3) com-
putes ( ) ( ) ( )212141 −−− ⋅= AAA  and so on. 
 
After N2log  steps, the final results ( )NA 1−  
will be computed by the processor root. 
 
5.  Conclusion 
We presented an algorithm which generates 
the numerical solution of the Black-Scholes 
equation for European option in an execution 
time of order ( )NNO 2log⋅ , using parallel 
calculus. The binary-tree network can be in-
cluded in the lattice network, in order to use 
the same processors. 
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