
Revista Informatica Economică nr. 1(45)/2008

150

A Linear Algorithm for Black Scholes Economic Model

Ion SMEUREANU
Department of Economic Informatics, Bucharest Academy of Economic Studies

Dumitru FANACHE
Mathematics Department, Valahia University Târgovişte

The pricing of options is a very important problem encountered in financial domain.

The famous Black-Scholes model provides explicit closed form solution for the values of cer-
tain (European style) call and put options. But for many other options, either there are no
closed form solution, or if such closed form solutions exist, the formulas exhibiting them are
complicated and difficult to evaluate accurately by conventional methods. The aim of this
paper is to study the possibility of obtaining the numerical solution for the Black-Scholes eq-
uation in parallel, by means of several processors, using the finite difference method. A com-
parison between the complexity of the parallel algorithm and the serial one is given.
Keywords: algorithm, model, Black-Scholes, price, evaluation.

Introduction
It is well-known that the Black-Scholes

equation is used in computing the value of an
option. In sume cases, e.g. a European op-
tions, it gives exact solutions, but for other,
more complex, numerical attempts are made
in order to obtain an approximation of the so-
lution. Several numerical methods are used
for solving the Black-Scholes equation.
A European call option is a contract such that
the owner may (without obligation) buy
some prescribed asset (called the underlying)
S at a prescribed time (expiry date) T at a
prescribed price (exercice or strike price) K,
the risk-free interest rate r (is an idealized in-
terest rate). A European put option is the
same as call option, except that “buy” is re-
placed by “sell”.

2. Black-Scholes Model for evaluating an
option price
Black-Scholes model for a European call op-
tion can be described ([7]) or [5] by the fol-
lowing (diffusion-type) partial differential
equation (PDE) for this value:

0
2
1

2

2
22 =−

∂
∂

+
∂
∂

+
∂
∂ rf

S
frS

S
fS

t
f σ (1)

with final condition
() ()0,, KSmaxTSf −= (2)

and boundary conditions
() () ∞→= SasStSftf ~,,0,0 (3)

The European put option satisfies the same
equation as (2), but with final condition

() ()0,, SKmaxTSf −= (4)
and boundary conditions

() () () ∞→= −− SastSfKetf tTr 0~,,,0 (5)
In both cases, there are explicit closed form solution. For the call option, the solution is

() () () () ()21,, dNKedSNtSCtSf tTr −−−== (6)
with

()
tTdd

tT

tTr
K
S

d −−=
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

= σ
σ

σ

12

2

1 ,
2

ln
 (7)

and ()zN is the cumulative distribution function of the standard normal distribution. For the
put option,

() () () () ()12,, dSNdNKetSPtSf tTr −−−== −− (8)
with the same d1, d2, and N(z). For most other
style option, however, there are no known
closed form solution. Thus, approximate me-

thod and numerical methods, such as lattice
methods ([3], [4]) and finite difference me-
thods ([6]) are used estimate their values.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/26911383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Revista Informatica Economică nr. 1(45)/2008

151

3. Models by using finite difference me-
thods
The finite difference method consists of dis-
cretizing the partial differential pricing equa-
tion and the boundary conditions using a
forward or a backward difference approxima-
tion.
We discretize the equation with respect to
time and to the underlying asset price. Divide
the (S, t) plane into a sufficiently dense grid
or mesh, and approximate the infinitesimal
steps ΔS and Δt by some small fixed finite
steps. Further, define an array of N + 1 equal-
ly spaced grid points Nttt ,,, 10 K to discretize
the time derivative with Δ ttt nn Δ=−+1 and

NTt /=Δ .
We know that the stock price cannot go be-
low 0 and we have assumed that 0max 2SS = .
We have M + 1 equally spaced grid points

MSSS ,,, 10 K to discretize the stock price de-
rivative with SSS mm Δ=−+1 and

MSS /max=Δ .
This gives us a rectangular region on the (S,
t) plane with sides ()max,0 S and ()T,0 . The
grid coordinates (n, m) enables us to compute
the solution at discrete points.
The time and stock price points define a grid
consisting of a total of () ()11 +×+ NM
points. The ()mn, point on the grid is the
point that corresponds to time tnΔ for

Nn ,0= , and stock price SmΔ for
Mm ,0= . We will denote the value of de-

rivative at time step tn when the underlying
asset has value Sm as

() () ()StfStfSmtnff mnmn ,,,, ==ΔΔ= (9)
where n and m are the number of discrete in-
crements in the time to maturity and stock
price respectively. The discrete increments in
the time to maturity and the stock price are
given by tΔ and SΔ , respectively.
Let Nnffff Mnnnn ,0for,,, ,10, == K . Then,

the quantities mf ,0 and mNf , for Mm ,0=
are referred to as the boundary values which
may or may not be known ahead of time but
in our PDE they are known. The quantities

mnf , for () MmNn ,0and1,1 =−= are re-
ferred to as interior points or values.

3.1 The Implicit finite difference method.
We express mnf ,1+ implicitly in-terms of the
unknowns 1,,1, and, +− mnmnmn fff . We discret-
ize the Black Scholes PDE in (1) using the
forward difference for time and central dif-
ference for stock price to have:

mn
mnmnmn

mnmnmnmn

rf
S

fff
Sm

S
ff

Srm
t

ff

,12
1,,1,222

1,1,,,1

2
2
1

2

+
−+

−++

=⎥
⎦

⎤
⎢
⎣

⎡

Δ

+−
Δ+

⎥
⎦

⎤
⎢
⎣

⎡
Δ

−
Δ+

Δ

−

σ
 (10)

Rearranging, we get

 []1,3,21,1,1 1
1

+−+ ++
Δ−

= mnmmnmmnmmn fff
tr

f ααα (11)

for 1,0 −= Nn and 1,1 −= Mm . The implicit method is accurate to ()2, StO ΔΔ , the parame-
ters skm 'α for k = 1,2,3 are given as:

 tmtrmtmtmtrm mmm Δ−Δ−=Δ+=Δ−Δ= 22
3

22
2

22
1 2

1
2
1,1,

2
1

2
1 σασασα (12)

The system of equations can be expressed as a tridiagonal system([1])

Revista Informatica Economică nr. 1(45)/2008

152

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

+

−+

+

+

Mn

Mn

n

n

MM

MMM

Mn

Mn

n

n

f
f

f
f

f
f

f
f

,

1,

1,

0,

21

131211

312111

3020

,1

1,1

1,1

0,1

...

0...000
...000

.....................
000...
000...0

...

αα
ααα

ααα
αα

 (13)

which can be written
as: MmfAf mnmn ,0for,1, == + (14)
Let mnn ff ,= and mnn ff ,11 ++ = , then we
need to solve for nf given matrix A and col-
umn vector 1+nf and this implies that

1
1

+
−= nn fAf (15)

We can de-
duce:

() () 1
11

01
211

1 ,, +

+−
+

−−
− === n

n
nnn fAffAfAf K

.
The matrix A has

Mmtmm ,0,01 22
2 =>Δ+= σα ,

∏
=

≠
M

m
m

0
2 0α , and therefore the matrix is

nonsingular. We can solve the system by
finding the inverse matrix 1−A .
When we apply the boundary conditions to-
gether with (11), this gives rise to some
changes in the elements of matrix A with

⎩
⎨
⎧

=
=

0,
1,

130

220

M

M

αα
αα

 (16)

Our initial condition give values for thN
time step, and we solve for nf at nt in terms

of 1+nf at 1+nt . We set the right hand side of
the system to our initial condition and solve
the system to produce a solution to the equa-
tion for time step N-1. By repeatedly iterating
in such a manner, we can obtain the value of
f at any time step 1,,1,0 −NK .

Fig.1. Trinomial tree of implicit finite differ-

ence discretization

3.2. The stability of implicit method. The
eigenvalues nλ are given by

[]
N
n

mmmn
παααλ cos2 2/1

312 += for ()1,1 −= Nn (17)

Substituting the values mmm 321 ,, ααα with values from (14), we have

⎥⎦
⎤

⎢⎣
⎡ −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−Δ+Δ+=

N
n

m
rtmtmn 2

sin2111 2
2/1

24

2
2222 π

σ
σσλ for ()1,1 −= Nn (18)

Furthermore, applying the binomial expan-
sion on the square root part and re-arranging
we have

N
ntmtmn 2

sin221 22222 πσσλ Δ−Δ+≈

where there is change of sign due to the trun-
cation of the binomial expansion. Therefore
the equation are stable when

1
2

sin221max 22222
2 ≤Δ−Δ+=

N
ntmtmA πσσ

fn,m+1

fn,m fn+1,m

fn,m-1

S

t

Revista Informatica Economică nr. 1(45)/2008

153

that is,

1
2

sin2211 22222 ≤Δ−Δ+≤−
N

ntmtm πσσ for ()1,1 −= Nn (19)

As ∞→→Δ Nt ,0 and () 1
2

1sin 2 →
−
N

N π ,

(19) reduces to 11 ≤ .

Alternatively, 01 22 ≥Δ+ tmσ şi 1=∞A
Therefore by Lax’s equivalence theorem([2],
[6]), the scheme is unconditionaly stable,
convergent and consistent.

3.3. The results concerning convergence
speed of implicit method. For a European
put option when: S = 20, K= 22, r = 0.1, T =
0.5 şi σ = 0.25, the results content in table
Table 1 shows that when N and M are dif-
ferent, the finite difference methods con-
verges faster than N and M are the same.

Table 1. The comparison of the convergence of implicit method for increase N and M

N=M

Implicit
Method

N

M

Implicit
Method

function[P]=impl_method(S,K,r,sigma,T,N,M);
dt=T/N;ds=2*S/M;A=sparse(M+1,M+1);
f=max(K-(0:M)*ds,0);// final conditions
for m=1:M-1
 x=1/(1-r*dt);
 A(m+1,m)=x*(r*m*dt-sigma*sigma*m*m*dt)/2;
 A(m+1,m+1)=x*(1+sigma*sigma*m*m*dt);
 A(m+1,m+2)=x*(-r*m*dt-sigma*sigma*m*m*dt)/2;
end
A(1,1)=1;A(M+1,M+1)=1;
for i=N:-1:1
 f=A\f'; f=max(f,(K-(0:M)*ds)');
end
P=f(round((M+1)/2));

1
2
3
4
5
6
7
8
9
10
11
12
13
14

10 2,0574 10 20 2,1326
20 2,1546 20 40 2,2091
30 2.2204 30 60 2,2234
40 2,2177 40 80 2,2287
50 2,2286 50 100 2,2328
60 2,2317 60 120 2,2352
70 2,2342 70 140 2,2366
80 2,2352 80 160 2,2377
90 2,2379 90 180 2,2387

100 2,2374 100 200 2,2393

The 11-13th lines of program from Table 1
are large consumption of computation time.
In practice, there are far more efficient solu-
tion techniques than matrix inversion, due to
the propriety of A being tridiagonal. Then,
methods like LU decomposition or SOR are
applied directly to (10), and the execution
time is O(N) per solution. In order to com-
pute A-1, one needs (N2) operation and others
O(M2) to find (A-1)m, using one processor, so
in a serial manner. But with several proces-
sors under a convenient network, we show in
what follows that we can obtain a time of ex-
ecution O(N), to compute the inverse A-1.

4. Parallel algorithm for calculating the
numerical solution
4. 1 The Gauss Jordan method for solving
a inverse of matrix. If N = M then A is a
N×N-square matrix again fn and fn+1 are N-
dimensional vectors. We use the method of
elementary transformation to compute the in-
verse matrix, A-1 ([6]). In few words, we
start from the matrix A1, which is obtained
from A and a unit matrix, written on the right
side of A, as follows:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅

=

100

010
001

21

22221

11211

0

NNNN

N

n

aaa

aaa
aaa

A

Note. For the sake of the clearness, we de-
note by Njia ji ,1,, = all the elements of

matrix A, it means mmm 321 ,, ααα and 0. Fur-

ther, making elementary transformation only
on the lines of A0, after several steps, we
bring it to the form AN, where

Revista Informatica Economică nr. 1(45)/2008

154

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅

=

++

++

++

NNNNNN

NNN

NNN

N

aaa

aaa
aaa

A

2,2,1,

2,22,21,2

2,12,11,1

100

010
001

The part ()
NNjNijia

2,1,,1, +==
 represents A-1.

The computation is made in the following manner:

Step 1.

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅

=

++

++

++

1
2,

1
2,

1
1,

11
2

1
2,2

1
2,2

1
1,2

1
2

1
22

1
2,1

1
2,1

1
1,1

1
1

1
12

1

0

0
1

NNNNNNNNN

NNNN

NNNN

aaaaa

aaaaa
aaaaa

A

where Njaaa jj 2,1,/ 111
1
1 ==

 NjNiaaaa ijijij 2,1,,2,1
1
1

1 ==−= (20)
Step 2.

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅

=

++

++

++

2
2,

2
2,

2
1,

22
3

2
2,2

2
2,2

2
1,2

2
2

2
23

2
2,1

2
2,1

2
1,1

2
1

2
13

2

00

10
01

NNNNNNNNN

NNNN

NNNN

aaaaa

aaaaa
aaaaa

A

where Njaaa jj 2,1,/ 1
22

1
2

2
2 ==

 NjiNiaaaa ijijij 2,1,2,,1,1
2

2
2

12 =≠=−= (21)
and so on, till the matrix has the final form

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅

++

++

++

N
NN

N
NN

N
NN

N
N

N
N

N
N

N
N

N
N

N
N

aaa

aaa
aaa

2,2,1,

2,22,21,2

2,12,11,1

100

010
001

and A-1 is read from the second part of this
matrix.
4.2. Analysis of sequential algorithm.
From (15) and previous section need first de-
crease the computing time of matrix A. The

number of operations, nGJ, through Gauss
Jordan method is computing remarking a
each step s, we calculating N-1 multiplica-
tors. Then([6])

 () ()()[] 2
3

2

1

3

22
3

2
111 NNNNNsNNNn

n

s
GJ +≈−+=−+−+−=∑

=

 (22)

function x=
gaussjordan(S,K,r,sigma,T,N,M)
dt=T/N; ds=2*S/M; A=sparse(M+1,M+1);
%boundary conditions
A(1,1)=1;A(M+1,M+1)=1;
A(1,2)=0;A(M+1,M)=0;
% tridiagonal matrix form
for m=1:M-1
 A(m+1,m)=0.5*r*m*dt-0.5*

for i=2:M+1
 for j=1:2*(M+1)
 D(i,j)=C(i,j)- D(1,j)*C(i,1);
 end
end
C=D;
for pas=2:M+1
 for j=1:2*(M+1)
 D(pas,j)=C(pas,j)/C(pas,pas);

Revista Informatica Economică nr. 1(45)/2008

155

 sigma*sigma*m*m*dt;
 A(m+1,m+1)=(1+sigma*sigma*m*m*dt);
 A(m+1,m+2)=-0.5*r*m*dt-
 0.5*sigma*sigma*m*m*dt;
end
B=[A eye(size(A))]; % matrix [A I]
C=B;% Gauss Jordan Algorithm
for j=1:2*(M+1)
 D(1,j)=C(1,j)/C(1,1);
end

 end
 for i=1:M+1
 for j=1:2*(M+1)
 if i~=pas
 D(i,j)=C(i,j)-D(pas,j)*C(i,pas);
 end
 end
end
C=D;
end

Here an example of execution for M = N = 4:

It is clear that, using only one processor to
make all computations, the time of execution
is ()3NO , because we have N steps and every
step needs ()2NO operations to be com-
puted. In order to reduce the execution time,
we can use the parallel calculus.
Having in mind the previous method, we
come back to the solving of system (1), using
more than one processor. This can be with

NN 2× processors connected under a lattice

network. In every node of the network there
is a processor. According with [1], under this
connectivity, every processor jiP is con-
nected and may transfer information with its
four neighbourhood jiP ,1− , jiP ,1+ , 1, −jiP , 1, +jiP ,

1,1, −= Nji . The computation of the inverse
matrix 1−A can be made in the following
manner:

Step 0. (Initialization)
NjNiAPij 2,1,,1,0 ==← (each processor save 0A matrix)

Step 1. In parallel do:

NjNiaaaaP

NjaaaP

ijijijij

jjj

2,1,,2,

2,1,/

1
1
1

1

111
1
11

==−=←

==←

Step 2
 In parallel do:

2,2,1,,1,

2,1,/
1
2

2
2

12

1
22

1
2

2
22

≠==−=←

==←

iNjNiaaaaP

NjaaaP

ijijijij

jjj

and so on, till step N, when the matrix in fi-
nal form is obtained and the inverse matrix

1−A can be read. The effort of computation is
of order ()NO , because we still have N
steps, but in parallel, every step takes the

time for doing a division, a multiplication
and a substraction.
Note. Due to the fact that at step i, the line of
processor NjPij 2,1, = executes a division
and all the other processors executes a sub-
traction and a multiplication, the problem of

The initial matrix
1.0000 0 0 0 0 1.0000 0 0 0 0
0.0009 1.0025 -0.0034 0 0 1.0000 0 0 0

0 -0.006 1.0100 -0.0094 0 0 0 1.0000 0 0
0 0 -0.0047 1.0225 -0.0178 0 0 0 1.0000 0
0 0 0 0 1.0000 0 0 0 0 1.0000

The Gauss Jordan final matrix is identical with Matlab call: inv(A)
1.0000 0 0 0 0 1.0000 0 0 0 0

0 1.0000 0 0 0 -0.0009 0.9975 0.0034 0.0000 0.0000
0 0 1.0000 0 -0.0000 0.0006 0.9901 0.0091 0.0002
0 0 0 1.0000 0 -0.0000 0.0000 0.0045 0.9780 0.0174
0 0 0 0 1.0000 0 0 0 0 0

Revista Informatica Economică nr. 1(45)/2008

156

their synchronization has be taken into ac-
count.
4.3. Solving the final system in parallel. In
the previous paragraph we show how the in-
verse matrix 1−A can be computed in paral-
lel, with an execution time of order ()NO . In
order to solve the system (11), which gives

the final numerical solution for the Black-
Scholes equation, we have to compute the
power m of matrix 1−A . According with [2]
and [4], this can be done in a logarithmic
time, ()NO 2log using a binary-tree connec-
tivity among processors, like in Figure 2.

Fig.2. The binary-tree network

Note. In every node of this network there is a
processor. The idea of computation is the fol-
lowing:
Step 1. (Initialization)
Every processor leaf (at level (N-1)) memo-
rizes the matrix A-1.
Step 2. Every processor at level (N-2) com-
putes () 1121 −−− ⋅= AAA .
Step 3. Every processor at level (N-3) com-
putes () () ()212141 −−− ⋅= AAA and so on.

After N2log steps, the final results ()NA 1−
will be computed by the processor root.

5. Conclusion
We presented an algorithm which generates
the numerical solution of the Black-Scholes
equation for European option in an execution
time of order ()NNO 2log⋅ , using parallel
calculus. The binary-tree network can be in-
cluded in the lattice network, in order to use
the same processors.

6. References
[1] Gerbessiotis, Alexandros V., Trinomial-
tree parallel option price valuation, New Jer-

sey Institute of Technology, Newark, NJ
07102, USA, June 25, 2002
[2] White, R.F. Computational Modeling
with Methods and Analysis, Department of
Mathematics North Carolina State Universi-
ty, CRC Press , 2003 (format electronic)
[3] Duffy, Daniel J.,Finance Difference Me-
thods in Financial Engineering, A Partial
Differential Equation Approach, John Wiley
and Sons, Chichester, UK, 2004 (format elec-
tronic)
 [4] Kazuhiro Iwa awa, (Analitic Formula
for the European Normal Black Scholes
Formula), New York University, Department
of Matematics, December, 2, 2001
[5] M.B. Voc, I.Boztosun, D.Boztosun, On
the Numerical Solution of Black-Scholes Eq-
uation, proc. Of Int. Workshop on Mesh Free
Methods, 2003
[6] Brebente Corneliu, Mitran Sorin, Zan-
cu Silviu, Metode numerice, Editura
Tehnică, Bucureşti, 1997,(versiune
electronică)
[7] Moisă, Altăr, Inginerie financiară,
(2007, Note de curs format electronic, ASE
Bucureşti)

level 0

level (N – 3)

level (N - 2)

level (N - 1)

…

…

…

