
Diversity 2010, 2, 395-410; doi:10.3390/d2030395 

 

diversity 
ISSN 1424-2818 

www.mdpi.com/journal/diversity 

Article 

Ecological Systems as Complex Systems: Challenges for an 
Emerging Science 
 

Madhur Anand 1,*, Andrew Gonzalez 2, Frédéric Guichard 2, Jurek Kolasa 3 and Lael Parrott 4  

 
1  School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada  
2  Department of Biology, McGill University, Montréal Quebec, H3A 1B1, Canada;  

E-Mails: andrew.gonzalez@mcgill.ca (A.G.); fred.guichard@mcgill.ca (F.G.) 
3  Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada;  

E-Mail: kolasa@mcmaster.ca 
4  Département de Géographie, Université de Montréal, Montréal, Quebec, H3C 3J7, Canada;  

E-Mail: lael.parrott@umontreal.ca 

*  Author to whom correspondence should be addressed; E-Mail: manand@uoguelph.ca;  

Tel.: +1-519-824-4210; Fax: +1-519-837-0442. 

Received: 30 December 2009; in revised form: 1 March 2010 / Accepted: 8 March 2010 /  

Published: 15 March 2010 

 

Abstract: Complex systems science has contributed to our understanding of ecology in 

important areas such as food webs, patch dynamics and population fluctuations. This has 

been achieved through the use of simple measures that can capture the difference between 

order and disorder and simple models with local interactions that can generate surprising 

behaviour at larger scales. However, close examination reveals that commonly applied 

definitions of complexity fail to accommodate some key features of ecological systems, a 

fact that will limit the contribution of complex systems science to ecology. We highlight 

these features of ecological complexity—such as diversity, cross-scale interactions, memory 

and environmental variability—that continue to challenge classical complex systems 

science. Further advances in these areas will be necessary before complex systems science 

can be widely applied to understand the dynamics of ecological systems. 
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1. Introduction 

Since seminal publications on the subject [1,2], the study of “ecological complexity” has gained 

momentum. Examples of this trend can be found in recent books [3], national research efforts (USA 

National Science Foundation “biocomplexity” initiative), and international journals (e.g., Ecological 

Complexity). The field borrows tools and theories from research in complex systems science (CSS) to 

describe and understand ecological phenomena. However, despite growing recognition of the utility of 

CSS in many disciplines, the field of ecological complexity has yet to be widely adopted by ecologists 

and remains controversial to many. There is widespread consensus that ecological complexity emerges 

from the interactions between organisms and their biotic and abiotic environments, and attempts to 

clarify these basic notions have produced several useful conceptual definitions of ecological 

complexity [4,5]. For example Levin (1998) considers ecological systems to be the prototypical 

complex adaptive systems (CAS) “in which macroscopic system properties such as trophic structure, 

diversity–productivity relationships, and patterns of nutrient flux emerge from interactions among 

components, and may feed back to influence the subsequent development of those interactions”. The 

CAS approach like all CSS approaches attempts to explain all ecological phenomena with a restricted 

set of rules and constraints. Although clear and operational (and widely cited) ecologists have yet to 

widely integrate this perspective within their methodology. We believe that much of the hesitancy 

surrounding CSS is caused by uncertainty about what the approach brings to ecology. Any new 

approach to studying ecological complexity should not only suggest new models and formalisms but 

also new interpretations of ecological phenomena. We show how CSS has contributed to three 

important research areas in ecology, namely, food webs, patch dynamics, and population fluctuations. 

In reviewing these examples, we point out the limitations of the existing definitions of ecological 

complexity derived from CSS and suggest new directions for improved integration between CSS  

and ecology. 

2. Contribution of CSS to Ecology 

2.1. Simple Measures and Models 

Definitions of complexity and thus their measures are diverse [6-11], a symptom of an emerging 

and quickly evolving discipline. Most definitions (about 31; [12]) stem from information theory and 

reflect the belief that a system is complex when it comprises many different parts whose combined 

state or behavior are difficult to predict. These definitions thus often assign the highest degree of 

complexity to random states. Other similar examples of information theoretic definitions are (1) 

effective complexity that emphasizes the degree of “regularity” (rather than randomness) displayed by a 

system [13];  

(2) computational complexity with its several forms (algorithmic, Kolmogorov, grammatical, time 

complexity, and others) which all reflect the amount of effort needed to represent the system; and (3) 

mutual information—the degree to which states of system components are mutually predictive [14]. 

Measures based on these definitions of complexity often start with two extremes of random and 

ordered states, with the highest complexity occurring somewhere in between (Figure 1). Complex 

states can also be described by statistical scaling relationships such as fractal dimension or  
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power-laws [15]. Simple measures such as these can be used to distinguish a random or homogenous 

ecological pattern from a complex one and may serve as diagnostic tools to detect changes in the state 

of an ecosystem [16], as we shall illustrate in subsequent sections. 

Figure 1. Temporal, spatial and structural signatures of simple ordered and disordered 

systems versus a complex system. (a) Sinusoidal time series; ordered spatial pattern; 

regular network; (b) Population dynamics of a modelled plant species from the  

individual-based model WIST [38]; spatial distribution of prey in the Lotka-Volterra model 

with diffusion over a coupled map lattice (generated with the model in [39]); scale-free 

network typical of some food webs; (c) Uniformly distributed random noise; random 

spatial distribution; random network. For each case, the rightmost column shows a schema 

of a corresponding frequency analysis, one of the most common descriptive measures of 

complexity that can be applied to temporal, spatial or structural signatures. For each case 

(a, b, c), the analysis is shown for the distribution of frequencies in the temporal signature, 

although it might also be applied to measure the distribution of patch sizes in the spatial 

signature, or the distribution of links per node in the network. 

 
 

While such static descriptions and associated measures of complexity are important, they do not, in 

and of themselves, tell us how complex states come about. Towards this goal, null models must be 

used to first identify those complex patterns and structures emerging from purely random processes 

(see Figure 1c); a recent example is the prediction of many ecological patterns by neutral theory [17]. 

However, application of CSS to ecology requires that complex signatures distinguish random from 

non-random ecological processes. This can be seen by comparing Figure 1b and 1c, in particular the 

temporal, spatial or structural signatures shown in the last column. Thus, of interest to CSS are patterns 

and structures that arise from non-random processes. This points to another major contribution of CSS 

to ecology: the observation that simple models, with certain key non-random features, can generate 

surprisingly complex structures and dynamics. Ecologists have embraced this by modelling 

ecosystems as simplified systems of interacting particles (e.g., individuals, ‘agents’, species), often in 
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well-defined, unchanging spatiotemporal environments. The use of simple models can improve our 

understanding of ecological dynamics and the mechanistic origins of observed patterns [18]. Classical 

models from CSS emphasize the importance of local interactions between the ‘particles’ for the 

formation of self-organized structure at larger scales [19], and indeed these types of models have been 

able to explain the existence of surprising ecological patterns [20-22]. 

In the following subsections, we elaborate on how simple measures and models from CSS have 

improved our understanding in three important areas of ecology, namely food webs, patch dynamics 

and population fluctuations. 

2.2. Food Webs 

Food web theories have traditionally emphasized the study of stability and complexity in relation to 

the structure of trophic interactions. Recent research in graph theory and networks has shown that 

many complex systems share common structural features. For example, diverse physical, biological 

and human-created systems have all shown scale-invariant structure, in which the network is organized 

around several large “hubs” with many less connected nodes [23] (Figure 1). This type of structure 

appears to be robust to the loss of system components and resilient to dynamic changes in node 

characteristics [24], implying stability—a feature of interest to biodiversity and ecological research. 

Quantitative methods used to study complex networks have migrated to food web research, leading to 

a resurgence of interest in food web structure and a re-analysis of many well-known data sets [25,26]. 

While there is debate about whether food webs have scale-free structures, the study of degree 

distributions (the distribution of the number of links per node) and other topological characteristics, 

has shown that food webs all have complex, non-random structures. New analytical methods have 

enabled ecologists to identify key aspects of food web structure, such as clusters of closely interacting  

species [27,28] and the prediction of patterns of coextinction [29]. Such results are re-fueling the 

debate about whether ecological communities assemble towards structures that favor persistence and 

dynamic stability [30,31]. 

While the above research has contributed to the characterization of the static structures of food 

webs, new dynamic models of population dynamics from CSS have shed light on the study of how 

food web structures assemble and change over time [32-36]. These models reproduce many 

phenomena observed in empirical data such as power law scaling of speciation and extinction events, 

non-random (but not scale-free) network structure and relatively short food chain lengths. Similar to 

traditional Lotka-Volterra style population models, these models treat food webs as large evolving 

networks where each species is a node whose population size changes as a function of its interactions 

with other species. However, these new models borrow from recent methods in evolutionary 

computing to allow a species to adapt its interaction strengths with other species, thus dynamically 

changing the structure of the food web [37]. In these models, species are represented by digital 

“genomes”. Low levels of mutation during reproduction allow a species’ genome to evolve, enabling a 

species to adapt its interaction strengths and other parameters. Such dynamic models generate  

spatio-temporal data on interaction webs (not just predator-prey networks) over many generations, 

which would be difficult or impossible to measure in the field, leading to the generation of new 

hypothesis about how ecological communities are structured and assembled over time. In addition to 
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creating new avenues of research in ecology, such as studies of species co-evolution and the formation 

of ecological communities, such models may enable ecologists to draw parallels between the dynamics 

of ecological networks and other similar complex biological systems (e.g., neuronal or biochemical 

networks). 

2.3. Patch Dynamics  

Diversity can be maintained through life-history trade-offs between growth rate and competitive 

ability. This is the prediction of the intermediate disturbance hypothesis, which was first formulated as 

a spatially homogeneous theory. In contrast to theories that assume ‘well-mixed’ disturbance, patch 

dynamics predicts species diversity in relation to the intensity and size of newly formed gaps [40-43]. 

It more precisely allows dispersal limitation to explicitly mediate species coexistence. Patch dynamics 

theory assumes independence between processes of gap formation and community recovery, and the 

apparent separation of scales between physical disturbances and population growth in various 

ecosystems has thus motivated its adoption in ecology. However, many disturbed systems, including 

forest fires involve direct and local feedbacks between disturbance and recovery. CSS has been applied 

to those cases using dynamic models that define all processes at scales close to those of individual 

organisms. These models contrast with earlier patch dynamic models by defining processes of 

disturbance and recovery as local (i.e., between neighbors) and spatially explicit. More importantly, 

these models conform to the general framework of CSS by recognizing the potential for such local 

processes to explain and generate macroscopic properties of disturbed ecological systems. More 

precisely, CSS models of disturbance dynamics predict the self-organization of long-range correlation 

between (distant) individuals, as supported by scale-invariant (i.e., power law) frequency distributions 

of patch sizes. 

Large-scale properties of disturbance regimes become predictions that are solely based on local 

rates and geometry of disturbance and recovery. One important implication is found in the form of 

threshold responses to environmental and biological conditions. For example, the scale-invariant 

frequency distribution of gap sizes observed in some tropical forests can be predicted by the simple 

domino effect of wind throws, a process similar to the interactions between particles in physical 

systems [44,45]. Rocky intertidal communities provide additional examples [46,47]. CSS has thus 

resulted in a distinctive and useful theory of disturbance dynamics associated with testable predictions 

that can still be linked to patch dynamics [48]. However, associating data with specific models is still 

problematic. One problem comes from the fact that scale-invariant distributions have alternative 

causes, which fail to support scale-invariance as a signature of self-organization [49]. The sensitivity 

of simplistic CSS models to species interactions and to environmental fluctuations is also largely 

unknown. 

2.4. Population Fluctuations 

The classic question in population ecology of the effects of density dependence and of 

environmental fluctuations on population regulation has also benefited from CSS analysis. Time series 

of population dynamics were recently analyzed for signatures of ecological complexity (Figure 1). In 

particular, these analyses have addressed whether the observation of “more time means more 
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variation” in population densities [50,51] is a signature of a power law relationship between the 

frequency and the variance of population fluctuations. More specifically, population fluctuations with 

a 1/f pattern have a variance (power) that is proportional to the reciprocal of frequency (f); the 

dominance of low frequencies engenders the property of increasing variance and a long-term 

autocorrelation in densities over time. In an analysis of 544 long-term population time series Inchausti 

and Halley found that the distribution of spectral exponents centered on a median value of 1.0 

indicating that many populations have a 1/f distribution [52]. CSS has paid special attention to 1/f 

fluctuations, where beta is equal to one because this is indicative of scale invariance, a property typical 

of many complex phenomena like phase transitions that have fluctuations that decay as power laws. 

Unfortunately, the discovery of 1/f fluctuations in nonequilibrium systems, like populations, is not 

evidence for any particular model of how the world works, such as self-organized criticality [53,54]. 

However, the widespread incidence of 1/f population fluctuations is of genuine interest to population 

biologists because it pertains to the long-standing issue of population regulation and density 

dependence. 

Standard ecological models based on logistic growth suggest tight density regulation and 

stationarity (no change) in the mean and variance of population densities. A 1/f pattern in population 

abundances is evidence against stationarity and a simple view of population regulation in a fluctuating  

environment [52,55]. Additionally, it has been shown that the power spectra of chaotic dynamics 

produced by classic population models were dominated by high frequency fluctuations (blue spectra), 

a direct contradiction with the time series analyses [56]. Population biologists were stimulated to 

address these apparent mismatches between the power spectra of population time series and those 

produced by standard population models because they raise fundamental questions about our 

understanding of the cause of population fluctuations [57]. Several alterations to the standard 

population models were proposed to create strong low frequency variation (reddened spectra) in their 

dynamics [58,59]. For example, delayed density dependence may redden population dynamics by 

dampening high frequency variation in density [60]. Alternatively, local dispersal in spatially explicit 

metapopulations may also redden population dynamics; here local dispersal slows the rate of spread 

(impact) of local population lows so that low frequency variation dominates [61]. These theoretical 

results and advances were the direct result of a CSS approach to the analysis of population time series. 

The widespread presence of 1/f dynamics is not unique to ecological systems but with the integration 

of CSS tools and methods population ecologists were able to directly tackle and provide alternate 

explanations for this intriguing phenomenon. 

3. Contemporary Research in Ecological Complexity  

3.1. Integrating Classical CSS with Ecological Complexity 

We believe that measures and models from classical CSS will have limited applicability for ecology 

in the future because ecologists’ perception of complexity invariably includes diversity, interactions 

that cross many spatial, temporal and organizational scales, ecological memory (historical effects), and 

heterogeneous and fluctuating environments. We illustrate the generic components of ecological 

complexity with an example of a forest ecosystem (Figure 2). Ecological memory is a record of past 

events that may introduce a temporal dependence in the dynamics of the system because it influences 
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current and future states. We emphasize the importance of memory and environmental variability 

because these are key features of ecological systems that create and maintain diversity (genetic and 

phenotypic). Diversity is not just a passive effect of ecological interactions, but an important 

determinant of a system’s persistence and adaptability in the face of environmental change. 

Environmental variability is ubiquitous; nevertheless debate continues over the priority of internal 

versus external causes of ecological variability [62]. A synthesis of these two perspectives 

acknowledges the possibility that ecological complexity might be generated by the interaction between 

a variable environment and internal self-organized dynamics, an aspect notably lacking from standard 

definitions of complex systems that typically exclude environmental (external) effects. Some of these 

aspects of ecological complexity are not easily accommodated by the current methodology and tools 

offered by CSS, however emerging research in the field is beginning to offer solutions. 

 

3.2. New Measures: From Diversity to Complexity 

 

Ecologists have widely adopted information-theoretic definitions from CSS to measure diversity 

(e.g., Shannon entropy), but few have attempted to quantify complexity based on other information 

and coding theoretic definitions proposed by CSS. The latter, which include adoption of concepts of 

algorithmic complexity [63-66] and mean information gain [66], could help to integrate concepts such 

as cross-scale interactions and change into static measures of complexity. New measures need to also 

integrate existing statistical descriptors of variance (or invariance) and disorder (or order) and be more 

explicitly linked to dynamic ecological concepts such as disturbance and stability. This may help to 

resolve the fact that the unpredictability (high disorder) associated with high Shannon diversity values 

seems at odds with the role of diversity in the maintenance of stability (predictability) in 

ecosystems [67]. The integration of environmental variability, cross-scale interaction and memory, and 

key features of complexity into ecological indicators, remains a challenge in ecology. Cross-scale 

integration of diversity and complexity measures can be achieved by linking scale-invariance of 

species-area curves and species abundance distributions with various diversity indices via multifractal 

analyses [68]. Similarly, integration of spatial variability and classical disorder-based diversity in a 

measure of complexity has been shown to capture cross-scale patterns [69]. Others [70] have 

introduced a complexity measure to characterize the boundary between ordered and disordered phases 

(in random Boolean networks) that incorporates variance. This approach may provide a solution to the 

recent call for connectivity measures to incorporate “matrix” effects (spatiotemporal heterogeneity) on 

metapopulation and landscape complexity [71]. A promising measure of complexity reflecting the 

dynamics of diversity (dynamical entropy), that explicitly examine the relationships between diversity, 

complexity, perturbation and stability has also been recently proposed [72]. Interestingly, a new 

measure founded in hierarchy theory [55] finds that highest levels of complexity occur at intermediate 

degrees of integration and low levels of perturbation. A number of other indicators have been 

proposed, including increasing variance and increasing autocorrelation in key system variables prior to 

collapse [73]. New measures which attempt to integrate disturbance and variability, into classical 

measures of complexity, will be of particular diagnostic value in studies of global ecological change. 

Furthermore, approaches that provide further understanding on the links between structural (static) and 

dynamical complexity will be useful [74,75]. 
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Figure 2. An illustration of the components of ecological complexity. Complex ecological 

systems (e.g., forests) are those in which structure (e.g., gap-size distribution) and 

dynamics (e.g., succession) derive from memory-based (e.g., previous tree falls, seed 

bank), cross-scale (e.g., 100 sq. m to 100000 sq. m), interactions between diverse self-

reproducing elements (e.g., individuals of different tree species) and their variable 

environment (e.g., climatic fluctuations). Current CSS models of scale-invariance of gap 

size distribution in forests only incorporate local interactions between trees and gap-

formation is attributed to chance environmental events, such as a wind throw (Panel A). 

Gap propagation, however, may be intricately linked to environmental variables (e.g., 

climate, soil) that cause gap sizes to occur with frequency distributions other than random 

(see Figure 1). For example, stochastic gap-creation due to wind throw may be amplified 

through feedbacks between gap size, fetch and boundary effects (Panel B) [45]. Recovery 

potential of forests within gaps may be dependent on memory-based spatiotemporal 

processes such as the presence of seed banks (Panel C). In addition, some tree species may 

be inherently more resistant to gap-formation than others due to their growth patterns. 

These types of diversity, memory, cross-scale interactions and environmental variability 

need to be incorporated into new models of ecological complexity.  

 

3.3. The Role of Memory 

Ecological memory is invoked by the capacity of past states to influence present or future responses 

of an ecological system [76]. Examples include diapause eggs, seed banks, and the existence of rare 

species in an ecosystem that may represent the record of previous growth or species invasions [77,78]. 

Disturbance (fire, drought) may create highly persistent patterns at the landscape scale that may entrain 

future ecosystem processes [76,79,80]. Memory implies that the system can draw upon past events to 

inform current and future behaviour; this is typically the property of the organism. For example, recent 

results suggest that organisms can enhance their fitness by drawing upon the memory of past prey 
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quality, or distribution, when foraging [81,82]. From an observer's perspective, memory is manifested 

by a strong temporal dependence in the dynamics of an ecological system [83]. Modeling  

memory-based systems can be achieved by incorporating autocorrelation or a time-lag into the model  

structure [84], but it remains a challenge yet to be addressed by many CSS models. The trend in 

individual-based models [85] (IBM) is to incorporate memory by allowing “agents” to make 

predictions based on past information; such predictions may be cue-based and hence relevant to many 

ecological systems, or may allow “agent” behaviour to be adaptive and heritable invoking evolution. 

These and other approaches could redefine the phenomenology of complex systems where localized 

interactions rely on recorded past events to operate across spatiotemporal scales. 

3.4. Complex Effects of Environmental Variability 

An important characteristic of ecological systems is the incessant environmental variation to which 

they are exposed; yet most CSS models used in ecology do not consider its effect. Two important 

questions immediately come to mind: To what extent are results from CSS models of population and 

community dynamics robust to environmental variability? Can the interaction of CSS with variable 

environments lead to novel dynamics? A good example of the importance of these questions is 

illustrated in the studies of complex spatial dynamics of host-parasitoid coexistence [86]. The 

Nicholson and Bailey formulation of host-parasitoid interactions is notoriously unstable in 

homogeneous space. Using a coupled map lattice formalism in which many hundreds of patches are 

connected by diffusive dispersal, they demonstrated host-parasitoid persistence is possible and that the 

resultant dynamics generate complex spatial patterns—spatial chaos, spirals, and crystal lattices—that 

are essential for persistence. Coexistence was found to be robust to the presence of environmental 

variability when applied multiplicatively as white noise to the host rate of increase. Interestingly 

environmental variation did not disrupt the spatial pattern (and coexistence) if it occurred at a smaller 

scale than dispersal, however, spatial patterns were disrupted when the scale of environmental 

variation exceeded the dispersal distance of the individual. It was not noted whether other forms of 

environmental variability (e.g., coloured noise) altered this conclusion, or even reinforced coexistence. 

Ultimately, CSS must explicitly study the effects of realistic properties of environmental variation 

on ecological dynamics [87-92]. For example, it has been recently found that the effects of 

environmental noise on the temporal stability of food webs composed of complex population 

oscillations depends upon their amplitude, synchrony and correlation [93]. Gouhier et al. [75] studied 

the dynamics of the keystone food web motif (a diamond configuration of a predator consuming two 

prey species competing for a shared resource) in a metacommunity to reveal the interacting effects of 

environmental variability and dispersal on food web stability at local and regional scales. Irrespective 

of dispersal rate, strong environmental fluctuations disrupted compensatory prey dynamics and 

decreased stability by inducing intermittent correlated fluctuations between prey in local food webs. 

Other work has proposed that the sudden collapse of an ecological system is thought to arise from 

nonlinear biotic responses to slow environmental change [94]. Little ecological theory has invoked the 

interaction between self-organization and the environment to explain the dynamics of collapse, but 

studies suggest that changes in self-organized vegetation patterns may predict sudden shifts in arid and 

aquatic ecosystems [95]. In physics, predicting the failure of systems under stress such as material 
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rupture, and earthquakes is still a major scientific challenge. Simple models of these systems predict a 

scale-invariant increase in stress until failure that is characterized by a periodic (complex) scaling 

exponent (e.g., log periodicity). This periodicity predicts the rate at which simple and localized 

interactions result in catastrophic (i.e., large amplitude) events and eventually to global system 

collapse. Log periodicity has recently been applied to forest fires [96,97] and collapse dynamics can 

more generally be applied to wildfires, disease and insect outbreaks, and to desertification [98,99]. 

Empirical studies of forest fires have demonstrated the importance of environmental heterogeneity in 

time and space for the predicting their onset and propagation [92,100]. Such heterogeneity is not 

simply challenging the validity of simple CSS models, but requires that we consider cross-scale 

feedbacks between self-organized properties and the environment [99]. Local connectivity and  

self-organized clustering of trees can drive fire propagation [92] but at some threshold scale, fire starts 

to affect weather conditions that can in turn drive fire propagation, resulting in positive feedback 

(Figure 2). Such thresholds can be found at multiple scales and explain apparent spatial and temporal 

discontinuities in natural systems. Theoretical and empirical applications of these ideas reveal how 

environmental variability can provide a synergistic rather than a competing hypothesis to CSS as a 

cause of ecological complexity. 

4. Conclusions 

The fact that ecological systems are neither completely predictable nor completely random is not 

surprising as few natural systems are. However, ecological systems have a substantial random or 

stochastic component and a worthwhile predictable component that is often masked by the stochastic 

one, which does make them challenging to study. Dealing with this challenge has required a theoretical 

understanding that makes use of mathematical, statistical and computational phenomena in which the 

concepts of determinism and randomness, normally thought of as independent processes, are entwined. 

Deterministic chaos is a classical example of how these concepts can be entwined, and it has led to a 

paradigm shift in thinking about how the very sensitive dependence on initial conditions often causes 

long-term unpredictability in (complex) system behavior or attributes, including ecological systems. 

Self-organization (e.g., self-organized criticality), which pointed to simple computational rules to 

explain dramatic regime shifts in systems was another example. The application of fractal dimensions 

added to the repertoire of tools for understanding complex systems, mainly in describing spatial 

structures that appeared in ecological systems and could not be measured by Euclidean metrics. While 

a rich set of tools and theories has emerged over the past few decades, ecological complexity cannot be 

fully studied using the current definitions and methodology offered by CSS. There exists a great 

potential for the development of CSS through the exploration of the features of ecological systems that 

make them distinct (diversity, memory, cross-scale interactions, sensitivity to environmental 

variability). The challenge for ecologists, however, remains to find generalities in system pattern and 

dynamics to improve understanding and prediction [101]. CSS has a track record of finding such 

generalities within varied classes of complex systems and in our opinion can be better developed to 

serve this need of ecology. 
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