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1. Introduction

In this paper, we are concerned with the existence and iteration of positive solutions for the
following one-dimensional p-Laplacian boundary value problems:

(
φp

(
u′(t)

))′ + a(t)f
(
t, u(t), u′(t)

)
= 0, t ∈ (0, 1), (1.1)

subject to one of the following boundary conditions:

u′(0) = 0, αu(1) + βu′(1) = 0, (1.2)

or

γu(0) − δu′(0) = 0, u′(1) = 0, (1.3)

where φp(s) = |s|p−2s with p > 1, (φp)
−1 = φq, 1/p + 1/q = 1, α, β, γ, δ > 0 and f, a satisfy the

following:
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2 Boundary Value Problems

(H1) f : [0, 1] × [0,+∞) × (−∞, 0] → [0,+∞) is continuous;

(H∗
1) f : [0, 1] × [0,+∞) × [0,+∞) → [0,+∞) is continuous;

(H2) f(t, u, v) is nondecreasing in u − v for all t ∈ [0, 1], that is, f(t, u, v) ≥ f(t, x, y) for all
u − v ≥ x − y, t ∈ [0, 1];

(H∗
2) f(t, u, v) is nondecreasing in u + v for all t ∈ [0, 1], that is, f(t, u, v) ≥ f(t, x, y) for all

u + v ≥ x + y, t ∈ [0, 1];

(H3) a : (0, 1) → [0,+∞) is measurable, and a(t) is not identically zero on any compact
subinterval of (0, 1). Furthermore, a(t) satisfies 0 <

∫1
0 a(t)dt < +∞.

Here, a positive solution of (1.1), (1.2) or (1.1), (1.3)means a solution u∗(t) of (1.1), (1.2)
or (1.1), (1.3) satisfying u∗(t) > 0, 0 < t < 1.

The boundary value problems (1.1), (1.2) and (1.1), (1.3) deserve a special mention
because these forms occur in the study of the n-dimensional p-Laplacian equation, non-
Newtonian fluid theory and turbulent flow of a gas in a porous medium [1].

A consistent account on the existing literature on equation
(
φp

(
u′(t)

))′ + a(t)f
(
t, u(t)

)
= 0, t ∈ (0, 1), (1.4)

is provided and it emphasizes the use of upper and lower solution technique and the fixed
point theory, for instance, Krasnoselskii fixed point theorem, the fixed point index of a
completely continuous operator with respect to a cone in a Banach space, one may see [2–
5] and the references therein. In [6], by using the monotone iterative technique, Ma et al.
obtained the existence of monotone positive solution and established the corresponding
iterative schemes of (1.4) under the multipoint boundary value condition. However, in their
discussion, the nonlinear term f is not involved with the first-order derivative u′(t).

Recently, there is much attention focused on the study of the boundary value problems
like (1.1) which the nonlinear term f is involved with the first-order derivative explicitly. In
[7], Bai et al. considered the boundary value problems (1.1), (1.2) and (1.1), (1.3) and they
proved that problems (1.1), (1.2) and (1.1), (1.3) possessed at least three positive solutions by
applying a fixed point theorem due to Avery and Peterson [8]. In [9], the authors also deal
with the boundary value problem (1.1), (1.2) via Krasnoselskii fixed point theorem. Here, we
should mention that Sun and Ge [10] have got the positive solution of the boundary value
problem (1.1), (1.2) by making use of monotone iterative technique.

On the other hand, when f is involved with the first-order derivative explicitly, we can
see easily that the results obtained in [1, 7, 9] are only the existence of positive solutions under
some suitable conditions. Seeing such a fact, it is an interesting problem which shows how
to find these solutions since they exist definitely. Motivated by the above-mentioned results,
by making use of the classical monotone iterative technique, we will investigate not only the
existence of positive solutions for the boundary value problems (1.1), (1.2) and (1.1), (1.3),
but also give iterative schemes for approximating the solutions. Unlike the idea of [10], we
will construct a special subset K (see Section 3) and look at u(t) − u′(t) or u(t) + u′(t) as
a unit to overcome difficulties when f depends on both u(t) and u′(t). It is worth starting
that the first term of our iterative schemes are simple functions which are determined with
some linear ordinary equations and cone P (see Remark 3.2). Therefore, the iterative schemes
are significant and feasible. At the same time, we will correct some mistakes in [11–13] (see
Remark 3.5).
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This paper is organized as follows. After this section, some definitions and lemmas will
be established in Section 2. In Section 3, we will give our main results Theorems 3.1 and 3.4.
Finally, an example is also presented to illustrate our results in Section 4.

2. Preliminaries

In this section, we provide some background material from the theory of cones in Banach
spaces. We also state some lemmas which are important to proof our main results.

Definition 2.1. Let X be a real Banach space. A nonempty closed set P ⊂ X is called a cone, if it
satisfies the following two conditions:

(i) a1u + a2v ∈ P, for all u, v ∈ P and all a1 ≥ 0, a2 ≥ 0;

(ii) u ∈ P, − u ∈ P implies u = 0.

Definition 2.2. A map τ is said to be concave on [0, 1], if

τ
(
tu + (1 − t)v

) ≥ tτ(u) + (1 − t)τ(v), (2.1)

for all u, v ∈ [0, 1] and t ∈ [0, 1].

Consider the Banach space X := C1[0, 1] equipped with the norm

‖u‖ := max
0≤t≤1

[∣∣u(t)
∣∣ +

∣∣u′(t)
∣∣], (2.2)

and define the cone P ⊂ X by

P :=
{
u(t) ∈ X : u(t) ≥ 0, u(t) is concave and nonincreasing on [0, 1]

}
. (2.3)

Lemma 2.3 (see [3]). If u(t) ∈ P , then u(t) ≥ q(t)max0≤t≤1|u(t)|, where q(t) := 1 − t, t ∈ [0, 1].
Define the operator A : X → X as follows:

(Au)(t) :=
β

α
φq

(∫1

0
a(r)f

(
r, u(r), u′(r)

)
dr

)
+
∫1

t

φq

(∫ s

0
a(r)f

(
r, u(r), u′(r)

)
dr

)
ds, t ∈ [0, 1].

(2.4)

Lemma 2.4. Assume (H1), (H3) hold, then A : P → P is completely continuous.

Proof. From (H1), (H3), it is obviously that (Au)(t) ≥ 0. Since (Au)′(t) ≤ 0, we can see that
(Au)′(t) is continuous and nonincreasing on [0, 1], that is, (Au)(t) is concave on [0, 1], so A :
P → P is well defined. The continuity of A is clear because of the continuity of f and a.
Now, we will prove that A is compact. Let Ω ⊂ P be a bounded set, then there exists D, such
that Ω ⊂ {u(t) ∈ P : ‖u‖ ≤ D}. For any u(t) ∈ Ω, we have 0 ≤ ∫1

0 a(r)f(r, u(r), u
′(r))dr ≤

maxt∈[0,1],u∈[0,D],v∈[−D,0]f(t, u(t), v(t))
∫1
0 a(t)dt := E, then we have

∣∣(Au)(t)
∣∣ ≤

(
β

α
+ 1

)
φq(E),

∣∣(Au)′(t)
∣∣ ≤ φq(E),

∣∣(φp

(
(Au)′(t)

))′∣∣ ≤ E. (2.5)

The Arzela-Ascoli theorem guarantees that AΩ is relatively compact, which means that A is
compact. Then A : P → P is completely continuous.

Lemma 2.5. Assume (H1), (H2) and (H3) hold. If ω1(t), ω2(t) ∈ P such that ω1(t) −ω′
1(t) ≥ ω2(t) −

ω′
2(t), t ∈ [0, 1], then (Aω1)(t) ≥ (Aω2)(t), (Aω1)

′(t) ≤ (Aω2)
′(t), t ∈ [0, 1].
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Proof. Noticing that f(t, u, v) is nondecreasing in u − v, t ∈ [0, 1], the proof is simple, here we
omit it.

3. Main results

For convenience, we denote

C1 := min
{
1,

β

α

}
, C2 := 1 +

β

α
, S1 :=

(
1 + C−1

1

)−1
, S2 := 8C−1

1 C2,

C3 := min
{
1,

δ

γ

}
, C4 := 1 +

δ

γ
, S3 :=

(
1 + C−1

3

)−1
, S4 := 8C−1

3 C4,

M1 :=
[(

β

α
+ 2

)
φq

(∫1

0
a(r)dr

)]−1
, N1 :=

[
β

α
φq

(∫1−θ1

θ1

a(r)dr
)]−1

,

M2 :=
[(

δ

γ
+ 2

)
φq

(∫1

0
a(r)dr

)]−1
, N2 :=

[
δ

γ
φq

(∫1−θ2

θ2

a(r)dr
)]−1

,

(3.1)

where θ1 ∈ (0, (2C2)
−1) ⊂ (0, 1/2), θ2 ∈ (0, (2C4)

−1) ⊂ (0, 1/2). It is easy to see that 0 < S1, S3 <
1, S2, S4 > 8.

Theorem 3.1. Assume (H1), (H2), and (H3) hold. Moreover, suppose that there exist six constants
Ri, ri, Li, i = 1, 2, with R1, r1, L1 > 0, R2, r2, L2 < 0, S1(L1 − L2) > S2(r1 − r2) and R1 − R2 :=
4θ1C2(r1 − r2), such that

(H4) max0≤t≤1f(t, L1, L2) ≤ φp[(L1 − L2)S1M1];

(H5) minθ1≤t≤1−θ1f(t, R1, R2) ≥ φp[(r1 − r2)S2N1].

Then the boundary value problem (1.1), (1.2) has at least two nonincreasing positive solutions u∗(t)
and v∗(t) ∈ P with

S2
(
r1 − r2

) ≤ ∥∥u∗∥∥ ≤ S1
(
L1 − L2

)
, S2

(
r1 − r2

) ≤ ∥∥v∗∥∥ ≤ S1
(
L1 − L2

)
, (3.2)

and limn→∞(Anu0)(t) = u∗(t), limn→∞(Anv0)(t) = v∗(t), where

u0(t) = L1 − L2 + C5e
t, v0(t) =

(
q(t) + 1

)(
r1 − r2

)
+ C6e

t, t ∈ [0, 1], (3.3)

C5 and C6 are arbitrary constants which satisfy −e−1(L1 − L2) ≤ C5 ≤ 0, − e−1(r1 − r2) ≤ C6 ≤ 0.

Proof. We denote a set K ⊂ P by

K :=
{
u(t) ∈ P : C1max

0≤t≤1

∣∣u′(t)
∣∣ ≤ ∣∣u(t)

∣∣, max
0≤t≤1

∣∣u(t)
∣∣ ≤ C2max

0≤t≤1

∣∣u′(t)
∣∣,

S2
(
r1 +

∣
∣r2

∣
∣) ≤ ‖u‖ ≤ S1

(
L1 +

∣
∣L2

∣
∣)
}
.

(3.4)

Based on the preceding preliminaries, we can divide our proof into three steps.
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Step 1. We first prove A(K) ⊂ K. Let u(t) ∈ K, note that u(t), u′(t) is nonincreasing on [0, 1],
then

0 ≤ u(t) − u′(t) ≤ max
0≤t≤1

[∣∣u(t)
∣∣ +

∣∣u′(t)
∣∣] = ‖u‖ ≤ S1

(
L1 − L2

) ≤ L1 − L2, t ∈ [0, 1]. (3.5)

By Lemma 2.3, we have

u(t) − u′(t) ≥ min
θ1≤t≤1−θ1

∣∣u(t)
∣∣

≥ min
θ1≤t≤1−θ1

q(t)max
0≤t≤1

∣∣u(t)
∣∣

=
1
2
θ1

[
max
0≤t≤1

∣∣u(t)
∣∣ +max

0≤t≤1

∣∣u(t)
∣∣
]

≥ 1
2
θ1

[
max
0≤t≤1

∣∣u(t)
∣∣ + C1max

0≤t≤1

∣∣u′(t)
∣∣
]

≥ 1
2
θ1 min

{
1, C1

}‖u‖

≥ 1
2
θ1C1S2

(
r1 − r2

)

= 4θ1C2
(
r1 − r2

)

= R1 − R2, t ∈ [
θ1, 1 − θ1

]
.

(3.6)

Since f(t, u, v) is nondecreasing in u − v, t ∈ [0, 1], and by assumptions (H4) and (H5), we
obtain

0 ≤ f
(
t, u(t), u′(t)

) ≤ f
(
t, L1, L2

) ≤ φp

[(
L1 − L2

)
S1M1

]
, t ∈ [0, 1],

f
(
t, u(t), u′(t)

) ≥ f
(
t, R1, R2

) ≥ φp

[(
r1 − r2

)
S2N1

]
, t ∈ [

θ1, 1 − θ1
]
,

(3.7)
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which imply that

‖Au‖ = max
0≤t≤1

[∣∣(Au)(t)
∣∣ +

∣∣(Au)′(t)
∣∣]

= max
0≤t≤1

{
φq

(∫ t

0
a(r)f

(
r, u(r), u′(r)

)
dr

)
+
β

α
φq

(∫1

0
a(r)f

(
r, u(r), u′(r)

)
dr

)

+
∫1

t

φq

(∫s

0
a(r)f

(
r, u(r), u′(r)

)
dr

)
ds

}

≤
(
β

α
+ 2

)
φq

(∫1

0
a(r)f

(
r, u(r), u′(r)

)
dr

)

≤
(
β

α
+ 2

)
φq

(∫1

0
a(r)f

(
r, L1, L2

)
dr

)

≤
(
β

α
+ 2

)
φq

(∫1

0
a(r)dr

)
S1

(
L1 − L2

)
M1

= S1
(
L1 − L2

)
,

‖Au‖ = max
0≤t≤1

[∣∣(Au)(t)
∣∣ +

∣∣(Au)′(t)
∣∣]

≥ max
0≤t≤1

∣∣(Au)(t)
∣∣

≥ β

α
φq

(∫1

0
a(r)f

(
r, u(r), u′(r)

)
dr

)

≥ β

α
φq

(∫1−θ1

θ1

a(r)f
(
r, R1, R2

)
dr

)

≥ β

α
φq

(∫1−θ1

θ1

a(r)dr
)
S2

(
r1 − r2

)
N1

= S2
(
r1 − r2

)
.

(3.8)
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On the other hand, for u(t) ∈ K, we have

∣∣(Au)(t)
∣∣ =

β

α
φq

(∫1

0
a(r)f

(
r, u(r), u′(r)

)
dr

)

+
∫1

t

φq

(∫s

0
a(r)f

(
r, u(r), u′(r)

)
dr

)
ds

≥ β

α
φq

(∫1

0
a(r)f

(
r, u(r), u′(r)

)
dr

)

≥ C1max
0≤t≤1

∣∣(Au)′(t)
∣∣,

max
0≤t≤1

∣∣(Au)(t)
∣∣ =

β

α
φq

(∫1

0
a(r)f

(
r, u(r), u′(r)

)
dr

)

+
∫1

0
φq

(∫s

0
a(r)f

(
r, u(r), u′(r)

)
dr

)
ds

≤
(
β

α
+ 1

)
φq

(∫1

0
a(r)f

(
r, u(r), u′(r)

)
dr

)

= C2max
0≤t≤1

∣
∣(Au)′(t)

∣
∣.

(3.9)

In virtue of (3.8)-(3.9), A(K) ⊂ K.

Step 2. Let u0(t) = L1 − L2 + C5e
t, C5 is an arbitrary constant which satisfies −e−1(L1 − L2) ≤

C5 ≤ 0, t ∈ [0, 1], then u0(t) ≥ 0, u′
0(t) = C5e

t ≤ 0, u′′
0(t) = C5e

t ≤ 0, t ∈ [0, 1]. Hence,
u0(t) ∈ P, u0(t) − u′

0(t) = L1 − L2, t ∈ [0, 1]. Let u1(t) = (Au0)(t), next we claim that u1(t) ∈ K.
Indeed, it is easy to check that

∣∣u1(t)
∣∣ =

∣∣(Au0
)
(t)

∣∣ ≥ C1max
0≤t≤1

∣∣(Au0
)′(t)

∣∣ = C1max
0≤t≤1

∣∣u′
1(t)

∣∣,

max
0≤t≤1

∣∣u1(t)
∣∣ = max

0≤t≤1

∣∣(Au0
)′(t)

∣∣ ≤ C2max
0≤t≤1

∣∣(Au0
)′(t)

∣∣ = C2max
0≤t≤1

∣∣u′
1(t)

∣∣.
(3.10)
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Using assumptions S1(L1−L2) > S2(r1− r2) and R1−R2 = 4θ1C2(r1− r2), we have u0(t)−u′
0(t) =

L1 − L2 ≥ 8(r1 − r2) ≥ 4θ1C2(r1 − r2) = R1 − R2, t ∈ [θ1, 1 − θ1], these imply that

∥∥u1
∥∥ =

∥∥Au0
∥∥ = max

0≤t≤1
[∣∣(Au0

)
(t)

∣∣ +
∣∣(Au0

)′(t)
∣∣]

≤
(
β

α
+ 2

)
φq

(∫1

0
a(r)f

(
r, u0(r), u′

0(r)
)
dr

)

≤
(
β

α
+ 2

)
φq

(∫1

0
a(r)f

(
r, L1, L2

)
dr

)

≤
(
β

α
+ 2

)
φq

(∫1

0
a(r)dr

)
S1

(
L1 − L2

)
M1

≤ S1
(
L1 − L2

)
,

∥∥u1
∥∥ =

∥∥Au0
∥∥ = max

0≤t≤1
[∣∣(Au0

)
(t)

∣∣ +
∣∣(Au0

)′(t)
∣∣]

≥ β

α
φq

(∫1−θ1

θ1

a(r)f
(
r, u0(r), u′

0(r)
)
dr

)

≥ β

α
φq

(∫1−θ1

θ1

a(r)f
(
r, R1, R2

)
dr

)

≥ β

α
φq

(∫1−θ1

θ1

a(r)dr
)
S2

(
r1 − r2

)
N1

= S2
(
r1 − r2

)
.

(3.11)

Therefore, u1(t) ∈ K. We denote

un+1(t) :=
(
Aun

)
(t) =

(
An+1u0

)
(t), n = 0, 1, 2, . . . . (3.12)

Since A(K) ⊂ K, un(t) ∈ K, n = 1, 2, . . . . From Lemma 2.4, A is compact, we assert that {un}∞n=1
has a convergent subsequence {unk

}∞k=1 and there exists u∗(t) ∈ K, such that unk
(t) → u∗(t).

Now, since u1(t) ∈ K ⊂ P , for t ∈ [0, 1], we have

u1(t) − u′
1(t) ≤

(
1 + C−1

1

)∣∣u1(t)
∣∣ ≤ (

1 + C−1
1

)∥∥u1
∥∥

≤ (
1 + C−1

1

)
S1

(
L1 − L2

)
= L1 − L2 = u0(t) − u′

0(t).
(3.13)

This combined with Lemma 2.5 gives

u2(t) =
(
Au1

)
(t) ≤ (

Au0
)
(t) = u1(t), u′

2(t) =
(
Au1

)′(t) ≥ (
Au0

)′(t) = u′
1(t), (3.14)

so

u2(t) − u′
2(t) ≤ u1(t) − u′

1(t), 0 ≤ t ≤ 1. (3.15)
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By induction,

un+1(t) ≤ un(t), u′
n+1(t) ≥ u′

n(t), 0 ≤ t ≤ 1, n = 1, 2, . . . . (3.16)

Hence, we assert that un(t) → u∗(t). Let n → ∞ in (3.12) to obtain (Au∗)(t) = u∗(t) since A is
continuous. Since ‖u∗‖ ≥ S2(r1 − r2) > 0 and u∗(t) is a nonnegative concave function on [0, 1],
we conclude that u∗(t) > 0, t ∈ (0, 1). It is well known that the fixed point of operator A is the
solution of the boundary value problem (1.1), (1.2). Therefore, u∗(t) is a positive, nonincreasing
solution of the boundary value problem (1.1), (1.2).

Step 3. Put v0(t) = (q(t) + 1)(r1 − r2) +C6e
t, C6 is an arbitrary constant satisfying −e−1(r1 − r2) ≤

C6 ≤ 0, t ∈ [0, 1], then v0(t) ≥ 0, v′
0(t) = −(r1 − r2) + C6e

t ≤ 0, v′′
0(t) = C6e

t ≤ 0, t ∈ [0, 1]. Hence,
v0(t) ∈ P . From the definition of θ1 and R1 − R2, we derive that

v0(t) − v′
0(t) =

(
q(t) + 2

)(
r1 − r2

) ≥ (
2 + θ1

)(
r1 − r2

)

≥ 2
(
r1 − r2

) ≥ 4θ1C2
(
r1 − r2

)
= R1 − R2, t ∈ [

θ1, 1 − θ1
]
,

v0(t) − v′
0(t) =

(
q(t) + 2

)(
r1 − r2

) ≤ 3
(
r1 − r2

) ≤ L1 − L2, t ∈ [0, 1].

(3.17)

Setting v1(t) = (Av0)(t), in what follows, we will prove that v1(t) ∈ K. In fact, similar to (3.10)-
(3.11), combined with the above inequalities, one has

∣∣v1(t)
∣∣ =

∣∣(Av0
)
(t)

∣∣ ≥ C1max
0≤t≤1

∣∣(Av0
)′(t)

∣∣ = C1max
0≤t≤1

∣∣v′
1(t)

∣∣,

max
0≤t≤1

∣∣v1(t)
∣∣ = max

0≤t≤1

∣∣(Av0
)′(t)

∣∣ ≤ C2max
0≤t≤1

∣∣(Av0
)′(t)

∣∣ = C2max
0≤t≤1

∣∣u′
1(t)

∣∣,
∥∥v1

∥∥ =
∥∥Av0

∥∥ = max
0≤t≤1

[∣∣(Av0
)
(t)

∣∣ +
∣∣(Av0

)′(t)
∣∣]

≤
(
β

α
+ 2

)
φq

(∫1

0
a(r)f

(
r, v0(r), v′

0(r)
)
dr

)

≤
(
β

α
+ 2

)
φq

(∫1

0
a(r)f

(
r, L1, L2

)
dr

)

≤ S1
(
L1 − L2

)
,

∥∥v1
∥∥ =

∥∥Av0
∥∥ = max

0≤t≤1
[∣∣(Av0

)
(t)

∣∣ +
∣∣(Av0

)′(t)
∣∣]

≥ β

α
φq

(∫1−θ1

θ1

a(r)f
(
r, v0(r), v′

0(r)
)
dr

)

≥ β

α
φq

(∫1−θ1

θ1

a(r)f
(
r, R1, R2

)
dr

)

= S2
(
r1 − r2

)
.

(3.18)

We deduce from (3.18) that v1(t) ∈ K. Denote

vn+1(t) :=
(
Avn

)
(t) =

(
An+1v0

)
(t), n = 0, 1, 2, . . . . (3.19)
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Since v1(t) ∈ K ⊂ P , from Lemma 2.4, we have

v1(t) − v′
1(t) ≥

1
2
∣∣v1(t)

∣∣ +
1
2
∣∣v1(t)

∣∣

≥ 1
2
q(t)max

0≤t≤1

∣∣v1(t)
∣∣ +

1
2
C1max

0≤t≤1

∣∣v′
1(t)

∣∣

≥ 1
4
q(t)

[
max
0≤t≤1

∣∣v1(t)
∣∣ + C1max

0≤t≤1

∣∣v′
1(t)

∣∣
]

+
1
4
C1

[
C−1

2 max
0≤t≤1

∣
∣v1(t)

∣
∣ +max

0≤t≤1

∣
∣v′

1(t)
∣
∣
]

≥ 1
4
C1q(t)

∥
∥v1

∥
∥ +

1
4
C1C

−1
2

∥
∥v1

∥
∥

≥ 1
4
C1q(t)S2

(
r1 − r2

)
+
1
4
C1C

−1
2 S2

(
r1 − r2

)

≥ (
q(t) + 2

)(
r1 − r2

)

= v0(t) − v′
0(t), t ∈ [0, 1].

(3.20)

By Lemma 2.5, we get

v2(t) =
(
Av1

)
(t) ≥ (

Av0
)
(t) = v1(t), v′

2(t) =
(
Av1

)′(t) ≤ (
Av0

)′(t) = v′
1(t), (3.21)

so v2(t) − v′
2(t) ≥ v1(t) − v′

1(t), 0 ≤ t ≤ 1. By induction, vn+1(t) ≥ vn(t), v′
n+1(t) ≤ v′

n(t), 0 ≤ t ≤
1, n = 1, 2, . . . . Hence, we assert that vn(t) → v∗(t), and v∗(t) > 0, t ∈ (0, 1). Therefore, v∗(t) is
a positive, nonincreasing solution of the boundary value problem (1.1), (1.2).

Remark 3.2. (i)We can easily get that u∗(t) and v∗(t) are the maximal and minimal solutions of
the boundary value problem (1.1), (1.2) in K. Of course u∗ and v∗ may coincide and then the
boundary value problem (1.1), (1.2) has only one solution in K.

(ii) It is worth pointing out that u0(t), v0(t)/∈K. In fact, u0(t) ∈ G1, v0(t) ∈ G2, which
are determined with some linear ordinary equations and the cone P , this is different from the
results in [6, 10], where

G1 :=
{
u0(t) ∈ P : u0(t) − u′

0(t) = L1 − L2
}
,

G2 :=
{
v0(t) ∈ P : v0(t) − v′

0(t) =
(
q(t) + 2

)(
r1 − r2

)}
.

(3.22)

Corollary 3.3. Assume (H1), (H2) and (H3) hold, suppose that

(H6) f0 := lim sup|u(t)|+|v(t)|→ 0 minθ1≤t≤1−θ1(f(t, u(t), v(t))/(|u(t)| + |v(t)|)p−1) > φp(2N1

/θ1C1);

(H7) f∞ := lim inf|u(t)|+|v(t)|→∞max0≤t≤1(f(t, u(t), v(t))/(|u(t)| + |v(t)|)p−1) < φp(M1).
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(Particularly, f0 = +∞, f∞ = 0). Then there exist four constants ri, Li, i = 1, 2, with r1, L1 >
0, r2, L2 < 0, S1(L1 − L2) > S2(r1 − r2), such that the boundary value problem (1.1), (1.2) has at
least two nonincreasing positive solutions u∗(t) and v∗(t) ∈ P with

S2
(
r1 − r2

) ≤ ∥
∥u∗∥∥ ≤ S1

(
L1 − L2

)
, S2

(
r1 − r2

) ≤ ∥
∥v∗∥∥ ≤ S1

(
L1 − L2

)
, (3.23)

and limn→∞(Anu0)(t) = u∗(t), limn→∞(Anv0)(t) = v∗(t), where

u0(t) = L1 − L2 + C5e
t, v0(t) =

(
q(t) + 1

)(
r1 − r2

)
+ C6e

t, t ∈ [0, 1], (3.24)

C5 and C6 are arbitrary constants which satisfy −e−1(L1 − L2) ≤ C5 ≤ 0, − e−1(r1 − r2) ≤ C6 ≤ 0.

Proof. It is very easy to verify the conditions (H4) and (H5) can be obtained from (H6) and (H7),
so we omit the proof.

Obviously, though the similar arguments of Theorem 3.1, we could get the following
theorem.

Theorem 3.4. Assume (H∗
1), (H

∗
2) and (H∗

3) hold, suppose that there exist six positive constants
Rj, rj , Lj , j = 3, 4, with S3(L3 + L4) > S4(r3 + r4) and R3 + R4 := 4θ2C4(r3 + r4), such that

(H8) max0≤t≤1f(t, L3, L4) ≤ φp[(L3 + L4)S3M2];

(H9) minθ2≤t≤1−θ2f(t, R3, R4) ≥ φp[(r3 + r4)S4N2].

Then the boundary value problem (1.1), (1.3) has at least two nondecreasing positive solutions u ∗(t)
and v ∗(t) ∈ P with

S4
(
r3 + r4

) ≤ ∥∥u ∗∥∥ ≤ S3
(
L3 + L4

)
, S4

(
r3 + r4

) ≤ ∥∥v ∗∥∥ ≤ S3
(
L3 + L4

)
, (3.25)

and limn→∞(A
n
u0)(t) = u ∗(t), limn→∞(A

n
v0)(t) = v ∗(t), where

P :=
{
u(t) ∈ X : u(t) ≥ 0, u(t) is concave and nondecreasing on [0, 1]

}
.

(Au)(t) :=
δ

γ
φq

(∫1

0
a(r)f

(
r, u(r), u′(r)

)
dr

)
+
∫ t

0
φq

(∫1

s

a(r)f
(
r, u(r), u′(r)

)
dr

)
ds, t ∈ [0, 1],

u0(t) = L3 + L4 + C7e
−t, v0(t) = (t + 1)

(
r3 + r4

)
+ C8e

−t, t ∈ [0, 1].
(3.26)

C7 and C8 are arbitrary constants which satisfy −(L3 + L4) ≤ C7 ≤ 0, − (r3 + r4) ≤ C8 ≤ 0.

Remark 3.5. In [11], Liu and Zhang studied the following boundary value problem:

(
φ
(
u′(t)

))′ + a(t)f
(
t, u(t)

)
= 0, t ∈ (0, 1),

u(0) − a1u
′(0) = 0, u(1) + a2u

′(1) = 0,
(3.27)
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where a1, a2 ≥ 0 and φ is an increasing positive homomorphism and homeomorphism with
φ(0) = 0 (for more details, see [11–13]). In that paper, the authors claimed that u ∈ C[0, 1] ∩
C1(0, 1) is a solution if and only if u ∈ C[0, 1] is a solution of the following integral equation:

u(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a1φ
−1
(∫ τ

0
a(s)f

(
u(s)

)
ds

)
+
∫ t

0
φ−1

(∫ τ

s

a(r)f
(
u(r)

)
dr

)
ds, 0 ≤ t ≤ τ,

a2φ
−1
(∫1

τ

a(s)f
(
u(s)

)
ds

)
+
∫1

t

φ−1
(∫s

τ

a(r)f
(
u(r)

)
dr

)
ds, τ ≤ t ≤ 1,

(3.28)

where τ = 0, if u′(0) = 0; τ = 1, if u′(1) = 0, otherwise τ is a solution of the equation

g1(t) = g2(t), (3.29)

where

g1(t) = a1φ
−1
(∫ t

0
a(s)f

(
u(s)

)
ds

)
+
∫ t

0
φ−1

(∫ t

s

a(r)f
(
u(r)

)
dr

)
ds, 0 ≤ t < 1,

g2(t) = a2φ
−1
(∫1

t

a(s)f
(
u(s)

)
ds

)
+
∫1

t

φ−1
(∫s

t

a(r)f
(
u(r)

)
dr

)
ds, 0 < t ≤ 1.

(3.30)

Unfortunately, such a claim is incorrect since

φ(−u)/= − φ(u). (3.31)

Similar reason, the results in [12, 13] are also incorrect, as they deal with the nonlinear systems.
Under the boundary condition (1.3), we could avoid (3.31) to occur. With the similar argument
of Theorem 3.4, we could have the similar theorem to Theorem 3.4 for the following boundary
value problem:

(
φ
(
u′(t)

))′ + a(t)f
(
t, u(t), u′(t)

)
= 0, t ∈ (0, 1),

γu(0) − δu′(0) = 0, u′(1) = 0.
(3.32)

Here, we omit the proofs.

4. Example

In this section, we will give an example to illustrate our results.

Example 4.1. Consider the boundary value problem
(
φp

(
u′(t)

))′ + a(t)f
(
t, u(t), u′(t)

)
= 0, t ∈ (0, 1),

u′(0) = 0, αu(1) + βu′(1) = 0,
(4.1)

where φp(s) = |s|p−2swith p > 1, take p = 3, α = 1, β = 1, a(t) = 1, t ∈ [0, 1],

f(t, u, v) = t + u − v, u ≥ 0, v ≤ 0, t ∈ [0, 1], (4.2)

we have q = 3/2, C1 = 1, C2 = 2, S1 = 1/2 and S2 = 16. Take θ1 = 1/8, we get M1 = 1/3, N1 =
2
√
3/3. Choose L1 = 100, L2 = −100, r1 = 0.01, r2 = −0.01, R1 = 0.01, and R2 = −0.01, so

f(t, u(t), v(t)) satisfies the following:
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(1) f : [0, 1] × [0,+∞) × (−∞, 0] → [0,+∞) is continuous;

(2) f(t, u, v) is nondecreasing in u − v for all t ∈ [0, 1];

(3) max0≤t≤1f(t, L1, L2) = max0≤t≤1f(t, 100,−100) = 201 ≤ φ3[(L1 − L2)S1M1] = [(100 + | −
100|) × 1/2 × 1/3]2 ≈ 1111.1;

(4) minθ1≤t≤1−θ1f(t, R1, R2) = minθ1≤t≤1−θ1f(t, 0.01,−0.01) = 0.145 ≥ φ3[(r1 − r2)S2N1] =
[(0.01 − 0.01) × 16 × 2

√
3/3]2 ≈ 0.1365.

Therefore, by Theorem 3.1, the boundary value problem (4.1) has at least two nonincreasing
positive solutions u∗(t) and v∗(t), such that

0.32 ≤ ∥
∥u∗∥∥ ≤ 100, 0.32 ≤ ∥

∥v∗∥∥ ≤ 100, (4.3)

and limn→∞(Anu0)(t) = u∗(t), limn→∞(Anv0)(t) = v∗(t), where

u0(t) = 200 + C5e
t, v0(t) = 0.02(2 − t) + C6e

t, t ∈ [0, 1]. (4.4)

C5 and C6 are arbitrary constants which satisfy −200/e ≤ C5 ≤ 0, − 0.02/e ≤ C6 ≤ 0.
For n = 1, 2, . . . , the two iterative schemes are u0(t) = 200 +C5e

t, t ∈ [0, 1], C5 is arbitrary
constant with −200/e ≤ C5 ≤ 0,

un+1(t) = (Aun)(t) =
[ ∫1

0

(
r + un(r) − u′

n(r)
)
dr

]1/2

+
∫1

t

(∫s

0

(
r + un(r) − u′

n(r)
)
dr

)1/2

ds, t ∈ [0, 1],

(4.5)

v0(t) = 0.02(2 − t) + C6e
t, t ∈ [0, 1], C6 is arbitrary constant with −0.02/e ≤ C6 ≤ 0,

vn+1(t) =
(
Avn

)
(t) =

[ ∫1

0

(
r + vn(r) − v′

n(r)
)
dr

]1/2

+
∫1

t

(∫s

0

(
r + vn(r) − v′

n(r)
)
dr

)1/2

ds, t ∈ [0, 1].

(4.6)

Remark 4.2. The nonlinear term f(t, u, v) in v is nonincreasing, so the results in [10] do not
hold.
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