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Abstract. An appropriately simple event runoff model for
catchment hydrological studies was derived. The model was
selected from several variants as having the optimum balance
between simplicity and the ability to explain daily obser-
vations of streamflow from 260 Australian catchments (23–
1902 km2). Event rainfall and runoff were estimated from the
observations through a combination of baseflow separation
and storm flow recession analysis, producing a storm flow
recession coefficient (kQF). Various model structures with up
to six free parameters were investigated, covering most of
the equations applied in existing lumped catchment models.
The performance of alternative structures and free parame-
ters were expressed in Aikake’s Final Prediction Error Cri-
terion (FPEC) and corresponding Nash-Sutcliffe model ef-
ficiencies (NSME) for event runoff totals. For each model
variant, the number of free parameters was reduced in steps
based on calculated parameter sensitivity. The resulting opti-
mal model structure had two or three free parameters; the first
describing the non-linear relationship between event rainfall
and runoff (Smax), the second relating runoff to antecedent
groundwater storage (CSg), and a third that described initial
rainfall losses (Li), but which could be set at 8 mm with-
out affecting model performance too much. The best three
parameter model produced a median NSME of 0.64 and out-
performed, for example, the Soil Conservation Service Curve
Number technique (median NSME 0.30–0.41). Parameter
estimation in ungauged catchments is likely to be challeng-
ing: 64% of the variance inkQF among stations could be
explained by catchment climate indicators and spatial corre-
lation, but corresponding numbers were a modest 45% for
CSg, 21% forSmax and none forLi , respectively. In gauged
catchments, better estimates of event rainfall depth and in-
tensity are likely prerequisites to further improve model per-
formance.

Correspondence to:A. I. J. M. van Dijk
(albert.vandijk@csiro.au)

1 Introduction

Estimating catchment streamflow where or when it is not ob-
served is a well established field of hydrological research
(e.g. Sivapalan et al., 2003). Accurate prediction requires an
appropriate model structure and methods to estimate model
parameters. There is a well-known trade off between, on one
hand, using a simple model that does not describe the avail-
able data well and, on the other, using a complex model that
contains too many similar equations to reliably estimate their
parameters (the ’‘equifinality” problem; Beven, 1993).

This study revisits the question posed by Jakeman and
Hornberger (1993): “How much complexity is warranted in
a rainfall-runoff model?”. However, where those authors fo-
cused on the number of linear or parallel stores that best de-
scribed the delayed release of water from a catchment, the
current study focuses on the optimal functional form of the
set of equations used to estimate what part of event precipi-
tation is converted into storm runoff. The scope of this study
is limited to hydrological models with process equations that
operate on a daily time step and describe the behaviour of
catchments rather than (segments of) hillslopes. Many such
so-called ‘lumped’ models have been proposed (reviewed in
e.g. Beven, 2004; Blöschl, 2005; Maidment, 1992) and are
widely used as a comparatively parsimonious, pragmatic ap-
proach to estimating streamflow generation under historic,
scenario or forecasted conditions.

The equifinality problem is particularly prominent in
catchment storm runoff estimation, since alternative runoff
generation processes can produce essentially the same
streamflow patterns at the catchment outlet. Storm runoff can
be generated by a combination of infiltration excess runoff,
runoff from saturated zones, subsurface storm flow and direct
rainfall onto water bodies, and even in highly instrumented
field experiments the alternative mechanisms can be diffi-
cult to distinguish (see contributions in Kirkby, 1978; Beven,
2006).
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Reflecting this ambiguity, the various existing rainfall-
runoff models make different, often implicit, assumptions
about the significance or insignificance of alternative runoff
processes. A generic set of equations that captures most
thresholds and variables may be:

R = fsatPn +(1−fsat)Pn −I +Rreturn (1)

Pn = max(0,P −Li) = (1−fn)P (2)

I = fIPn (3)

Rreturn= (1−fs)I (4)

whereR is runoff, Pn net rainfall,I net infiltration into the
soil, Rreturn return flow from the soil (all in mm per event
or mm d−1), andfsat the fraction saturated area.Pn is of-
ten expressed as total rainfall less an initial lossLi (mm)
which may be conceptualised as a constant or a proportion
fn (or a combination of both) and assumed to represent infil-
tration and/or evaporative losses. The fractionfI represents
the fraction of net rainfall on unsaturated soil that infiltrates,
andfs the fraction ofI that can be retained in the soil.

This generalised model is usually simplified one way or
another, for example, by assuming thatfsat, fn, fI or fs

are either negligible or equal to unity (e.g. Bergström, 1992;
Chiew et al., 2002). It may also be made more complicated
by introducing further functional relationships, for example
expressingfsatas a function of groundwater level or storage,
or expressingfI as a function of storm size or rainfall inten-
sity and/or soil water content, or expressingfs as a function
of actual and maximum soil water storage. Additionally, one
or several of the variables in these equations may be repre-
sented by spatial distribution functions, for example to rep-
resent sub-grid variability in coarse resolution land surface
models (e.g. Bonan, 1996; Liang et al., 1994; Liang and Xie,
2001; Oleson et al., 2004). Each addition introduces further
assumptions and, importantly, model parameters.

An illustration of the ambiguity in model interpretation
due to the multitude of equivalent storm runoff processes
is provided by considering the widely used Soil Conserva-
tion Service Curve Number method (SCS-CN; USDA-SCS,
1985). It can be recast in a form somewhat similar to Eq. (1)
as:

R = Pn

(
Pn

Pn +S

)
(5)

WhereS is notionally the maximum retention after runoff
begins (mm). The SCS-CN model was derived empirically
however, and when comparing the second term of Eq. (5) to
Eqs. (1–4) it can be interpreted in several ways:

– Equivalent to (1–fn), representing the functional rela-
tionship between storm size and fraction rainfall in ex-
cess of infiltration capacity, in which casePn could be
interpreted as a proxy for rainfall intensity andS as a
proxy for maximum infiltration rate (whilefsat= 0 and
fs = 0).

– Equivalent to (1–fs), representing the functional rela-
tionship between storm size and return flow fraction, in
which caseS represents maximum soil storage capacity
(while fsat= 0 andfI = 1).

– Equivalent tofsat, representing a functional relationship
between storm size and saturated catchment area that
could arise if cumulative infiltration or run-off/run-on
processes lead to increase of the saturated area over the
course of a storm, wherePn might be a proxy for cumu-
lative infiltration or actual runoff, andS a proxy of the
efficiency of soil and catchment drainage (in which case
fn = 1 andfs = 0).

Elaborations of the SCS-CN method that implicitly or ex-
plicitly assume one of these three underlying explanations
(or a combination) do exist, for example by relatingS to land
cover or soil conditions, or by modifyingS as a function of
antecedent rainfall or groundwater storage (for examples of
both see Maidment, 1992; Mishra and Singh, 2003). Pre-
sumably the effectiveness of these elaborations will depend
on dominant runoff processes.

The same point could have been demonstrated with other
lumped runoff models, but this study does not attempt to ad-
dress the ambiguity in interpreting models, which requires
field study. However, the examples given emphasise the risks
in increasing model complexity (adding processes, equa-
tions, parameters) without a solid justification through im-
proved model performance. To date, there does not appear
to have been a comprehensive and formal statistical analy-
sis to assess what is an appropriately simple model to de-
scribe the relationship between event precipitation and event
runoff at catchment scale. Since dominant runoff processes
are expected to vary between catchments of different sub-
strate, climate and land use, it would be anticipated that dif-
ferent model structures may perform better in different catch-
ments.

The aims of the study were as follows:

– Test several alternative versions and simplifications of
the generalised storm flow model expressed in Eq. (1)
for their performance in reproducing estimated event
storm flow from 260 catchments across Australia.

– Assess the appropriate balance between the number of
free parameters and model performance, by considering
an information criterion as well as correlation between
different parameters that may be indicative of equiva-
lence.

– Assess to what extent model parameters can be pre-
dicted in ungauged catchments from catchment at-
tributes and spatial correlation.

Following Occam’s Razor, the null hypothesis in this study is
that the model with the smallest number of parameters pro-
vides the best predictions.
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Figure 1. Map showing the location of the stations for which data were analysed. The size of 

the inner dot corresponds to the Nash-Sutcliffe model efficiency (attained with the best three-

parameter model and corrected for the number of free parameters). The distribution of gauges 

underpinning the interpolated rainfall product is indicated (for an arbitrary day in 2005). 

 

 

 

 

Fig. 1. Map showing the location of the stations for which data were analysed. The relative size of the inner dot corresponds to the Nash-
Sutcliffe model efficiency (attained with the best three-parameter model and corrected for the number of free parameters). The distribution
of gauges underpinning the interpolated rainfall product is indicated (for an arbitrary day in 2005).

2 Methods

2.1 Data

Daily streamflow data (in ML d−1) were collated for 362
catchments across Australia as part of previous studies (Peel
et al., 2000; Guerschman et al., 2008, 2009). Streamflow
data for these selected catchments were considered of satis-
factory quality and any influence of river regulation, water
extraction, urban development, or other processes upstream
considered unimportant. Large lakes or wetlands do not oc-
cur in any of the catchments, but smaller impoundments can
occur. From the data set, those records were selected that had
good quality observations for at least five years during the pe-
riod 1990–2006 and no less than 50 runoff events (defined as
an increase in streamflow from one day to the next).

The selected 260 stations were located in southwest West
Australia, Tasmania, and coastal regions of the eastern states
(Fig. 1). The contributing catchments of all gauges were de-
lineated through digital elevation model analysis and visual
quality control. Catchment areas varied between 23–1902
(median 333) km2.

Daily streamflow volumes were converted to streamflow
depths (Q, mm d−1) and varied from 2 to 1937 (median
114) mm y−1. Catchment-average daily precipitation was
calculated using a gridded 0.05◦ precipitation product de-

rived by interpolation of station data (Jeffrey et al., 2001). Of
the rain gauges used in interpolation, on average there were
three (range 0–22) inside or within 5 km of each catchment.
The range of average annual rainfall for the catchment sam-
ple was 317–2983 (median 851) mm y−1; precipitation other
than rainfall was not important. Priestley-Taylor potential
evapotranspiration (E0) was 651–2417 (1254) mm y−1 and
catchment humidity (H , the ratio of average rainfall over av-
erageE0) was 0.13–3.48 (0.68). The data set includes catch-
ments under native forest, catchment fully cleared for graz-
ing, and catchments with a varying combination of cropping,
grazing, plantation forestry and native vegetation.

2.2 Streamflow analysis

The streamflow data were separated into time series of daily
estimated baseflow (BF orQBF) and quick flow (QF orQQF)
by combining forward and backward recursive linear reser-
voir baseflow filter as described in Van Dijk (2010). It was
assumed that the estimated QF represents the sum of all
storm runoff processes and BF the delayed groundwater dis-
charge, but it is noted that the hydrograph per se cannot pro-
vide evidence for this interpretation.

Estimating event runoff from daily storm flow totals re-
quires an additional step that considers the storm flow reces-
sion. To estimate the storm flow recession constant (kQF)
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450 A. I. J. M. van Dijk: Selection of an appropriately simple storm runoff model

from the storm flow time series, all dayst = i showing a
storm flow peak were identified, that is, all days for which
QQF(i–1)<QQF(i) >QQF(i+1). For each station a weighted
average storm flow recession constant was calculated follow-
ing the theory for a linear store (cf. Van Dijk, 2010) as:

kQF= −ln

[∑
QQF(i +1)∑

QQF(i)

]
(6)

Total event rainfallP(i) for the event peaking on dayt=i

was subsequently estimated as:

Pev (i) =

i∑
t=i−2

P (7)

where t=i−2 was chosen to account for the fact that the
recorded rainfall event and the peak in storm flow were oc-
casionally separated by up to two days due to the different
times of rainfall and streamflow recording (09:00 a.m. and
24:00 p.m., respectively). Total event runoffR(i) was esti-
mated as:

R(i) =

tn∑
t=i−2

QQF+SR (tn) (8)

=

tn∑
t=i−2

QQF+
QQF(tn +1)

1−exp
(
−kQF

)
wheretn is the day on whichQQF(tn) is ten times less than
QQF(i). This was done to avoid inclusion of storm runoff
from subsequent rainfall events. The termSR(tn) is the esti-
mated storm runoff still in storage at the end of daytn based
on linear reservoir theory.

Several studies have found that runoff response is
positively related to groundwater level measurements in
piezometers and antecedent streamflow rates (e.g. Dunne
and Black, 1970) and this was also observed for several Aus-
tralian catchments (e.g. Liu et al., 2007; Peña Arancibia et
al., 2007; Beck et al., 2010). This is commonly attributed
to the growth of saturated areas as groundwater rises. To al-
low inclusion of this correlation in the model, groundwater
storageSg was estimated from the daily baseflow (QBF) es-
timates as:

Sg (i) =
QBF(i)

1−exp(−kBF)
(9)

wherekBF is the baseflow recession constant. Values ofSg

on the first day of each runoff event were used as an estimate
of antecedent groundwater storageSg(i) before runoff event
i. Due to the method of baseflow separation these values
were estimated from the preceding baseflow recession with a
forward filter and therefore not influenced by the storm flow
event itself (cf. Van Dijk, 2010).

2.3 Evaluation of alternative model structures

For each of the model variants that was tested, the most com-
plex model (that is, the one with the maximum number of pa-
rameters) was gradually simplified based on parameter sen-
sitivity analysis, and the corresponding change in prediction
error was calculated. The basic model structure tested had
the form (cf. Eqs. 1–4):

Pn = max(0,P −C1) (10)

R =

[
(C2Pn)

C3

Pn +C4

]
Pn (11)

whereC1, C2, C3 andC4 are all optionally free parameters.
Each of these parameters can be effectively omitted by giv-
ing it a value of either zero or unity. For example,C4 = 0 sim-
plifies the equation to a power function ofPn, while in addi-
tionC3 = 1 produces a constant runoff fraction, andC1 = 0 re-
moves the rainfall threshold before runoff is produced. With
C3 = 1 andC2=1 the equation mirrors the SCS-CN model. To
test whether model performance was further improved if the
model took into account the effect of antecedent groundwater
storageSg the following modifications were also tested:

R =

(
(C2Pn)

C3

Pn +C4
(1−fsat)+fsat

)
Pn with (12)

fsat= max
(
1,C5S

C6
g

)
and

R =

[
(C2Pn)

C3

Pn +Smax

]
Pn with (13)

Smax= C4min
(
0,1−C5S

C6
g

)
whereC5 andC6 are again parameters that could be fitted or
prescribed values of zero or unity. It follows that the most
complex models had six free parameters.

To assess the trade-off between the number of free model
parameters and the improvement in model performance,
Akaike’s Final Prediction Error Criterion (FPEC; Akaike,
1970) was used. FPEC represents the expected prediction
error that would result were the model tested on a different
data set, and is calculated as the product of the prediction er-
ror (ε) and a penalization factor that considers the degrees of
freedom (d, the number of free parameters) in comparison to
the number of observations (n):

FPEC =
1+d

/
n

1−d
/
n
ε (14)

The errorε was estimated as the mean squared error between
observed and modelled event runoff estimates. It was found
by optimising the free model parameters with minimumε
as objective function. Latin Hypercube Sampling was used
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to find a near-optimal parameter set for each model variant.
The number with draws was 10d (but with a minimum of 102

and a maximum of 104), after which the optimal parameter
set was found with a Nelder-Mead Simplex search.

The value ofn was calculated as the number of rainfall
events used to fit the model. In principle, the model with
the lowest FPEC should be adopted. However, Schoups et
al. (2008) pointed out that Eq. (14) assumes thatn�d and
may lead to underestimates of prediction error and favour
overly complex models. This caveat was considered when
interpreting FPEC values. Nash-Sutcliffe model efficiency
(NSME; Nash and Sutcliffe, 1970) is arguably the most com-
mon metric to express runoff model performance in calibra-
tion (despite some undesirable properties; Legates and Mc-
Cabe, 1999; Criss and Winston, 2008). As it can be calcu-
lated from the mean squared error, an adjusted NSME for
prediction could be calculated from the FPEC and was used
in interpretation.

Another factor to consider in deciding the optimal model
structure was correlation between fitted parameters, with
high correlations being indicative of parameter equivalence.
The parametric and non-parametric (ranked) coefficient of
correlation (r andr∗, respectively) between fitted parameters
was considered an indicator of possible equivalence between
model parameters.

2.4 Spatial predictors of model parameters

The procedure described in Van Dijk (2010) was used to as-
sess the predictability of calculated values ofkQF and the
fitted parameter values of the optimal model. The anal-
ysis involved statistical analysis of parameteric and non-
parameteric correlation coefficients (r andr∗) with a variety
of catchment attributes, including catchment geology; mor-
phology (size, mean slope, flatness); soil characteristics (sat-
urated hydraulic conductivity, dominant texture class value,
plant available water content, clay content, solum thickness);
climate indices (P , E0, H , remotely sensed actual evapotran-
spiration, average monthly excess precipitation); and land
cover characteristics (fraction woody vegetation, fractions
non-agricultural land, grazing land, horticulture, and broad
acre cropping, remotely sensed vegetation greenness). Fol-
lowing this correlation analysis, any spatial correlation in the
residual variance was analysed by fitting semi-variograms.
Further details on the data sources and procedures can be
found in Van Dijk (2010).

3 Results

3.1 Optimal model structure

The average station record included 2178 storms (range 691–
3734). Of these, 19% (2–51%) produced storm flow, result-
ing in an average 631 (30–1005) events. The reduction in
prediction error that is required to accept another parameter

is influenced by the definition ofn in Eq. (14). The number
of observed runoff events was used here, implying that on av-
erage an improvement of 0.32% would be required for an ad-
ditional parameter to be accepted. Had the number of rainfall
events been used instead, the improvement would only need
to be 0.09% on average. Conversely, however, typically only
some 10 to 20 events produced the large majority of runoff
and variance in the runoff (Fig. 4a); if this number had been
used instead the improvement would need to be in the order
of 10–20%.

The best results obtained with all model variants using be-
tween six and one parameter are listed in Table 1. Equa-
tion (12) provided the best results among the alternative
model structures tested. Table 1 suggests that the six pa-
rameter model has the best predictive power, but for reasons
mentioned this small difference is not a robust result. Model
performance appeared to remain very similar as the number
of fitting parameters was reduced to three. FPEC increased
slightly as the number of parameters was reduced to two (by
0.2% and 4.1% in median and mean FPEC, respectively), but
increased much more if the number of parameters was fur-
ther reduced to one. The two- and three-parameter model
variants produced similar NSME values (Table 1; based on
calculated FPEC and hence also allowing for the number of
free parameters). The main differences occur for catchments
with overall low model performance (Fig. 2).

An interpretative notation for the three and the two param-
eter version of Eq. (12) could be:

R =

(
Pn

Pn +Smax
(1−fsat)

)
Pn (15a)

with

Pn = max(0,P −Li) (15b)

and

fsat= max(1,CSgSg) (15c)

whereSmax (mm) is maximum storage capacity,Li (mm) ini-
tial loss, andCSg (mm−1) saturated area coefficient. The
definition of Smax is similar but slightly different from the
SCS-CN model (Eq. 5).

3.2 Parameter values and predictability

Correlation among parameters decreased as the number of
free parameters was reduced. For the six-parameter model,
the highest absolute value ofr (r∗) between parameters was
0.39 (0.40), and gradually reduced to 0.29 (0.25) for the
three parameter model, and 0.12 (0.04) for the two param-
eter model, respectively. The highest correlation in the three
parameter model was between optimised values ofLi and
CSg; correlation withSmax was small (|r|<0.15).

Statistics of the distribution of optimised values for the
best three parameter model Eq. (12) are listed in Table 2.

www.hydrol-earth-syst-sci.net/14/447/2010/ Hydrol. Earth Syst. Sci., 14, 447–458, 2010



452 A. I. J. M. van Dijk: Selection of an appropriately simple storm runoff model

Table 1. Change in predictive model performance as the number of free parameters is reduced from six to one. Listed are Final Prediction
Error Criterion (FPEC) and adjusted Nash-Sutcliffe Model Efficiency (NSME) calculated from it. All values relate to the best performing
model structure.

Number of model parameters

six five four three two one
median FPEC (mm) 0.91 0.93 0.92 0.93 0.93 1.43
mean FPEC (mm) 1.49 1.52 1.52 1.52 1.58 2.52
mean NSME 0.64 0.62 0.62 0.61 0.49−4.11
median NSME 0.66 0.64 0.64 0.64 0.61 0.43
variance-weighted NSME 0.68 0.67 0.67 0.67 0.62 0.03

Table 2. Descriptors of the distribution in parameters of the preferred model variants: the storm flow recession coefficientkQF (d−1)

calculated directly from the observations, and optimised model parameters initial lossLi (mm), maximum storage capacitySmax (in 103 mm),
and saturated area coefficientCSg (in 10−3 mm−1).

Symbol kQF Li Smax CSg

Unit – mm 103 mm 10−3 mm−1

Median 0.76 7.68 1.34 16.16
Mean 0.77 16.41 16.54 31.69
CV 31% 151% 207% 138%
25–75% range 0.60–0.91 2.71–18.93 0.53–4.3 5.27–38.29
10–90% range 0.49–1.08 0–41.44 0.25–100 1.17–72.95
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Fig. 2. Cumulative distribution of Nash-Sutcliffe model efficiency
(NSME) for the model variants with three and two free parameters,
respectively.

The amount of variance between stations that could be ex-
plained by catchment attributes and the fraction of residual
variance that was spatially correlated are listed in Table 3.

Values of kQF showed correlation with catchment cli-
mate indicators, such as average monthly excess precipita-
tion (AMEP,r∗ =−0.52), potential ET (E0, r = 0.50) and hu-
midity (H , r∗=-0.49), and some correlation with the frac-

tion of catchment under non-agricultural cover (r∗ =−0.45).
The highestkQF values (i.e. fastest recessions) occurred in
dry catchments. The strongest regression equation was a lin-
ear function ofE0, explaining 23% of the variance. Another
41% of the variance was spatially correlated over distances
of ca. 300 km; the remaining 36% of variation was left unex-
plained (Table 3).

None of the catchment attributes correlated withLi and a
predictive regression equation could not be established. The
strongest correlation found was with depth-averaged rainfall
intensity (r∗ = 0.31). There was also no obvious spatial cor-
relation.

Similarly, no catchment attribute correlated withSmax.
The strongest correlation found was with the coefficient of
variation in monthly rainfall (r∗ = 0.33). About 21% of the
variance in (log-transformed) Smax values appeared corre-
lated over lengths of 1000 km or more.

Finally, the saturated area coefficientCSg in mm−1

showed correlation with catchment climate indices such as
AMEP (r∗ =−0.52), average rainfall (r∗ =−0.48) and catch-
ment humidity (r∗ =−0.44). The best regression equation
(with AMEP) still only explained 13% of the variance how-
ever. About 32% of the variance appeared spatially corre-
lated over distances of ca. 200 km.
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Table 3. Summary of the analysis of variance in parameter values derived from fitting the optimal runoff model to event runoff estimates from
the 260 catchments. Listed are the fraction of variance explained by catchment attributes, the residual variance showing spatial correlation
and the remaining unexplained variance. Also listed are the range (km) of the fitted semi-variograms.

Fraction of variance

Variable Symbol Attributed Spatially correlated Unexplained Range (km)
Storm flow recession coefficient (d−1) kQF 23% 41% 36% 300
Initial loss (mm) Li 0% 0% 100% 300
Maximum catchment storage (mm) Smax 0% 21% 79% 1000
Saturated area coefficient (mm−1) CSg 13% 32% 55% 200

4 Discussion

4.1 Optimal storm runoff model structure

Based on the calculated FPEC values alone, the six-
parameter model could be accepted as theoretically having
the smallest prediction error. However, the deterioration in
performance between the six- and three-parameter model
seems insignificant when considering that the FPEC likely
was too lenient on additional parameters. Among the re-
maining three parameters,Li appeared the least necessary
parameter. Mean FPEC increased by 4% if the median fit-
ted Li value (8 mm) was used. Together with the apparent
lack of predictability ofLi (no correlation with catchment
attributes or spatial correlation could be found), this may not
be enough basis to prefer the three-parameter model over the
two-parameter variant. Reducing the number of parameters
to one strongly deteriorated performance.

The SCS-CN technique is one of most widely used mod-
els to estimate event runoff, and shows some similarities with
the optimal model structure derived here. Therefore a direct
comparison of performance is of interest. Following an oth-
erwise identical approach, two commonly used versions of
the SCS-CN model were fitted to the event rainfall and runoff
estimates. The two parameter version with initial lossIa (in
SCS-CN notation, equivalent toLi) and maximum storage
S (equivalent toSmax) produced a mean FPEC of 1.82 mm
and a median NSME of 0.41. The values ofIa andS were
slightly negatively correlated (r =−0.20) rather than show-
ing the positive correlation expected (cf. Maidment, 1992;
Mishra and Singh, 2003; USDA-SCS, 1985). Converting the
optimisedS to curve numbers produced CN values that were
beyond the recommended range of 30–100 for 80 out of 260
stations. Fitting the one-parameter version, where it is as-
sumed thatIa = 0.2S, produced a FPEC of 1.80 mm and a
median NSME of 0.30. Converting the optimisedS values to
curve numbers suggested an average CN of 60 (standard de-
viation ±12), and CN values were within the recommended
range for 255 out of 260 stations.

It is concluded that the optimal two-parameter model se-
lected outperforms the SCS-CN method by 14–15% when

considering the mean FPEC (1.58 vs. 1.80–1.82) and more
so when considering the median NSME (0.61 vs. 0.30–0.41).
Therefore, at least for Australian conditions, Eq. (16) appears
an improvement when compared to the SCS-CN technique,
or indeed any of the other storm runoff modelsthat can be
expressed in terms equivalent to (12) or (13). Because the
main difference with the SCS-CN technique is the consider-
ation of groundwater storage dependent runoff response, it
follows that antecedent wetness conditions have demonstra-
ble predictive potential (cf. Beck et al., 2010).

4.2 Storm flow recession coefficient

Most catchments showed storm flow recession ‘half times’ of
about one day (kQF = 0.77 d−1) with the most rapid drainage
in dry catchments. This is consistent with the expectation
that storm flow under dry conditions would be predominantly
through infiltration excess overland flow during a small num-
ber of high intensity rainfall events. The 260 catchments var-
ied considerably in size (23 to 1902 km2) and because of as-
sociated differences in runoff travel time a relationship with
catchment size might have been expected. Regression anal-
ysis did not indicate any such relationship (r = 0.20). Pub-
lished methods to estimate surface travel times (Maidment,
1992) produce travel times between<0.05 day to ca. 0.5 day
for the catchment size range, and ca. 0.1 days for the median
333 km2 catchment. Compared to the derived recession half
times of around one day these numbers are small, and there-
fore it appears overland and channel storm flow routing is not
the main cause for the observed storm flow recessions. It is
concluded that storm flow recession is likely dominated by
the release of water that is temporary retained in the catch-
ment (e.g. in ephemeral water bodies, draining soil or fast
responding groundwater).

4.3 Initial loss

The range of estimates for initial loss (50% between 3–
19 mm, 90% less than 41 mm) agrees with the values re-
ported in literature (e.g. Tromp-van Meerveld and McDon-
nell, 2006). Values are also consistent with the SCS-CN ap-
proach: a common assumption in applying the method is that
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initial abstraction equals 0.2 of maximum retention (USDA-
SCS, 1985) and combining this with curve number estimates
of 60 to 90 (covering most of the range recommended for for-
est and grazing land) produces initial abstraction estimates of
6–34 mm.

Optimal values ofLi could not be predicted, but an ini-
tial loss of 8 mm caused little deterioration in model perfor-
mance. Trialling alternative values forLi suggested that val-
ues of 6–12 mm produced the best FPEC, but FPEC deterio-
rated by less than 2% for any value between zero and 19 mm.

Initial losses are a conceptual water balance component
covering a variety of processes, including rainfall retained
by vegetation canopy and other surfaces and subsequently
evaporated (typically in the order of 1–3 mm; e.g. van Dijk
and Bruijnzeel, 2001), losses to wet up a dry soil Surface, and
runoff retained in surface depressions that need to be filled
before catchment runoff occurs (technically not an initial loss
but likely to be lumped into it due to the model structure).

4.4 Maximum storage capacity

Between the three- and two-parameter model versions, the
optimisedSmax values changed by more than 20% for 41%
of stations. It is concluded that this parameter is rather poorly
constrained. Values ofSmax found through optimisation were
generally very high: 74% of stations had fitted values of more
than 600 mm, and the maximum bound set at 105 mm was
still suboptimal for 9% of stations. Such high values make
interpretation as a ‘maximum potential retention’ unrealis-
tic and call for another interpretation. When the ratioSmax
overPn attains high values, Eq. (15a) approaches the linear
relationship:

R ≈

(
(1−fsat)

Pn

Smax
+fsat

)
Pn (16)

For example, forSmax= 500 andPn = 50, the difference inR
calculated from Eqs. (15a) and (16) is 10%. Fitting Eq. (16)
to the data led to an overall deterioration in FPEC of 0.9%.
Although Eq. (16) was preferred for its more realistic limits,
it may be more conceptually appropriate to rewrite it in the
equivalent form:

R =

(
(1−fsat)

kP Pn

kP Pn +1
+fsat

)
Pn (17)

wherekP is a constant of proportionality that describes the
initial increase in runoff fraction with event precipitation.

More than once mechanism can be invoked to explain why
runoff fraction should increase with rainfall event, as implied
by Eq. (17). A rapid increase of temporarily saturated surface
area as more rainfall accumulates (e.g. because of a perched
water table) provides one possible explanation and has been
observed in field studies (Latron and Gallart, 2008; Tanaka,
1992). An alternative explanation is thatPn may function
as a surrogate for peak storm rainfall intensity; the key storm
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Figure 3. Relationship between catchment humidity index (H, the ratio of rainfall over 

potential evaporation) and the median estimated fraction of saturated area (exceeded half of 

the time). 
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Fig. 3. Relationship between catchment humidity index (H , the ra-
tio of rainfall over potential evaporation) and the median estimated
fraction of saturated area (exceeded half of the time).

characteristic if runoff is dominated by Horton overland flow.
For example, field studies in Indonesia demonstrated: (i) that
an effective depth-averaged rainfall intensity can be calcu-
lated for every storm from short intervals measurements; (ii)
that for a given site this index has strong predictive power to
estimate storm runoff coefficient; and (iii) that there appeared
to be an approximately linear relationship between storm
rainfall depth and intensity. These findings could be com-
bined to produce a theory linking event rainfall and runoff co-
efficient with a functional form that in fact closely resembles
that of Eq. (17) and explained observed runoff from study
plots of a range of sizes (<1 to 40 000 m2; van Dijk et al.,
2005a, b; Van Dijk and Bruijnzeel, 2004). The spatially vari-
able infiltration model underlying the theory was originally
developed and validated for sites in Australia and several
southeast Asian countries (Yu et al., 1997) while the intra-
storm rainfall intensity distribution has been shown equally
valid for Australia (Surawski and Yu, 2005). In summary,
the relationship between event size and runoff fraction can
be explained by expansion of the saturated area during the
storm, or the statistical relationship between event size and
peak intensity, or a combination of both.

4.5 Saturated area coefficient

Antecedent baseflow proved a good predictor of storm runoff
response. This would not surprise if saturation overland flow
associated with groundwater (or other slowly draining stores)
is an important runoff generating mechanism. The potential
importance of this mechanisms has been recognised since the
1960s (Cappus, 1960, reproduced in Beven, 2006; Dunne
and Black, 1970; see also recent review in Latron and Gallart,
2008).

To assess whether the saturated areas implied by the model
simulations were realistic, the apparent median fraction of
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Figure 4. Examples of event runoff predicted by the optimal three-parameter model against 

event runoff inferred from streamflow observations. Shown are results for those gauges with 

the median NSME (gauge 129001), worst (318311) and best (222009) plotted on (a) linear 

scale and (b-d) double logarithmic scale. 
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Fig. 4. Examples of event runoff predicted by the optimal three-parameter model against event runoff inferred from streamflow observations.
Shown are results for those gauges with the median NSME (gauge 129001), worst (318311) and best (222009) plotted on(a) linear scale and
(b–d) double logarithmic scale.

saturated area (fsat) was estimated for each catchment by
combining the optimisedCSg value with the groundwater
storage (Sg) estimated from the median baseflow rate in the
time series with Eq. (15c). The resultingfsat was less than
5% of the area for 72% of the catchments. Values were pos-
itively correlated to catchment humidity (r = 0.61; Fig. 3).
Values greater than 20% were calculated for 14% of catch-
ments. For some of these, humidity was high and there-
fore the estimated values may still be realistic. For some
others total runoff was suspiciously high (Q/P>0.4), sug-
gesting potential errors in estimated rainfall, streamflow or
catchment area that were compensated by highfsat esti-
mates. In the remaining cases, presumably saturated area
was overestimated and the associated overestimate of satu-
ration runoff compensated by an underestimation of infiltra-
tion excess runoff. This further highlights the uncertainty in
model parameter estimation.

The power of baseflow in explaining runoff response does
not necessarily imply that water storage in the unsaturated
zone, and in the soil in particular, has no effect on runoff re-
sponse. Previous analysis using satellite-observed wetness of
the top few cm of soil showed little value in predicting runoff
response in Australian catchments: effectively, the dynam-

ics in these shallow observations were much more rapid than
those observed in surface runoff response, which increased
more gradually during the course of the wet season in phase
with baseflow (Liu et al., 2007; Beck et al., 2010). It may
be that deeper soil moisture still plays a role in determining
runoff response, however, for example by influencing rapid
sub-surface pathways that allow infiltrated water to generate
return flow. Without any direct observations or reliable es-
timates of root zone soil moisture content this could not be
investigated. Field observations or soil water content esti-
mates produced by a hydrological model may help to asses
this in future.

4.6 Sources of uncertainty

The choice of parameter estimation method and formulation
of model error are potential sources of uncertainty. In the
discussion version of this paper (Van Dijk, 2009) the sum
of absolute rather than squared errors was used to estimate
FPEC and to optimise parameter values. This yielded the
same optimal model structure and overall conclusions, even
though optimised parameter values did vary.
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Example median, poor and good results are shown in
Fig. 4. In this case, the poorest model result (Fig. 4d) can
be attributed to the lack of large runoff events, correspond-
ing to low annual QF (27 mm) and rainfall (521 mm). While
poor model performance was generally associated with drier
catchments, the reverse was not always true and some of
the best model performances were also found for dry catch-
ments. Comparison against catchment attributes showed that
the FPEC (i.e. the standard error of estimate) was strongly
correlated with annual average QF (r = 0.77).

Expressing model performance in model efficiency
(NSME; equivalent to normalising FPEC by the observed
variance) removed the correlation with annual average QF
(r = 0.11) and rainfall (r = 0.13). The best two and three pa-
rameter models had an average NSME of 0.62 and 0.67 for
event runoff when weighted by observed variance in the 260
records, and median values of 0.61 and 0.64, respectively
(Table 2). Previous catchment modelling studies using some
of the stations analysed here found similar median NSME
values of 0.60–0.75 in calibration (e.g. Viney et al., 2009;
Zhang and Chiew, 2009). However, in those cases NSME
was not penalised for the number of free parameters and
more importantly, NSME related to daily streamflow time
series rather than event runoff. An estimate of the achiev-
able NSME had the optimal runoff structure been incorpo-
rated within a catchment model, was obtained by adding the
observed baseflow time series to the observed and modelled
event runoff totals. This increased median NSME to 0.71.

The semi-variogram suggested that about 31% of the vari-
ation in NSME was correlated over spatial scales of ca.
400 km, and some degree of clustering of catchments with
similar model performance is apparent in Fig. 1: model per-
formance appears comparatively poorer in the coastal areas
of southwest West Australia, western Victoria and western
Tasmania and in inland News South Wales, and better along
the eastern sea board. None of the catchment attributes ap-
peared a good predictor of NMSE. The higher correlations
suggested poorest performance in catchments with alluvial
geomorphology, low rainfall intensity, low relief and low tree
cover, but in all casesr was a modest 0.25–0.30.

The quality of rainfall data is expected to be the main con-
straint on runoff estimation. The event rainfall data used in
the current analysis were based on interpolation of daily rain-
fall gauge data, and Fig. 1 suggests that at least some of the
catchments with poor model performance are found in ar-
eas with very sparse rainfall gauging, although a statistically
meaningful relationship could not be established. The lack
of data on (and hence consideration of) intra-storm rainfall
intensity is another likely degrading factor. Although rainfall
intensity is correlated to event rainfall depth, the relation-
ship is not direct and intensity differences between storms
of equal total depth can be more than an order of magni-
tude (e.g. Van Dijk and Bruijnzeel, 2004). Current develop-
ments in event rainfall and rainfall intensity estimation from
ground-based radar and remote sensing should help address

both constraints in future and allow improved runoff estima-
tion, at least in gauged catchments.

5 Conclusions

Streamflow data for 260 Australian catchments were used
to evaluate the performance of alternative conceptual storm
runoff models and derive a model of appropriate simplicity.
Event rainfall and runoff was estimated by baseflow separa-
tion; a storm flow recession coefficientkQF was calculated
from the daily storm flow data and used to estimate event
runoff. Four model structures with a maximum of six free
parameters were investigated, covering most of the model
equations used in existing lumped catchment runoff models.
The following conclusions are drawn:

1. A non-linear response model with two or three parame-
ters provides the optimal model structure for modelling
event storm flow in Australian catchments. The op-
timal model produced a median Nash-Sutcliffe model
efficiency (NSME) for event runoff of 0.64 across all
records.

2. The SCS-CN technique had a similar functional form
but had an error 14–15% larger and NSME of 0.30–
0.41. The difference can be attributed to the predictive
value of antecedent baseflow.

3. Of the three model parameters in the optimal model
structure, one related event runoff to storm size (Smax)
and another related runoff to groundwater storage esti-
mated from antecedent baseflow (CSg). A third param-
eter described initial rainfall losses (Li) but could be set
at 8 mm without affecting model performance too much.
A fourth parameterkQF, the storm flow recession coef-
ficient, related event runoff to daily storm flow and was
calculated directly from streamflow records rather than
optimised.

4. Of the total variance inkQF values among stations, 64%
could be explained by climate indicators and spatial cor-
relation. The scope to estimate the other parameters
in gauged catchments appeared limited; fractions ex-
plained were a modest 45% forCSg and 21% forSmax,
while none of the variation inLi could be explained.

5. More accurate estimates of event rainfall depth and rain-
fall intensity are likely to be prerequisite to further in-
crease model performance in gauged catchments.
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