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Abstract. An appropriately simple event runoff model for 1 Introduction

catchment hydrological studies was derived. The model was

selected from several variants as having the optimum balancEstimating catchment streamflow where or when it is not ob-
between simplicity and the ability to explain daily obser- served is a well established field of hydrological research
vations of streamflow from 260 Australian catchments (23—(€.9. Sivapalan et al., 2003). Accurate prediction requires an
1902 kn?). Event rainfall and runoff were estimated from the appropriate model structure and methods to estimate model
observations through a combination of baseflow separatiofparameters. There is a well-known trade off between, on one
and storm flow recession analysis, producing a storm flowhand, using a simple model that does not describe the avail-
recession coefficienkgr). Various model structures with up ~ able data well and, on the other, using a complex model that
to six free parameters were investigated, covering most ofontains too many similar equations to reliably estimate their
the equations applied in existing lumped catchment modelsparameters (the “equifinality” problem; Beven, 1993).

The performance of alternative structures and free parame- This study revisits the question posed by Jakeman and
ters were expressed in Aikake’s Final Prediction Error Cri- Hornberger (1993): Mow much complexity is warranted in
terion (FPEC) and corresponding Nash-Sutcliffe model ef-a rainfall-runoff model?. However, where those authors fo-
ficiencies (NSME) for event runoff totals. For each model cused on the number of linear or parallel stores that best de-
variant, the number of free parameters was reduced in stepgcribed the delayed release of water from a catchment, the
based on calculated parameter sensitivity. The resulting opticurrent study focuses on the optimal functional form of the
mal model structure had two or three free parameters; the firstet of equations used to estimate what part of event precipi-
describing the non-linear relationship between event rainfalltation is converted into storm runoff. The scope of this study
and runoff §may), the second relating runoff to antecedent is limited to hydrological models with process equations that
groundwater storageC(s,), and a third that described initial operate on a daily time step and describe the behaviour of
rainfall losses L;), but which could be set at 8 mm with- catchments rather than (segments of) hillslopes. Many such
out affecting model performance too much. The best threeso-called ‘lumped’ models have been proposed (reviewed in
parameter model produced a median NSME of 0.64 and oute.d. Beven, 2004; Bkchl, 2005; Maidment, 1992) and are
performed, for example, the Soil Conservation Service Curvewidely used as a comparatively parsimonious, pragmatic ap-
Number technique (median NSME 0.30-0.41). ParameteProach to estimating streamflow generation under historic,
estimation in ungauged catchments is likely to be challeng-scenario or forecasted conditions.

ing: 64% of the variance ittor among stations could be ~ The equifinality problem is particularly prominent in
exp|ained by catchment climate indicators and Spatia| CorreCatChment storm runoff estimation, since alternative runoff
lation, but corresponding numbers were a modest 45% fo@eneration processes can produce essentially the same
Csg, 21% for Smax and none fotL;, respectively. In gauged streamflow patterns at the catchment outlet. Storm runoff can
catchments, better estimates of event rainfall depth and inbe generated by a combination of infiltration excess runoff,
tensity are ||ke|y prerequisites to further impro\/e model per- runoff from saturated zones, subsurface storm flow and direct
formance. rainfall onto water bodies, and even in highly instrumented
field experiments the alternative mechanisms can be diffi-
cult to distinguish (see contributions in Kirkby, 1978; Beven,
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Reflecting this ambiguity, the various existing rainfall- — Equivalent to (1), representing the functional rela-
runoff models make different, often implicit, assumptions tionship between storm size and return flow fraction, in
about the significance or insignificance of alternative runoff which caseS represents maximum soil storage capacity
processes. A generic set of equations that captures most (while fsa3:=0 andf; =1).

thresholds and variables may be: ) . . . .
— Equivalent tofsa, representing a functional relationship

R = fsatPn + (1= fsa) Pn — I + Rretumn (1) between storm size and saturated catchment area that
P, =max(0, P —L;) = (1— f,) P ?) could arise if cumglative infiltration or run-off/run-on
processes lead to increase of the saturated area over the
I=fiP, 3) course of a storm, wher, might be a proxy for cumu-
lative infiltration or actual runoff, and a proxy of the
Rreum= (1= fo)1 ) efficiency of soil and catchment drainage (in which case
whereR is runoff, P, net rainfall, I net infiltration into the fn=1andf;=0).

soil, Ryeturn return flow from the soil (all inmm per event

ormm d), and fsa the fraction saturated area, is of- Elaborations of the SCS-CN method that implicitly or ex-

plicitly assume one of these three underlying explanations

ten expressed as total rainfall less an initial ldgs(mm S . .
| €XP : dss(mm) : rgor a combination) do exist, for example by relatifitp land
which may be conceptualised as a constant or a proportio . - e .
cover or soil conditions, or by modifyin§ as a function of

f» (or a combination of both) and assumed to represent infil- .
3 . . antecedent rainfall or groundwater storage (for examples of
tration and/or evaporative losses. The fractjgrrepresents

: : . S both see Maidment, 1992; Mishra and Singh, 2003). Pre-
the fraction of net rainfall on unsaturated soil that infiltrates, sumablv the effectiveness of these elaborations will depend
and f; the fraction off that can be retained in the soil. y P

This generalised model is usually simplified one way or °" dominant runoff processes.
9 aty P y The same point could have been demonstrated with other
another, for example, by assuming th@ts f., f1 or fs

are either negligible or equal to unity (e.g. Bergatr 1992: lumped runoff models, but this study does not attempt to ad-

Chiew et al., 2002). It may also be made more complicatec?reSS the ambiguity in interpreting r_nodels, Wh'C.h requires
: ; : . . ield study. However, the examples given emphasise the risks
by introducing further functional relationships, for example

X . in increasing model complexity (adding processes, equa-
expressingfsatas a function of groundwater level or storage, .. . a2 :
‘ ) . . . tions, parameters) without a solid justification through im-
or expressingf; as a function of storm size or rainfall inten-
. : . . proved model performance. To date, there does not appear
sity and/or soil water content, or expressifigas a function

. : " to have been a comprehensive and formal statistical analy-

of actual and maximum soil water storage. Additionally, one . . :
: : . sis to assess what is an appropriately simple model to de-
or several of the variables in these equations may be repre-

R : scribe the relationship between event precipitation and event
sented by spatial distribution functions, for example to rep- . )
. S : runoff at catchment scale. Since dominant runoff processes
resent sub-grid variability in coarse resolution land surface

models (e.g. Bonan, 1996; Liang et al., 1994; Liang and Xie,are expepted to vary between catchments .o.f different sgb-
i D strate, climate and land use, it would be anticipated that dif-
2001; Oleson et al., 2004). Each addition introduces further, -
. ; ferent model structures may perform better in different catch-
assumptions and, importantly, model parameters. ments
An illustration of the ambiguity in model interpretation . i
) . The aims of the study were as follows:
due to the multitude of equivalent storm runoff processes
is provided by considering the widely used Soil Conserva- _ Test several alternative versions and simplifications of
tion Service Curve Number method (SCS-CN; USDA-SCS, the generalised storm flow model expressed in Eq. (1)

1985). It can be recast in a form somewhat similar to Eq. (1) for their performance in reproducing estimated event

as: storm flow from 260 catchments across Australia.
P :
R=PF, <P A S) (5) — Assess the appropriate balance between the number of
N + _ _ _ free parameters and model performance, by considering
Where § is notionally the maximum retention after runoff an information criterion as well as correlation between

begins (mm). The SCS-CN model was derived empirically  different parameters that may be indicative of equiva-
however, and when comparing the second term of Eq. (5)to  lence.

Egs. (1-4) it can be interpreted in several ways:
— Assess to what extent model parameters can be pre-

— Equivalent to (1+,), representing the functional rela- dicted in ungauged catchments from catchment at-
tionship between storm size and fraction rainfall in ex- tributes and spatial correlation.

cess of infiltration capacity, in which cag® could be _ S _
interpreted as a proxy for rainfall intensity asdas a ~ Following Occam’s Razor, the null hypothesis in this study is
proxy for maximum infiltration rate (whilgfsgr=0 and  that the model with the smallest number of parameters pro-

£ =0). vides the best predictions.
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Fig. 1. Map showing the location of the stations for which data were analysed. The relative size of the inner dot corresponds to the Nash-
Sutcliffe model efficiency (attained with the best three-parameter model and corrected for the humber of free parameters). The distribution
of gauges underpinning the interpolated rainfall product is indicated (for an arbitrary day in 2005).

2 Methods rived by interpolation of station data (Jeffrey et al., 2001). Of
the rain gauges used in interpolation, on average there were
2.1 Data three (range 0-22) inside or within 5km of each catchment.

The range of average annual rainfall for the catchment sam-
Daily streamflow data (in MLd") were collated for 362  ple was 317-2983 (median 851) mmy precipitation other
catchments across Australia as part of previous studies (Pe@han rainfall was not important. Priestley-Taylor potential
et al., 2000; Guerschman et al., 2008, 2009). StreamfloweyapotranspirationHp) was 6512417 (1254) mnmy and
data for these selected catchments were considered of satigatchment humidity &, the ratio of average rainfall over av-
factory quality and any influence of river regulation, water erageE) was 0.13-3.48 (0.68). The data set includes catch-
extraction, urban development, or other processes upstreafents under native forest, catchment fully cleared for graz-
considered unimportant. Large lakes or wetlands do not ocing, and catchments with a varying combination of cropping,

cur in any of the catchments, but smaller impoundments camyrazing, plantation forestry and native vegetation.
occur. From the data set, those records were selected that had

good quality observations for at least five years during the pe2.2  Streamflow analysis

riod 1990-2006 and no less than 50 runoff events (defined as

an increase in streamflow from one day to the next). The streamflow data were separated into time series of daily
The selected 260 stations were located in southwest Weststimated baseflow (BF @gr) and quick flow (QF oQgF)

Australia, Tasmania, and coastal regions of the eastern statdsyy combining forward and backward recursive linear reser-

(Fig. 1). The contributing catchments of all gauges were de-voir baseflow filter as described in Van Dijk (2010). It was

lineated through digital elevation model analysis and visualassumed that the estimated QF represents the sum of all

quality control. Catchment areas varied between 23-190&torm runoff processes and BF the delayed groundwater dis-

(median 333) krh. charge, but it is noted that the hydrograph per se cannot pro-
Daily streamflow volumes were converted to streamflow vide evidence for this interpretation.

depths Q,mmd1) and varied from 2 to 1937 (median Estimating event runoff from daily storm flow totals re-

114)mmyl. Catchment-average daily precipitation was quires an additional step that considers the storm flow reces-

calculated using a gridded 0.0%recipitation product de- sion. To estimate the storm flow recession constagg)(
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from the storm flow time series, all days=i showing a 2.3 Evaluation of alternative model structures
storm flow peak were identified, that is, all days for which
Q0or(i—1)< Qor(i) > Qqr(i+1). For each station a weighted For each of the model variants that was tested, the most com-

average storm flow recession constant was calculated followPlex model (that is, the one with the maximum number of pa-

ing the theory for a linear store (cf. Van Dijk, 2010) as: rameters) was gradually simplified based on parameter sen-
sitivity analysis, and the corresponding change in prediction
> Qor(i+1) error was calculated. The basic model structure tested had
kgr=—In| /=—~—+— (6)  the form (cf. Egs. 1-4):
> 0qr()
. . . . Py=max(0,P—Cy) (10)
Total event rainfallP (i) for the event peaking on day=i
was subsequently estimated as: (C2P,)C3
=|——~+ | (11)
: Pn + C4
1
Peo () 2;22,-_:2]3 @) whereC1, C2, C3 andCy are all optionally free parameters.

Each of these parameters can be effectively omitted by giv-
wherer=i—2 was chosen to account for the fact that the iNd ita value of either zero or unity. For exampi&, = 0 sim-

recorded rainfall event and the peak in storm flow were oc-Plifies the equation to a power function 8f, while in addi-
casionally separated by up to two days due to the differenfion C3=1 produces a constant runoff fraction, aigd=0re-
times of rainfall and streamflow recording (09:00a.m. andMOVves the rainfall threshold before runoff is produced. With
24:00 p.m., respectively). Total event rundffi) was esti- €3 =1andC2=1the equation mirrors the SCS-CN model. To
mated as: test whether model performance was further improved if the

model took into account the effect of antecedent groundwater

tn storagesS, the following modifications were also tested:
R@)= ) Qor+Sr(tn) ®) ca
=i—2 Pn .

; t R= u(l—fsat)‘f‘fsat P, with (12)

Z QoF(t, +1) Py +Cy
_ Q
= 2,0 o iod

t=i—2 - Xp(_ QF) fsatz maX(l, C5SgC6>

wheret, is the day on whichQgr(#,) is ten times less than and

QorF(i). This was done to avoid inclusion of storm runoff c3

from subsequent rainfall events. The tes(z,) is the esti-  p _ [(CZPn) } P, with (13)

mated storm runoff still in storage at the end of daypased Py + Smax

on linear reservoir theory. . c6
Several studies have found that runoff response jgomax= C4m|n(0,1—C5Sg )

pf’s'“"e'y relateéi to gro(ljmdwater Ief\llel measurements InWhereC5 andCe are again parameters that could be fitted or
piezometers and antecedent streamflow rates (e.g. Dunng.qciied values of zero or unity. It follows that the most
and Black, 1970) and this was also observed for several Aus(:omplex models had six free parameters

trlalign c;tcgmints (f'gé Lit(’) et _?#: 2007;FiaeArallncibia}bet q To assess the trade-off between the number of free model
al., 2007; Beck et al., 2010). Is Is commonly attributed oo meters and the improvement in model performance,

to the growth of saturated areas as groundwater rises. To aﬁ\kaike’s Final Prediction Error Criterion (FPEC; Akaike,

low inclusion of this corcrjeflatlonhm ;h(_el mbodelhgroundwater 1970) was used. FPEC represents the expected prediction
storages, was estimated from the daily baseflo@gr) €S- o1 that would result were the model tested on a different

timates as: data set, and is calculated as the product of the prediction er-
Osr (i) ror (¢) and a penalization factor that considers the degrees of

Sg(i)= T o k) (9) freedom ¢, the number of free parameters) in comparison to
exp(—ksr) the number of observations)¢

wherekgr is the baseflow recession constant. Valuesof 1+d /n

on the first day of each runoff event were used as an estimaté P EC = 1—d/n£ (14)

of antecedent groundwater storafjgi) before runoff event

i. Due to the method of baseflow separation these value3he errore was estimated as the mean squared error between
were estimated from the preceding baseflow recession with abserved and modelled event runoff estimates. It was found
forward filter and therefore not influenced by the storm flow by optimising the free model parameters with minimgm
event itself (cf. Van Dijk, 2010). as objective function. Latin Hypercube Sampling was used
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to find a near-optimal parameter set for each model variantis influenced by the definition of in Eqg. (14). The number
The number with draws was 4@but with a minimum of 18 of observed runoff events was used here, implying that on av-
and a maximum of 19), after which the optimal parameter erage an improvement of 0.32% would be required for an ad-
set was found with a Nelder-Mead Simplex search. ditional parameter to be accepted. Had the number of rainfall
The value ofn was calculated as the number of rainfall events been used instead, the improvement would only need
events used to fit the model. In principle, the model with to be 0.09% on average. Conversely, however, typically only
the lowest FPEC should be adopted. However, Schoups etome 10 to 20 events produced the large majority of runoff
al. (2008) pointed out that Eqg. (14) assumes ihatd and  and variance in the runoff (Fig. 4a); if this number had been
may lead to underestimates of prediction error and favourused instead the improvement would need to be in the order
overly complex models. This caveat was considered wherof 10—-20%.
interpreting FPEC values. Nash-Sutcliffe model efficiency The best results obtained with all model variants using be-
(NSME; Nash and Sutcliffe, 1970) is arguably the most com-tween six and one parameter are listed in Table 1. Equa-
mon metric to express runoff model performance in calibra-tion (12) provided the best results among the alternative
tion (despite some undesirable properties; Legates and Mamodel structures tested. Table 1 suggests that the six pa-
Cabe, 1999; Criss and Winston, 2008). As it can be calcurameter model has the best predictive power, but for reasons
lated from the mean squared error, an adjusted NSME fomentioned this small difference is not a robust result. Model
prediction could be calculated from the FPEC and was usegberformance appeared to remain very similar as the number
in interpretation. of fitting parameters was reduced to three. FPEC increased
Another factor to consider in deciding the optimal model slightly as the number of parameters was reduced to two (by
structure was correlation between fitted parameters, witt0.2% and 4.1% in median and mean FPEC, respectively), but
high correlations being indicative of parameter equivalenceincreased much more if the number of parameters was fur-
The parametric and non-parametric (ranked) coefficient ofther reduced to one. The two- and three-parameter model
correlation ¢ andr*, respectively) between fitted parameters variants produced similar NSME values (Table 1; based on
was considered an indicator of possible equivalence betweeaalculated FPEC and hence also allowing for the number of

model parameters. free parameters). The main differences occur for catchments
_ . with overall low model performance (Fig. 2).
2.4 Spatial predictors of model parameters An interpretative notation for the three and the two param-

. ) N eter version of Eq. (12) could be:
The procedure described in Van Dijk (2010) was used to as-

sess the predictability of calculated valueskgk and the _ P, 1 p 154
fitted parameter values of the optimal model. The anal-" — Pn+Smax( ~Jsad ) P (153)
ysis involved statistical analysis of parameteric and non-
parameteric correlation coefficientsgndr,) with a variety with
of catchment attributes, including catchment geology; mor-

. . e = P—L; 1
phology (size, mean slope, flatness); soil characteristics (satI—J” max(O, i) (15b)

urated hydraulic conductivity, dominant texture class value, gnd

plant available water content, clay content, solum thickness);

climate indices P, Eo, H, remotely sensed actual evapotran- fsat=max(1,Cs;Sy) (15¢)
spiration, average monthly excess precipitation); and land , , ) .
cover characteristics (fraction woody vegetation, fractionsWheréSmax(mmyis maximum storage capacity, (mm) ini-
non-agricultural land, grazing land, horticulture, and broadti@! 10ss, andCs, (mm™) saturated area coefficient. The
acre cropping, remotely sensed vegetation greenness). Fofefinition of Smax is similar but slightly different from the
lowing this correlation analysis, any spatial correlation in the SCS-CN model (Eg. 5).

residual variance was analysed by fitting semi-variograms3 2 Parameter values and predictability

Further details on the data sources and procedures can bé

found in Van Dijk (2010). Correlation among parameters decreased as the number of

free parameters was reduced. For the six-parameter model,

3 Results the highest absolute value ofr*) between parameters was
0.39 (0.40), and gradually reduced to 0.29 (0.25) for the
3.1 Optimal model structure three parameter model, and 0.12 (0.04) for the two param-

eter model, respectively. The highest correlation in the three
The average station record included 2178 storms (range 691parameter model was between optimised values odnd
3734). Of these, 19% (2-51%) produced storm flow, result-C,; correlation withSmax was small [r| <0.15).
ing in an average 631 (30-1005) events. The reduction in Statistics of the distribution of optimised values for the
prediction error that is required to accept another parametebest three parameter model Eq. (12) are listed in Table 2.
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452 A. 1. J. M. van Dijk: Selection of an appropriately simple storm runoff model

Table 1. Change in predictive model performance as the number of free parameters is reduced from six to one. Listed are Final Prediction
Error Criterion (FPEC) and adjusted Nash-Sutcliffe Model Efficiency (NSME) calculated from it. All values relate to the best performing
model structure.

Number of model parameters

Six five four three two one

median FPEC (mm) 091 093 092 093 093 143
mean FPEC (mm) 149 152 152 152 158 252
mean NSME 064 062 062 061 0.49-4.11

median NSME 0.66 064 064 064 061 043

variance-weighted NSME  0.68 0.67 0.67 0.67 0.62 0.03

Table 2. Descriptors of the distribution in parameters of the preferred model variants: the storm flow recession colacﬁif:i@ehtl)

calculated directly from the observations, and optimised model parameters initia} Iasn), maximum storage capacifihax (in 103 mm),
and saturated area coefficieg, (in 10-3mm=1).

Symbol kQF L; Smax ng

Unit - mm 1mm  103mm?
Median 0.76 7.68 1.34 16.16
Mean 0.77 16.41 16.54 31.69
CvV 31% 151% 207% 138%

25-75%range 0.60-0.91 2.71-18.93 0.53-4.3 5.27-38.29
10-90% range 0.49-1.08 0-41.44 0.25-100 1.17-72.95

1.00 ; ; tion of catchment under non-agricultural covey £ —0.45).
| — 3 free parameters The highestkgr values (i.e. fastest recessions) occurred in
— 2 free parameters dry catchments. The strongest regression equation was a lin-
0.75 |

ear function ofEg, explaining 23% of the variance. Another
41% of the variance was spatially correlated over distances
of ca. 300 km; the remaining 36% of variation was left unex-
plained (Table 3).
! ! None of the catchment attributes correlated withand a
025 &N - predictive regression equation could not be established. The
1 1 strongest correlation found was with depth-averaged rainfall
! ! intensity ¢* =0.31). There was also no obvious spatial cor-
0.00 1 ‘ 1 relation.
0% 25% 50% 5% 100% Similarly, no catchment attribute correlated wisihax.
Percentage of catchments The strongest correlation found was with the coefficient of
variation in monthly rainfall £*=0.33). About 21% of the
Fig. 2. Cumulative distribution of Nash-Sutcliffe model efficiency variance in (log-transformed).&x values appeared corre-
(NSME) for the model variants with three and two free parameters|ated over lengths of 1000 km or more.
respectively. Finally, the saturated area coefficietts, inmm-t
showed correlation with catchment climate indices such as

Th f vari b . h d b AMEP (r* =—0.52), average rainfall-{ = —0.48) and catch-
e amount of variance between stations that could be exz .+ humidity ¢*=—0.44). The best regression equation

plai_ned by catchment gttributes and the fractiop of residual?\:vith AMEP) still only explained 13% of the variance how-
variance that was spatially correlated are listed in Table 3.

) ) *ever. About 32% of the variance appeared spatially corre-
Values of kor showed correlation with catchment cli-

e .. lated over distances of ca. 200 km.
mate indicators, such as average monthly excess precipita-

tion (AMEP, r* = —0.52), potential ET Eg, r =0.50) and hu-
midity (H, r,=-0.49), and some correlation with the frac-

0.50 -

Corrected NSME
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Table 3. Summary of the analysis of variance in parameter values derived from fitting the optimal runoff model to event runoff estimates from
the 260 catchments. Listed are the fraction of variance explained by catchment attributes, the residual variance showing spatial correlation
and the remaining unexplained variance. Also listed are the range (km) of the fitted semi-variograms.

Fraction of variance

Variable Symbol Attributed  Spatially correlated  Unexplained Range (km)

Storm flow recession coefficient d) koF 23% 41% 36% 300

Initial loss (mm) Li 0% 0% 100% 300

Maximum catchment storage (mm)  Smax 0% 21% 79% 1000

Saturated area coefficient (nrh) Csg 13% 32% 55% 200
4 Discussion considering the mean FPEC (1.58 vs. 1.80-1.82) and more

so when considering the median NSME (0.61 vs. 0.30-0.41).

4.1 Optimal storm runoff model structure Therefore, at least for Australian conditions, Eq. (16) appears

an improvement when compared to the SCS-CN technique,
Based on the calculated FPEC values alone, the six0r indeed any of the other storm runoff modtist can be

parameter model could be accepted as theoretically havingxpressed in terms equivalent to (12) or (13). Because the
the smallest prediction error. However, the deterioration inmain difference with the SCS-CN technique is the consider-

performance between the six- and three-parameter modéition of groundwater storage dependent runoff response, it
seems insignificant when considering that the FPEC likelyfollows that antecedent wetness conditions have demonstra-
was too lenient on additional parameters. Among the reble predictive potential (cf. Beck et al., 2010).

maining three parameters,; appeared the least necessary _ .

parameter. Mean FPEC increased by 4% if the median fit4-2 Storm flow recession coefficient

ted L; value (8mm) was used. Together with the apparentMost catchments showed storm flow recession ‘half times’ of
lack of i ility of L; lati ith h . . .
ack of predictability ofL; (no correlation with catchment about one daykr=0.77 a1 with the most rapid drainage

attributes or spatial correlation could be found), this may not. L . ) .
b ) Yo% dry catchments. This is consistent with the expectation

be enough basis to prefer the three-parameter model over t % t storm flow under drv conditions would be predominantl
two-parameter variant, Reducing the number of parameter ?oj ?1 infiI?rat:Jon :xce)s/:gverlz:njflo(\)/\lljduri?]p:sr%all r?umy
to one strongly deteriorated performance. g 9

. . . ber of high intensity rainfall events. The 260 catchments var-
| The S(.:S'CN technlquefzfls ogehof most Wlde_ly_lus_e_d mo_d'ied considerably in size (23 to 1902 Rjrand because of as-
els to estimate event runoff, and shows some similarities W'thsociated differences in runoff travel time a relationship with

the optimal model structure derived here. Therefore a direct. ., .1, ant size might have been expected. Regression anal-
comparison of performance is of interest. Following an oth- i

R . . sis did not indicate any such relationship=(0.20). Pub-
erwise identical approach, two commonly used versions ofy y I )

the SCS-CN model fitted to th t rainfall and ﬁlished methods to estimate surface travel times (Maidment,
€ -~ modetwere Titted 1o Ine event raintait and runo 1992) produce travel times betwee®.05 day to ca. 0.5 day
estimates. The two parameter version with initial Iégs$in

. : . for the catchment size range, and ca. 0.1 days for the median
SCS'C.N notation, equivalent tb;) and maximum storage 333 knt catchment. Compared to the derived recession half
N (equwalept 10Smax) produced a mean FPEC of 1.82mm times of around one day these numbers are small, and there-
and a mEd'an NSME of 0.41. The valuesipfand S were fore it appears overland and channel storm flow routing is not
slightly negatively correlated-E —0.20) rather than show-

q th i lati rod (cf. Maid : 1992_the main cause for the observed storm flow recessions. It is
ing the positive correlation expected (cf. Maidment, 'concluded that storm flow recession is likely dominated by

Mis_hr_a and Singh, 2003; USDA-SCS, 1985). Converting thethe release of water that is temporary retained in the catch-
optimisedsS to curve numbers produced CN values that were ent (e.g. in ephemeral water bodies, draining soil or fast

beypnd the_rgcommended range of 30—1QO for 80 ou} qf 26 esponding groundwater).

stations. Fitting the one-parameter version, where it is as-

sumed that/, =0.2S, produced a FPEC of 1.80mm and a 4 3 |nitial loss

median NSME of 0.30. Converting the optimisgdalues to

curve numbers suggested an average CN of 60 (standard dehe range of estimates for initial loss (50% between 3—

viation +12), and CN values were within the recommended 19 mm, 90% less than 41 mm) agrees with the values re-

range for 255 out of 260 stations. ported in literature (e.g. Tromp-van Meerveld and McDon-
It is concluded that the optimal two-parameter model se-nell, 2006). Values are also consistent with the SCS-CN ap-

lected outperforms the SCS-CN method by 14-15% wherproach: a common assumption in applying the method is that
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initial abstraction equals 0.2 of maximum retention (USDA- 1

SCS, 1985) and combining this with curve number estimates oo

of 60 to 90 (covering most of the range recommended for for- 01 4 Sy 2 L

est and grazing land) produces initial abstraction estimates of ' o

6-34mm. € foar = 0.0188H *°*
Optimal values ofZ; could not be predicted, but an ini- £ 001 - 22031

tial loss of 8 mm caused little deterioration in model perfor- »éw’

mance. Trialling alternative values fér suggested that val- 3 0.001 -

ues of 6-12mm produced the best FPEC, but FPEC deterio-2

rated by less than 2% for any value between zero and 19 mm 0.0001 -
Initial losses are a conceptual water balance component

covering a variety of processes, including rainfall retained

by vegetation canopy and other surfaces and subsequentl 0.00001 o 1 2 3 .

evaporated (typically in the order of 1-3 mm; e.g. van Dijk

and Bruijnzeel, 2001), losses to wet up a dry soil Surface, and
runoff retained in surface depressions that need to be filled . _ o
before catchment runoff occurs (technically not an initial loss Fig. 3. Relationship between catchment humidity indé (he ra-

. . . tio of rainfall over potential evaporation) and the median estimated
but likely to be lumped into it due to the model structure). fraction of saturated area (exceeded half of the time).

H

4.4 Maximum storage capacity

characteristic if runoff is dominated by Horton overland flow.

Bor example, field studies in Indonesia demonstrated: (i) that
an effective depth-averaged rainfall intensity can be calcu-
Yated for every storm from short intervals measurements; (ii)
that for a given site this index has strong predictive power to
estimate storm runoff coefficient; and (iii) that there appeared
to be an approximately linear relationship between storm
rainfall depth and intensity. These findings could be com-

Between the three- and two-parameter model versions, th
optimisedSmax values changed by more than 20% for 41%
of stations. Itis concluded that this parameter is rather poorl
constrained. Values dfnax found through optimisation were
generally very high: 74% of stations had fitted values of more
than 600 mm, and the maximum bound set atrhén was
still suboptimal for 9% of stations. Such high values make

interpretation as a ‘maximum potential retention” unrealis- bined to produce a theory linking event rainfall and runoff co-

tic and call for another interpretation. When the raffjgx efficient with a functional form that in fact closely resembles

over P, attains high values, Eq. (15a) approaches the IIneaEhat of Eq. (17) and explained observed runoff from study

relationship: plots of a range of sizes<(1 to 40000 rd; van Dijk et al.,
P 20054, b; Van Dijk and Bruijnzeel, 2004). The spatially vari-
R~ ((l— Ssap S z +fsat) Py, (16) able infiltration model underlying the theory was originally
max developed and validated for sites in Australia and several

For example, foSmax= 500 andP, =50, the difference iR southeast Asian countries (Yu et al., 1997) while the intra-
calculated from Egs. (15a) and (16) is 10%. Fitting Eq. (16)Storm rainfall intensity distribution has been shown equally
to the data led to an overall deterioration in FPEC of 0.9%.Valid for Australia (Surawski and Yu, 2005). In summary,

Although Eq. (16) was preferred for its more realistic limits, the relationship between event size and runoff fraction can

it may be more conceptually appropriate to rewrite it in the P& €xplained by expansion of the saturated area during the
storm, or the statistical relationship between event size and

equivalent form: ; A o1t
peak intensity, or a combination of both.
kpP,
R= <(1_ fsa kpP,+1 + fsat> Fn (17) 45 saturated area coefficient
wherekp is a constant of proportionality that describes the Antecedent baseflow proved a good predictor of storm runoff
initial increase in runoff fraction with event precipitation. response. This would not surprise if saturation overland flow

More than once mechanism can be invoked to explain whyassociated with groundwater (or other slowly draining stores)
runoff fraction should increase with rainfall event, as implied is an important runoff generating mechanism. The potential
by Eq. (17). Arapid increase of temporarily saturated surfaceémportance of this mechanisms has been recognised since the
area as more rainfall accumulates (e.g. because of a perchd®60s (Cappus, 1960, reproduced in Beven, 2006; Dunne
water table) provides one possible explanation and has beeand Black, 1970; see also recent review in Latron and Gallart,
observed in field studies (Latron and Gallart, 2008; Tanaka2008).

1992). An alternative explanation is th&; may function To assess whether the saturated areas implied by the model
as a surrogate for peak storm rainfall intensity; the key stormsimulations were realistic, the apparent median fraction of

Hydrol. Earth Syst. Sci., 14, 44458 2010 www.hydrol-earth-syst-sci.net/14/447/2010/



A. 1. J. M. van Dijk: Selection of an appropriately simple storm runoff model

455

200 1000
® worst .
+ median 100 1 *ﬁf +
B best A = 4o T A
£ 150 4 bes a £ 10 + + % j*
= + =g + + N +,
e g 14 *y iy f
2 2 Y vy
c € +‘D:r +:§§t L 3 "
1 + S 4 + %
R G
"+ 4
o s o +, *, 1 i
5 o+ a 8 0017 4 % b5t
g 2 AR LS iy
2 + + % + +
.8 50 4 + 8 0.001 - fx +
4
oA, 0.0001 | *
4
A
0 T T T 0.00001 T T T
0 50 100 150 200 0.00001 0.001 0.1 10 1000
Estimated event runoff (mm Estimated event runoff (mm
a) (mm) b) (mm)
1000 1000
100 100 A
— A —
£ 8, a £
£ 10 a 7 E 10 4 )
N P 2®
5 1 2 Ay 5 1 S ""\"’b
=] AR 4 S 'y 4
= . = . 1".\‘-.3 (4
5 0.1 4 5 017 o0 g s
> > . LIS
[ A ] LY .
B 0.01 A B 0.01 e % ..t:
2 2 e
] g LRI AL <
& oo & 00011 . .
0.0001 - 0.0001 -
0.00001 T T T 0.00001 T T T
0.00001 0.001 0.1 10 1000 0.00001 0.001 0.1 10 1000
Estimated event runoff (mm Estimated event runoff (mm
C) (mm) d) (mm)

Fig. 4. Examples of event runoff predicted by the optimal three-parameter model against event runoff inferred from streamflow observations.
Shown are results for those gauges with the median NSME (gauge 129001), worst (318311) and best (222009) (@plitezboiscale and
(b—d) double logarithmic scale.

saturated areaf{s) was estimated for each catchment by ics in these shallow observations were much more rapid than
combining the optimised’s, value with the groundwater those observed in surface runoff response, which increased
storage §,) estimated from the median baseflow rate in the more gradually during the course of the wet season in phase
time series with Eq. (15c). The resultinga; was less than  with baseflow (Liu et al., 2007; Beck et al., 2010). It may
5% of the area for 72% of the catchments. Values were posbe that deeper soil moisture still plays a role in determining
itively correlated to catchment humidity €0.61; Fig. 3).  runoff response, however, for example by influencing rapid
Values greater than 20% were calculated for 14% of catchsub-surface pathways that allow infiltrated water to generate
ments. For some of these, humidity was high and thereteturn flow. Without any direct observations or reliable es-
fore the estimated values may still be realistic. For sometimates of root zone soil moisture content this could not be
others total runoff was suspiciously hig(P>0.4), sug- investigated. Field observations or soil water content esti-
gesting potential errors in estimated rainfall, streamflow ormates produced by a hydrological model may help to asses
catchment area that were compensated by high esti-  this in future.

mates. In the remaining cases, presumably saturated area

was overestimated and the associated overestimate of sat-6 ~Sources of uncertainty

ration runoff compensated by an underestimation of infiltra- ) o )
tion excess runoff. This further highlights the uncertainty in 1h€ choice of parameter estimation method and formulation
of model error are potential sources of uncertainty. In the

model parameter estimation. . - ° i -
. - discussion version of this paper (Van Dijk, 2009) the sum
The power of baseflow in explaining runoff response does :
f absolute rather than squared errors was used to estimate

not necessarily imply that water storage in the unsaturate PEC and to optimise parameter values. This yielded the

zone, and in the soil in particular, has no effect on runoff re- . .
. partict : same optimal model structure and overall conclusions, even
sponse. Previous analysis using satellite-observed wetness ﬁwough optimised parameter values did vary

the top few cm of soil showed little value in predicting runoff
response in Australian catchments: effectively, the dynam-
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Example median, poor and good results are shown inboth constraints in future and allow improved runoff estima-
Fig. 4. In this case, the poorest model result (Fig. 4d) cartion, at least in gauged catchments.

be attributed to the lack of large runoff events, correspond-
ing to low annual QF (27 mm) and rainfall (521 mm). While

poor model performance was generally associated with driep  Conclusions

catchments, the reverse was not always true and some (gtreamﬂow data for 260 Australian catchments were used

the best model performances were also found for dry catch-
ments. Comparison against catchment attributes showed tha
the FPEC (i.e. the standard error of estimate) was strong|
correlated with annual average QF0.77).

Expressing model performance in model efficiency
(NSME; equivalent to normalising FPEC by the observed
variance) removed the correlation with annual average Q
(r =0.11) and rainfall{=0.13). The best two and three pa-
rameter models had an average NSME of 0.62 and 0.67 fo
event runoff when weighted by observed variance in the 260

records, and median values of 0.61 and 0.64, respectively 1.

(Table 2). Previous catchment modelling studies using some
of the stations analysed here found similar median NSME
values of 0.60-0.75 in calibration (e.g. Viney et al., 2009;
Zhang and Chiew, 2009). However, in those cases NSME
was not penalised for the number of free parameters and
more importantly, NSME related to daily streamflow time

series rather than event runoff. An estimate of the achiev- 2.

able NSME had the optimal runoff structure been incorpo-
rated within a catchment model, was obtained by adding the
observed baseflow time series to the observed and modelled
event runoff totals. This increased median NSME to 0.71.
The semi-variogram suggested that about 31% of the vari-
ation in NSME was correlated over spatial scales of ca.
400 km, and some degree of clustering of catchments with
similar model performance is apparent in Fig. 1: model per-
formance appears comparatively poorer in the coastal areas
of southwest West Australia, western Victoria and western
Tasmania and in inland News South Wales, and better along
the eastern sea board. None of the catchment attributes ap-
peared a good predictor of NMSE. The higher correlations
suggested poorest performance in catchments with alluvial

geomorphology, low rainfall intensity, low reliefand low tree 4.

cover, but in all caseswas a modest 0.25-0.30.

The quality of rainfall data is expected to be the main con-
straint on runoff estimation. The event rainfall data used in
the current analysis were based on interpolation of daily rain-
fall gauge data, and Fig. 1 suggests that at least some of the
catchments with poor model performance are found in ar-

eas with very sparse rainfall gauging, although a statistically ©-

meaningful relationship could not be established. The lack
of data on (and hence consideration of) intra-storm rainfall
intensity is another likely degrading factor. Although rainfall
intensity is correlated to event rainfall depth, the relation-
ship is not direct and intensity differences between storm

t? evaluate the performance of alternative conceptual storm
runoff models and derive a model of appropriate simplicity.
*%vent rainfall and runoff was estimated by baseflow separa-
tion; a storm flow recession coefficiekyr was calculated
from the daily storm flow data and used to estimate event
unoff. Four model structures with a maximum of six free
parameters were investigated, covering most of the model
equations used in existing lumped catchment runoff models.
he following conclusions are drawn:

A non-linear response model with two or three parame-
ters provides the optimal model structure for modelling
event storm flow in Australian catchments. The op-
timal model produced a median Nash-Sutcliffe model
efficiency (NSME) for event runoff of 0.64 across all
records.

The SCS-CN technique had a similar functional form
but had an error 14-15% larger and NSME of 0.30-
0.41. The difference can be attributed to the predictive
value of antecedent baseflow.

3. Of the three model parameters in the optimal model

structure, one related event runoff to storm siggaf)

and another related runoff to groundwater storage esti-
mated from antecedent baseflo@¢). A third param-
eter described initial rainfall losses ) but could be set

at 8 mm without affecting model performance too much.
A fourth parametekqr, the storm flow recession coef-
ficient, related event runoff to daily storm flow and was
calculated directly from streamflow records rather than
optimised.

Of the total variance ikgr values among stations, 64%
could be explained by climate indicators and spatial cor-
relation. The scope to estimate the other parameters
in gauged catchments appeared limited; fractions ex-
plained were a modest 45% fa¥s, and 21% forSmax,
while none of the variation ih.; could be explained.

More accurate estimates of event rainfall depth and rain-
fall intensity are likely to be prerequisite to further in-
crease model performance in gauged catchments.
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