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It is the purpose of this paper to give a simple proof of the fact that solutions of the KdV equation
can be approximated via solutions of the NLS equation. The proof is based on an elimination of
the quadratic terms of the KdV equation via the Miura transformation.

1. Introduction

The NLS equation describes slow modulations in time and space of an oscillating and
advancing spatially localized wave packet. There exist various approximation results, cf. [1–
4] showing that the NLS equation makes correct predictions of the behavior of the original
system. Systems with quadratic nonlinearities and zero eigenvalues at the wave number
k = 0 turn out to be rather difficult for the proof of such approximation results, cf. [5, 6].
The water wave problem falls into this class. Very recently, this long outstanding problem
[7] has been solved [8] for the water wave problem in case of no surface tension and infinite
depth by using special properties of this problem. Another equation which falls into this
class is the KdV equation. The connection between the KdV and the NLS equation has been
investigated already for a long time, cf. [9]. In [10, 11] the NLS equation has been derived
as a modulation equation for the KdV equation, and its inverse scattering scheme has been
related to the one of the KdV equation. It is the purpose of this paper to give a simple
proof of the fact that solutions of the KdV equation can be approximated via solutions of
the NLS equation. Beyond things this has been shown by numerical experiments in [12]. An
analytical approximation result has been given by a rather complicated proof in [5] with a
small correction explained in [6]. The much simpler proof of this fact presented here is based
on an elimination of the quadratic terms of the KdV equation via the Miura transformation.
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Following [13] the KdV equation

∂tu − 6u∂xu + ∂3xu = 0 (1.1)

can be transferred with the help of the Miura transformation

u = v2 + ∂xv (1.2)

via direct substitution

2v∂tv + ∂x∂tv − 6
(
v2 + ∂xv

)(
2v∂xv + ∂2xv

)
+ 6(∂xv)∂2xv + 2v∂3xv + ∂4xv

= (2v + ∂x)
(
∂tv − 6v2∂xv + ∂3xv

)
= 0

(1.3)

into the mKdV equation

∂tv − 6v2∂xv + ∂3xv = 0. (1.4)

In order to derive the NLS equation we make an ansatz

εψv(x, t) = εA
(
ε(x − ct), ε2t

)
ei(kx−ωt) + c.c. (1.5)

for the solutions v = v(x, t) of (1.4), where 0 < ε � 1 is a small perturbation paramater.
Equating the coefficient at εei(kx−ωt) to zero yields the linear dispersion relation ω = −k3.
At ε2ei(kx−ωt) we find the linear group velocity c = −3k2 and at ε3ei(kx−ωt) we find that the
complex-valued amplitude A satisfies the NLS equation

∂2A = −3ik∂21A − 6ikA|A|2. (1.6)

2. Approximation of the mKdV Equation via the NLS Equation

Our first approximation result is as follows.

Theorem 2.1. Fix s ≥ 2 and let A ∈ C([0, T0],Hs+3) be a solution of the NLS equation (1.6). Then
there exist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) there are solutions of the mKdV equation
(1.4) such that

sup
t∈[0,T0/ε2]

∥∥v(·, t) − εψv(·, t)
∥∥
Hs ≤ Cε3/2. (2.1)

Proof. The error function R defined by v(x, t) = εψv(x, t) + ε3/2R(x, t) satisfies

∂tR + ∂3xR − 6ε2∂x
(
ψ2
vR

)
− 6ε5/2∂x

(
ψvR

2
)
− 2ε3∂x

(
R3

)
+ ε−3/2Res

(
εψv

)
= 0, (2.2)
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with

Res
(
εψv

)
= E

(
ε4∂31A − 6ε4∂1

(
A|A|2

))
− E3

(
2ε3(ik + ε∂1)

(
A3

))
+ c.c., (2.3)

where E = ei(kx−ωt). In order to eliminate the O(ε3) terms we modify the previous ansatz (1.5)
by adding

ε3
6ik

3iω − (3ik)3
(
A3

)
E3 + c.c.. (2.4)

After this modification the residual Res(εψv) is of formal order O(ε4). When evaluated inHs

there is a loss of ε−1/2 due to the scaling properties of the L2-norm. Hence there exist ε0 > 0
and Cres > 0 such that for all ε ∈ (0, ε0) we have

sup
t∈[0,T0/ε2]

∥∥∥ε−3/2Res(εψv(·, t)
)∥∥∥

Hs
≤ Cresε

2. (2.5)

By partial integration we find for s ≥ 2 and allm ∈ {0, . . . , s} that

∂t

∫
(∂mx R(x, t))

2dx ≤ C1ε
2∥∥ψv(·, t)

∥∥2
Cs+1
b
‖R(·, t)‖2Hs

+ C2ε
5/2∥∥ψv(·, t)

∥∥
Cs+1
b
‖R(·, t)‖3Hs

+ C3ε
3‖R(·, t)‖4Hs + C4ε

2‖R(·, t)‖Hs,

(2.6)

with ε-independent constants Cj . Hence using a ≤ 1 + a2 shows that the energy y(t) =
‖R(·, t)‖2Hs satisfies

∂ty(t) = C5ε
2y(t) + C6ε

5/2y(t)3/2 +C7ε
3y(t)2 + C8ε

2. (2.7)

Rescaling time T = ε2t and using Gronwall’s inequality immediately shows the O(1)
boundedness of y for all T ∈ [0, T0], respectively all t ∈ [0, T0/ε2]. Therefore, we are done.

3. Transfer to the KdV Equation

Applying the Miura transformation (1.2) to the approximation εψv defines an approximation

εψu = ε2ψ2
v + ε∂xψv = εikA

(
ε(x − ct), ε2t

)
ei(kx−ωt) + c.c. +O

(
ε2
)

(3.1)

of the solution u of the KdV equation (1.1). Since

∥∥u − εψu
∥∥
Hs−1 =

∥∥∥v2 + ∂xv − ε2ψ2
v − ε∂xψv

∥∥∥
Hs−1

≤ ∥∥v − εψv
∥∥
Hs +O

(
ε2
)
= O

(
ε3/2

)
(3.2)

the approximation theorem in the original variables follows.
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Theorem 3.1. Fix s ≥ 1 and let A ∈ C([0, T0],Hs+4) be a solution of the NLS equation (1.6). Then
there exist ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) there are solutions of the KdV equation (1.1)
such that

sup
t∈[0,T0/ε2]

∥∥u(·, t) − εψu(·, t)
∥∥
Hs ≤ Cε3/2. (3.3)
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