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New methodologies, engineering processes, and support environments are beginning to emerge for embedded signal processing
systems. The main objectives are to enable defence industry to field state-of-the-art products in less time and with lower costs,
including retrofits and upgrades, based predominately on commercial off the shelf (COTS) components and the model-year
concept. One of the cornerstones of the new methodologies is the concept of rapid prototyping. This is the ability to rapidly and
seamlessly move from functional design to the architectural design to the implementation, through automatic code generation
tools, onto real-time COTS test beds. In this paper, we try to quantify the term “rapid” and provide results, the metrics, from
two independent benchmarks, a radar and sonar beamforming application subset. The metrics show that the rapid prototyping
process may be sixteen times faster than a conventional process.
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1. INTRODUCTION

The trinational European EUCLID/Eurofinder defence
project called ESPADON (environment for signal process-
ing application development and rapid prototyping) com-
pleted in September 2001 [1]. The ESPADON consortium
comprised Thales and MBDA from France, Thales Naval
Nederland, BAE SYSTEMS, and Thales Underwater Systems

Ltd. from the United Kingdom. The primary objective of
the three-years project was to significantly improve (reduced
cost and timescales) the process, by which complex military
digital processing systems are designed, developed, and sup-
ported. A new design methodology and supporting develop-
ment environment has been reinvented to support this aim
through reuse, concurrent engineering, rapid insertion of
COTS technology and the key concepts of rapid and virtual
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Figure 1: Iterative development process.

prototyping. The latter two concepts are an integral part of
the model-year concept adopted by ESPADON and devel-
oped under the US RASSP programme [2].

A brief summary of these techniques and developments
within ESPADON,1 in the context of rapid prototyping (RP),
is presented below.

1.1. The methodology

A risk-driven iterative development process has been iden-
tified. This is shown in abstract form in Figure 1 and is un-
derpinned by the following 5-key processes stemming from
the methodology MCSE (méthodologie de conception de
systèmes electroniques) from IRESTE, Nantes [3].

(i) Specification—refinement of the requirements into an
engineering specification.

(ii) Functional design—the functional parts of the com-
ponent specifications are modelled and simulated and
proven for correctness as a whole model. The model is
independent of the implementation.

(iii) Architectural design—the critical characteristics of the
reference functional model (computing power, rate,
etc.) and the nonfunctional requirements (costs, vol-
ume, etc.) are identified. Cost/performance trade off
studies are carried out and the most effective architec-
ture is chosen.

(iv) Implementation—the result of the current design iter-
ation. Essentially the production and test of hardware
and software, integration of the software on the target
COTS platform, and validation of the component.

1The ESPADON programme was presented at the Embedded Systems
Show, Rapid and Virtual Prototyping Technical Seminar, London, 17th May
2001. The ESPADON programme and the ESPADON benchmarks results
are presented in detail in the ESPADON website: www.espadon.org/.

(v) System review—the final process which determines
whether the particular phase of the system develop-
ment has met its requirements and ameliorated the
major risks before proceeding to the next phase or it-
erating around the same phase again.

Each of the key processes above is itself composed of the
generic abstract iterative process shown in Figure 2. This
again is a risk-driven process where the risks are analysed and
a plan formulated, the work defined, the developments un-
dertaken, the results validated and the complete outcomes
reviewed by the exit or refine review.

A spiral [4] can also represent the iterative development
process described above as shown in Figure 3. Each turn of
the spiral corresponds to one process. For each process, the
same types of activities are carried out. The enlargement of
the spiral at each process represents the refinement and the
increase in the artefacts produced.

The overall aim of the methodology is to enable the de-
veloper to rapidly iterate to the final solution for the par-
ticular system development being undertaken. In the case of
RP, it is to rapidly and seamlessly move from functional de-
sign, to the architectural design and finally to the implemen-
tation, through automatic code generation tools, onto real-
time COTS test beds. This enables real behavioural and per-
formance measurements to be made so as to refine the func-
tional model and the architectural design solution to satisfy
the system requirements.

1.2. Reuse and capitalisation

Reuse, alongside the iterative development process, is the
other element of the signal processing methodology imple-
mented to decrease development time and cost. Reuse applies
at two levels.

(a) Reuse between iterative processes of development

file:www.espadon.org
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cycle—use elements developed in an iterative process
with a certain level of refinement for the development
of the next iterative process having a higher level of re-
finement. The development strategy with reference to
the abstract iterative process is

(i) definition activity—the same modelling for-
malisms or functional models are used at differ-
ent levels of refinement but with dual libraries of
components,

(ii) development activity—hardware is synthesised
and code is generated for different target ma-
chines with the same synthesis techniques. These
targets may be, for example, a workstation or a
real-time multiprocessor machine according to
the development stage,

(iii) validation activity—the stimulation or the re-
sults obtained from the previous iterative process

are used as a reference test set for the validation
of the next iterative process.

(b) Reuse of existing components (SP algorithms, com-
ponents, hardware architectures, etc.)—use in-house
components already developed, or COTS components,
for the development of an activity (or an iterative pro-
cess) of the development cycle. The development strat-
egy is

(i) development with reuse—development of an ap-
plication must be able to reuse already developed
existing constituent parts,

(ii) development for reuse (or capitalisation)—the
new constituent parts of an application are de-
veloped in order to be reused in other systems.

The above reuse objectives are integral to the ESPADON de-
velopment process and enables
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(a) increasing productivity and decreasing development
time,

(b) providing additional architecture choices,
(c) using better quality constituent parts since they have

already been tested and validated,
(d) capitalising on existing know-how.

1.3. The overall environment

An integrated software design environment, the ESPADON
design environment (EDE), was developed to support the
methodology and reuse and capitalisation policy described
above. It is based on a collection of COTS software tools
that were selected as the most suitable after a detailed re-
view and evaluation of many commercial EDA (electronic
design automation) tools. This environment is shown in
Figure 4 below. Two of the tools, Ptolemy Classic [5] and
GEDAE, Blue Horizon Development Software, Mount Lau-
rel, NJ, USA, http://www.gedae.com/, form the core of the
environment as they fully support and are integral to the
concept of RP. Handel-C [6, 7, 8] was used for FPGA hard-
ware synthesis to provide an analogous process route to pro-
grammable logic as to microprocessors. The domain library
(ESP Library) contains the reused elements for an SP appli-
cation domain (radar, sonar, etc.). This library is based on
the vector scalar image processing library (VSIPL) standard,
http://www.vsipl.org/.

The radar and sonar benchmarks of the RP process were
performed using the environment and Ptolemy Classic and
GEDAE, respectively.

2. THE BENCHMARKS

The choice of signal processing applications for the bench-
mark was arrived at by considering two factors. One was
that it must be a common application for the two domains,

radar and sonar, so that the conventional development pro-
cess and associated metrics are known, or can be confidently
estimated. The second was that a common subset of the ap-
plication exists for both domains, for cross comparison, and
is of small but sufficient size (functionality and development
effort) to enable the benchmark measurements to be made
within the time and effort available and to be acceptable.

Beamforming, the processing of sensor signals into di-
rectional beams, was selected as the application subset that
would be benchmarked. It is a generic processing func-
tion for both domains and satisfies the selection criteria.
The functional processing chain for the radar and sonar
beamformer benchmarking applications is described in the
next two sections.

2.1. Radar

The application subset is from a ship-based X-band air
surveillance radar with a vertical array of, for example, eight
transmit and receive elements. Each element is a horizontal
linear stripline array of dipoles. Elevation beams are formed
by the digital beamformer that performs an 8-point FFT al-
gorithm on the outputs of the eight receiver channels. In this
way, a multibeam receive system is formed, Figure 5. The
benchmark concerns only the receiver beamforming func-
tion, the transmit beamforming function is implemented by
an analogue system.

The beamformer is adaptive with respect to the ships
course and speed, and the ships roll and pitch movement.
This results in a phase correction that is applied to the
complex data stream prior to the beamforming, together
with windowing and calibration correction. The functional
processing chain is shown in Figure 6.

The boxes shown as calibration and beam calculation
were developed as part of the RP process using Ptolemy
Classic. The other functions, except for the functions in the
dashed boxes that were not used, were primarily for I/O and

http://www.gedae.com/
http://www.vsipl.org/
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Figure 5: Multibeam receive system.

resident on the host machine and part of the stimuli genera-
tor and/or display.

For a first RP implementation, the target platform was
an embedded VME system from Mercury Computer Sys-
tems (http://www.mc.com/). This comprised three Mer-
cury motherboards, each connected via interlink modules
through two ports to the high-speed RACEway interconnect
between the boards. One motherboard was equipped with
two daughter boards with two Motorola power PC altivec
processors (http://e-www.motorola.com/) each, and the two
other motherboards with one daughter card with two altivecs
and one daughter card with 512 MB memory each. This re-
sulted in a machine with eight processing nodes and bulk
memory that was used for real-time data playback of the
(stored) stimuli generator data and for logging of the inter-
mediate/output results of the application.

In a second RP implementation, the time-critical part of
the beamformer application, that is, the beamforming func-
tion, was ported onto an FPGA board. The rest of the appli-
cation remains mapped onto the Mercury boards. The FPGA
board was an existing board from Thales Airborne Systems
with two Xilinx Virtex XCV400 devices.

Within Ptolemy Classic, the radar benchmark applica-
tion has first been modelled and simulated with synchronous
data flow (SDF) [9] and Boolean data flow (BDF) [10] mod-
elling formalisms. Then the code has been generated with
the code generation C (CGC) computation domains [11]. A
target porting kit (Figure 4) has been developed in Ptolemy
Classic to generate, compile, load, and run the code of the
power PCs and the FPGAs.

In addition, other specific enhancements had to be car-
ried out in Ptolemy Classic to support the RP process and
the benchmark [12].

(i) Additional library components; radar library—five
components; VSIPL core light library—11 compo-
nents; and support library (e.g., components for par-
allel operation)—19 components. These components
were developed for SDF, CGC, and HDLC (see be-
low) computation domains. The components and the
domains were identified in the early Ptolemy bench-
mark developments as being required if the func-
tional requirements of the benchmark were to be
addressed.

(ii) Support for the VSIPL altivec power PC optimised li-

brary and static memory allocation of VSIP views dur-
ing the initialisation phase of the target machine.

(iii) Support for performance monitoring using Mercury
trace tools.

(iv) Extension of the BDF code generation domain to sup-
port use within a single processor which was part of
a multiprocessor architecture modelled using the mul-
tiproc CGC domain. The rationale was to enable sup-
port and integration of control functions which are in-
tegral to most sensor platforms.

(v) Addition of a new code generation domain “HDLC” to
generate code in the Handel-C language instead of C
so as to map directly to programmable logic. Handel-
C is a hardware design language very similar to C, but
Handel-C has some specific functionality dedicated to
the design of hardware components.

(vi) Support for heterogeneous architecture code genera-
tion [13]. The characteristics of the codes generated
for the power PCs or the FPGAs are different, that is,
different languages (C or HDLC), different memory al-
location, and different communication drivers. Never-
theless, these two types of codes implement the same
communication protocol to interface the two architec-
tures.

Only manual partitioning was used for the mapping of the
functional SDF model into the targeted architecture. Al-
though automatic methods of partitioning exist within the
Ptolemy tool, these rely on estimates of the execution time
of each of the low level building blocks used to create the
model at schedule time. Sufficiently accurate estimates were
not available because:

(i) the building blocks used VSIP library functions where
the size of data to handle, and hence its execution time,
is only known at runtime,

(ii) obtaining accurate estimates is complicated due to the
complex cache policy of the PPC and Mercury archi-
tecture.

However, using rapid prototyping tools like Ptolemy
and GEDAE, the generation of a new mapping is very
quick/simple and the feedback on execution time perfor-
mance using the efficient execution tracing methods avail-
able with these tools produces far more accurate mappings
than could be achieved with automatic methods. It is in-
tended in the future to build databases that contain the do-
main library functions and the measured attributes of the
functions (e.g., latency, performance) against hardware ar-
chitecture attributes (e.g., processor type, memory speed,
cache size, clock speeds). These could then be used to sup-
port the automatic mapping of functions to the primary
processing nodes of the architecture. New COTS compo-
nents which are suitable can be benchmarked using some
of the domain library functions and can be added to the
database and the results extrapolated for the remainder of
the library as appropriate.

http://www.mc.com/
http://e-www.motorola.com/
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Figure 6: Radar functional processing chain.

2.2. Sonar

The application subset is from a generic ship/submarine-
based active sonar system. It covers the core functionality
of a conventional beamformer and an adaptive beamformer
where the reverberation due to the propagation environment
is estimated and cancelled. For a given sonar array head-
ing and speed, the reverberant returns from any particular
direction have an induced Doppler which depends only on
the directions of transmission and reception, nonzero in-
trinsic Doppler being ignored. This means that all beams re-
ceive their reverberant noise in a given Doppler bin from the
same direction. This includes the few beams, whose direc-
tions align with the direction of arrival of the reverberant re-
turns being considered, which of course will have their zero
Doppler ridges at the Doppler bin being considered. In fact
they are these few beams which are used in the adaptive al-
gorithm as reference beams to sense the reverberation at the
Doppler bin in question, and cancel it from all other beams.

The overall functional processing chain (top diagram)
and the beamformer functions (bottom diagram) are shown
in Figure 7. The latter were developed for the RP benchmark
and interfaced to other functions, primarily for I/O, such as
the scenario generator and/or display resident on the host
machine.

The sonar benchmarking application was developed
within the RP process using GEDAE with an initial and
final target embedded VME systems, each connected to a
sun workstation. The initial embedded system was from
Sky computers (http://www.skycomputers.com/) and was
used to develop the benchmark application functions. This
platform consists of a force SPARC CPU50 host machine
and two-quad power PC altivec processor (Merlin) pro-
cessing boards connected together by the backplane Sky
channel interface. The final system was a subset devel-
oped on the EUROPRO project [14] and was used to com-
plete all the sonar benchmark measurements. This platform
was chosen because it is based on different processors to

the other ESPADON target platforms and would demon-
strate the hardware independence of the RP process. It has
a number of DBV66 boards, Blue Wave Systems DBV66
ADSP-2106x Carrier Board Technical Reference Manual,
Blue Wave Systems (http://www.bluews.com/) each with six
analog devices “SHARC” DSP processors, Analog Devices
(http://www.analogdevices.com/technology/dsp/). In the ba-
sic configuration, Figure 8, there are two DBV66 cards con-
nected via the VME to the host board for code load. All
further communication between SHARC processors are per-
formed using point-to-point SHARC links which are capa-
ble of MB/s data transfer rates. Multiple DBV66 boards are
connected using the internal SHARC links to support larger
SHARC networks.

A target porting was developed for this platform for
GEDAE. It is built on underlying support software for the
platform, such as the blue wave IDE6000-V4.0, Blue Wave
Systems (http://www.bluews.com/), the operating system
Virtuoso 4.1-R2.04 for Solaris (http://www.windriver.com/)
(formally owned & distributed by http://www.eonic.com/),
and the analog devices compiler-V3.3 for Solaris. The over-
all EDE enabled the GEDAE data flow graphs to be devel-
oped for the benchmarking functions across a number of
platforms, including the host, by different users and simply
imported and/or ported to the benchmarking platform.

The key functions developed for the benchmark were

(i) data generator—read data in from a file that has been
generated from the stimulator. The simulator provides
hydrophone data (128 hydrophones) of complex base-
band reverberant time series data across an array of
specified elements;

(ii) control interface—control box responsible for defin-
ing parameters that would possibly be controlled
through the operator/MMI. Examples are Dolph
Chebychev coefficients, beam shading coefficient, FFT
size, minimum number of Doppler bins, energy
thresholding factor, and integration period;

http://www.skycomputers.com/
http://www.bluews.com/
http://www.analogdevices.com/technology/dsp/
http://www.bluews.com/
http://www.windriver.com/
http://www.eonic.com/


586 EURASIP Journal on Applied Signal Processing

Scenario generator and benchmark operator’s interface

Stimuli gen
hydrophone

data store

Conventional
beamformer

Adaptive
beamformer

Data
processing

Display
processing

Beamforming coefficients Conventional beams out

Conventional
beamformer &

base bander

FFT &
Doppler
binner

Reference
beam

selection

Adaptive
reverberation

canceller

Baseband hydrophone
samples

Conventional beams & coeffs.
into adaptive beamformer

Adapted beams out

The conventional beamformer The adaptive beamformer

Figure 7: Sonar functional processing chains.

VME

FPGA
board

2 × DBV66
2 × 6 SHARC DSPs

SPARC CPU50
SCS12 disk

TCP/IP

Host
machine

Sun/PC

Figure 8: Sonar hardware configuration.

(iii) conventional beamforming—comprises components
that are to be used within the adaptive beamforming
functionality. The current function box has three out-
puts:

(1) beam samples (for each beam),
(2) steering vectors (for each hydrophone/beam),
(3) weighting vectors (for each hydrophone/beam).

The last two output parameters are not essentially part
of a conventional beamformer, but are formed, as they
are required, parameters for the adaptive part of the
benchmark functionality;

(iv) reference beam selection—algorithms to select the
beams whose directions align with the direction of ar-
rival of the reverberant returns being considered;

(v) adaptive reverberation cancelling—adaptive algo-
rithms that use the reference beams to sense the rever-
beration at the Doppler bin in question, and cancel it
from all other beams.

For the benchmark, the conventional beamformer, being
fully understood and previously developed many times,
could be implemented in its entirety within the GEDAE en-
vironment using the “embedded functions” available within
the tool at both the host and optimised target level. The adap-
tive beamformer however required significant algorithm in-
vestigation and the development of specialist sonar library
components, ten in total, to satisfy the needs of the specifi-
cation. These components were all generated in high level C
code and were not optimised for target execution.

Following the sonar benchmarking activity, an FPGA
board was also connected to the VME to demonstrate het-
erogeneous implementation capability. A design flow linking
the GEDAE and Handel-C tools was demonstrated, as a tech-
nology demonstrator only, and no benchmark metrics were
collected for this activity.

3. THE METRICS

The objective of the benchmarks was to measure the perfor-
mance of the ESPADON RP signal processing design envi-
ronment with respect to the project goals: reduction in the
product lifecycle cost and lifecycle time, and improvement of
the product quality.

The measurements were through small design exercises,
developing the benchmark applications described earlier, in
order to capture basic metrics regarding the process and the
product. The fundamental performance process metrics in-
clude design cycle time, nonrecurring cost, ease of use, and
supportability. Performance product includes cost to manu-
facture, cost to maintain conformance to requirements, and
dependability.

For each benchmark cycle, the benchmarks were struc-
tured to do the following.
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(i) Evaluate the RP process:
(1) comparison with current practice: develop cur-

rent practice base-line costs and schedule;
(2) performance metrics: employ metrics to measure

and substantiate improvements;
(3) improvement: identify weaknesses in the design

process.
(ii) Evaluate the tool integration:

(1) integration: verify the degree of tool integration,
including libraries and databases;

(2) ease of use: provide qualitative ease of use evalu-
ation for the tools and processes;

(3) improvement: identify weaknesses or missing el-
ements in the tool set.

(iii) Evaluate the signal processing system (products):
(1) architecture: assess the suitability and scalability

of the HW and SW architectures;
(2) compliance: measure the compliance of hard-

ware and software to supplied requirements;
(3) cost: provide current practice cost comparison.

Hence, the metrics that are needed to be measured are of dif-
ferent types. They can be summarised as belonging to one of
the metric sets below.

Principal and supporting metrics

Considered to be the most important metrics. They must
provide us with hard numbers regarding the improvement
obtained by using the ESPADON methodology and directed
toward specific issues of performance of both the ESPADON
process and products, that is, reduced design cycle time, re-
duced cost, and improved quality.

Tool-oriented process metrics

Indicate more about the support which is given by the EDE
and its constituent tools. While the principal and supporting
metrics are important to the success of the ESPADON ap-
proach, the user’s perception of ESPADON will be strongly
influenced by the ease of use and uniformity of the EDE. De-
veloping quantitative tool metrics to directly measure sub-
jective attributes is a difficult if not an impossible task. How-
ever, certain attributes of the EDE can be measured, such as
the consistency of the user interface, tool integration facili-
ties, and so forth, bear some correlation with qualitative at-
tributes such as ease of use.

Application complexity metrics

These primarily focus on the elements, products, or applica-
tions to be developed. The objective is to capture the inher-
ent complexity of a given benchmark application, indepen-
dent of the particular hardware and software implementa-
tion. The metrics will also serve as a reference for determin-
ing efficiency of the hardware and software realisations of a
benchmark produced by the developer. In addition to com-
plexity measures of the functions themselves such things as
requirements of external interfaces, requirements for testa-
bility, reliability, and maintainability, and requirements con-
straints are also considered.

Product complexity metrics

Various types of products will be produced during the ES-
PADON design process. These include software, hardware,
and documentation. Even within a category, a variety of
types of products may be produced. For example, in the soft-
ware category products may include real-time application
code, test code, simulation code, and so forth. For each sig-
nificant product developed in the course of a benchmark,
complexity metrics are required to characterise the efficiency
of the product and the difficulty of implementation.

Product performance metrics

Measuring the performance of products produced using ES-
PADON is different from measuring the performance of the
ESPADON process itself. Misapplying a good process may
produce poor products. These metrics aim to characterise the
resulting performance of the individual products produced,
for example, for a software product such things as compu-
tational efficiency, postrelease defect density, portability, and
adherence to standards and testability are considered.

The measured metrics and summary of the important
benchmark results are presented in Section 4.

4. THE MEASUREMENTS

There are distinct differences in the benchmark measure-
ments of the sonar and radar applications. These are at-
tributable to the difference of approaches of the two bench-
marks. The sonar benchmark relied on GEDAE, a mature
COTS tool for RP prototyping whereas the radar bench-
mark upgraded the open source Ptolemy Classic tool. In
each case, the reference to conventional developments and
processes refers to the existing methods and processes be-
ing used within the company performing the benchmark-
ing activity. In general, these consisted of disparate groups of
engineers performing a particular function within a typical
V or waterfall development lifecycle with communication of
requirements/specifications via paper documents. The base-
line estimates refer to the time taken to perform the develop-
ments using these conventional approaches. They have been
obtained using metrics available from previous develop-
ments of similar products and estimates produced from ex-
perienced engineers within the disparate groups mentioned
above. In both cases, a final implementation using these con-
ventional methods was not available to the developers and
so a detailed comparison of performance between the base-
line and the new developments was not possible. However,
in both cases a level of performance was specified for the fi-
nal implementation, and for the benchmarks to be successful,
these had to be met.

4.1. Sonar

Table 1 shows the measurements from the first benchmark
which is for the development of a conventional beam-
former implemented on the initial target platform. Two
overall design iterations were required before arriving at a
compliant solution. That is the solution achieved real-time
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Table 1

Activity (% of total) Effort

Functional design: specification (14%), design (28%), implementation (42%),
verification (13%), review (3%) 93 hours

Functional design 2: specification (14%), design (24%), implementation (24%),
verification (24%), review (14%) 21 hours

Architecture design/implementation—5 iterations specification (11%), design
(33%), implementation (11%), verification (11%), review (33%) 45 hours

(A) Total development time 159 hours

(B) Baseline estimate—including error correction 2537 hours

Performance improvement factor A/B 16
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Figure 9: Sonar benchmark primitive count.

performance, latency, and throughput, on the hardware ar-
chitecture provided for the benchmark. The baseline esti-
mate is from conventional developments for the same func-
tions by Thales Underwater Systems which undertook the
sonar benchmark activity. We attribute the significant pro-
ductivity improvement to two factors. One is that the con-
ventional beamformer is a fully understood and specified ca-
pability implemented many times within the company on a
variety of different target architectures. The second is that the
RP process enabled the application to be implemented in its
entirety within the GEDAE environment using the “embed-
ded functions” available within the tool at both the host and
optimised target level. No specific sonar library components
had to be generated for this application resulting in a high
level of reuse and productivity.

In the case of the adaptive beamformer, the improvement
factor is less because a number of new embedded functions
had to be developed, as shown by Figure 9. Ten library com-
ponents were developed, with approximately 1000 lines of
code in total, across all components. These components were
all generated in high-level C code and were not optimised for
target execution. As can be seen in the middle of the graph
it was sometimes necessary to remove boxes during redesign.
This redesign usually required the development of new user-
generated primitives to provide the required capability.

A significant reduction in faults was identified, includ-
ing reduced time to locate and remedy such faults, whilst
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Figure 10: Sonar benchmark fault count.

implementing the adaptive beamformer once a level of un-
derstanding of the tool had been achieved by the developers
(Figure 10). This meant that execution of the capability on
the target machine resulted in no functional errors and al-
lowed the developer the time to concentrate on the efficient
partitioning of the capability rather than its algorithmic per-
formance.

Another important metric measurement was the number
of iterations of the design as shown in Table 2. Though more
than planned, the rapidity with which designs could be iter-
ated within the RP process enabled high productivity factors
to be maintained. In fact, there were many more very short
iterations that were not reported simply because they were
too short but nevertheless important in converging to an ac-
ceptable solution. In the table below, an iteration is defined
as being one pass through the process for the production of
a product, for example, an algorithm, with particular func-
tionality. Hence, additional iterations are required where the
output of the particular process has not converged to an ac-
ceptable solution and has to be further refined during further
iterations. So in the case of the time varying gain product,
five iterations of the process were required, which covered
initial development through improved functionality to opti-
mised performance, before an acceptable solution that met
its requirements was reached.

The actual measurements of the adaptive beamformer
benchmarks showed that the total time for development
was 1113 hours compared to 2737 hours using conventional
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Table 2

Activity Phase Iteration

Planning Planning 1

Specification Specification 1

Data generator Functional design 1

Conventional beamformer Functional design 1

Adaptive reverb cancellor Functional design 15

Time varying gain Functional design 5

Reference beam selection Functional design 7

Control interface Functional design 1

Conventional beamformer Architecture design 2

Total iterations 34

Table 3

Bare beamformer Design 1 Design 2 Design 3 Design 4

Nofchannel 8 8 8 8

Nofsweep 17 17 17 17

Nofproc 4 (+2) 5 (+2) 4 + 4 8

Input data DMA DMA Pre-load Pre-load

Output data (DMA) (DMA) (DMA) (Pb MCS)

Corner-turn 4− > 4 NO 4− > 4 8− > 8

RACE++ peak load — — — 53%

Latency 1 burst 1 burst 2 burst 1 burst

Performance 25 ms 21 ms 9.5 ms 9 ms

Support var. burst L. Yes Yes Yes Yes

Design time 72 H 16 H 12 H 16 H

methods. This gives a productivity improvement of factor
of 2.4. In terms of the reduction of coding errors, the com-
parison for the adaptive beamformer shows a factor of eight
(conservative) reduction compared to conventional meth-
ods. This is attributable to the RP process providing algo-
rithm developers/system analysts and software developers
with the benefit of the use of a common development en-
vironment.

4.2. Radar [15]

In this case, a significant part of the benchmark work was
tightly coupled to enhancing the Ptolemy Classic support en-
vironment for the target heterogeneous multiprocessor ar-
chitecture and its integration within the overall EDE. Hence,
the metrics covered more aspects of the RP process than the
sonar benchmark. In particular

(i) more metrics were measured related to the application
complexity, to the methodology and tool support, to
the performance of the application and the libraries, to
the validation process, and to the overall RP process;

(ii) metrics were measured for a heterogeneous RP archi-
tecture mixing FPGA and power PC.

For the first implementations on the Mercury platform, the
benchmark application required in total eight design itera-

tions to complete before converging to a real-time perfor-
mance compliant solution, that is, meeting the overall la-
tency figure required for the processing. Results for four of
the design iterations are shown in Table 3. For these cases,
the improvements of the real-time performance (from 25 to
9 millisecond) between the iterations resulted from an itera-
tive process based on

(i) an analysis of the real-time performance of the previ-
ous iteration implementation, in order to identify the
time-consuming components and the communication
bottlenecks;

(ii) an optimisation of the mapping of the radar applica-
tion into the Mercury platform PPCs;

(iii) an upgrade of the code generators and the library com-
ponents developed in Ptolemy Classic for the bench-
mark;

(iv) the execution of the new application implementation
with the upgraded mapping and generated code.

During the radar benchmark iterations, different communi-
cation protocols and memory allocation mechanisms were
experimented. Unexpected weakness of the COTS plat-
form and VSIP library were identified and bypassed. These
changes were mainly limited to Ptolemy code generators.
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The following Figures 11, 12, and 13 summarise the mea-
surements for the overall design of the first RP implementa-
tion, the test and validation and the application complexity,
respectively. The right vertical axis presents cumulative totals
represented by the dots. The figures present the results for a
nonadaptive beamformer (bare BEFO) and for the full adap-
tive beamformer (full BEFO)

The overall time measured to implement (coding) and
test/integrate the application was 354.5 hours. Thales Naval
Nederland which undertook the radar benchmark have cal-
culated a baseline figure of 481 hours for a conventional pro-
cess. Hence, this gives an improvement factor of 1.4. The
lower figure is attributable to the many more enhancements
that had to be carried out with Ptolemy Classic thereby re-
ducing the level of (re)-use of existing functions for the
benchmark. However, future developments of similar appli-
cations will not have to incur all of these library component
developments and hence this improvement factor will in-
crease. In Figure 13, we finally present the complexity of the
major iterations in terms of generated lines of code (LOC) as
well as number of functions used in the designs.

The final benchmark implementation was based on a
Mercury and FPGA heterogeneous platform. This Bench-
mark was not a real-time implementation since the commu-
nication between the Mercury boards and the FPGA board
employed a low-bandwidth VME bus instead of the high-
speed RACE++ interconnect between the Mercury boards.

The beamformer application after simulation
(SDF/BDF) was mapped on three different configura-
tions: 1 PPC/1 FPGA, 4 PPCs/1 FPGA, and 4 PPCs/4 FPGAs.
The Handel-C code was generated for these three different
implementations. Only the two first solutions where finally
synthesised and tested into the FPGA.

Performance results of the FPGA implementation were
for the 1 PPC 1 FPGA configuration:

(i) 67% of SLICES (63536 gates, 3481 flip-flops) used,
(ii) maximum frequency = 21.8 MHz,

and for the 4 PPC 1 FPGA configuration:

(i) 99% of SLICES (97270 gates, 5052 flip-flops) used,
(ii) maximum frequency = 17.2 MHz.

Due to the I/O limitation of the FPGA board, the perfor-
mance of the beamforming FFT was tested as being a fac-
tor of three times slower on the FPGA than on the PPC (ap-
prox. 1.1 microsecond per FFT8). Although real-time perfor-
mances were not demonstrated, the benchmark enabled the
measurement of the design complexity and design time du-
ration and the estimation of the development time speed up
improvements.

In Figure 14, the complexity of the designs is summarised
in terms of generated LOC as well as number of functions
used in the designs.

Although the development for supporting the heteroge-
neous architecture was at first highlighted as a high-risk ele-
ment, it actually took just over three engineer months. This
included the development of the new Handel-C domain in

 

Benchmark design development
100

80

60

40

20

0

H
ou

rs

N
-9

9

D
-9

9

J-
00

F-
00

M
-0

0

A
-0

0

M
-0

0

J-
00

J-
00

A
-0

0

S-
00

O
-0

0

N
-0

0

D
-0

0

Definition Bare BEFO

Full BEFO Total

400

300

200

100

0

To
ta

lh
ou

rs
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Figure 13: Design complexity of radar benchmark implemented on
a Mercury platform.
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Figure 14: Design complexity of the RADAR benchmark imple-
mented on the heterogeneous platform.

Ptolemy Classic, a new target supporting the mix of Mercury
compute nodes and FPGAs, the needed Handel-C library de-
velopments, and HW/SW integration activities.

The heterogeneous platform benchmark was more lim-
ited than the mercury-based benchmark nevertheless a sig-
nificant improvement of the development time by using an
RP environment can be estimated. In the conventional de-
velopment methodology, the design of an FPGA with this
kind of complexity would take approximately 500 hours, in-
cluding documentation. If we only focus on the develop-
ment process, this reduces to approximately 300 hours. Com-
pared to the development time using the EDE (40 hours), this
means an improvement of 7.5 was achieved.

5. CONCLUSIONS

An adaptive beamformer application for a radar and sonar
was successfully designed, implemented, tested, and bench-
marked using the EDE and the ESPADON RP process.
An improvement factor of 1.4 and 2.4 in productivity was
demonstrated for the radar and sonar beamformer applica-
tion, respectively. Hence, we can be confident that a halv-
ing of embedded signal processing system development life-
cycle can be achieved using the RP methodology and sup-
port environment. A much higher factor of 16 was achieved
with a conventional sonar beamformer. This implies that sig-
nificantly higher factors are possible through the use of a
common RP process and environment and the development
of application domain libraries to maximise future (re)-use
of signal processing functions.

An important finding and factor towards these produc-
tivity gains is that the functional, architectural and imple-
mentation design are done simultaneously instead of sequen-
tially simply because it is so easy and fast to do these with
the RP environment. This demands for a different process
that allows for rapid and higher frequency types of itera-
tions. Also many feedback loops are performed towards the

redesign of the environment. This allows for very rapid itera-
tions to arrive at the correct design and reduce error propaga-
tion. The latter also benefited from a common RP environ-
ment and the exchange of information as graphical designs
that can be quickly integrated into the overall functional de-
sign.

The approach has been found to be scalable to larger de-
signs than the benchmark applications discussed in this pa-
per, although this is to a certain extent a function of the tool
rather than the rapid prototyping methodology. Indeed, both
the tools discussed have a mean of automatically scaling ele-
ments of the design under parameter control. This is partic-
ularly useful in such sensor-based systems where a trade-off
analysis with respect to say the number of beams and per-
formance can be conducted without modifying the overall
structure of the model.

Although the work has focused on rapid prototyping
onto COTS processor-based components, the ESPADON
methodology is also applicable to the development of algo-
rithms for proprietary hardware platforms such as system-
on-chip (SOC). This would also involve the use of techniques
such as virtual prototyping, that is, the development of a
model of the system to execute on a virtual model of the final
hardware. These techniques and their supporting tools were
found to be far less mature than those available for rapid pro-
totyping. However, rapid prototyping is an important step
towards defining the data required for virtual prototyping
techniques in order to produce a sufficiently accurate perfor-
mance model of the algorithms and to scope the proprietary
developments.

Signal processing functions are only one part of an em-
bedded sensor system. Further work needs to be done to ex-
tend the RP process to include other functions such as system
control, front-end interfacing and processing, back-end data
processing and the HCI for commensurate productivity im-
provements at the system level. These topics require further
research and development.

NOTE

Unless BAE SYSTEMS (Operations) Limited, THALES or
MBDA has accepted a contractual obligation in respect of
the permitted use of the information and data contained
herein, such information and data is provided without re-
sponsibility. BAE SYSTEMS (Operations) Limited, THALES
and MBDA disclaims all liability arising from its use.
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