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Cognitive radio (CR) is a technology to implement opportunistic spectrum sharing to improve the spectrum utilization. However,
there exists a hidden-node problem, which can be a big challenge to solve especially when the primary receiver is passive listening.
We aim to provide a solution to the hidden-node problem for passive-listening receiver based on cooperation of multiple CRs.
Specifically, we consider a cooperative GPS-enabled cognitive network. Once the existence of PU is detected, a localization
algorithm will be employed to first estimate the path loss model for the environment based on backpropagation method and
then to locate the position of PU. Finally, a disable region is identified taking into account the communication range of both the
PU and the CR. The CRs within the disabled region are prohibited to transmit in order to avoid interfering with the primary

receiver. Both analysis and simulation results are provided.

1. Introduction

As more devices go wireless, spectrum becomes more and
more crowded. Study of spectrum utilization, however,
reveals that not all the spectrum is in use for all the time.
Enforcement Bureau of Federal Communications Commis-
sion (FCC) measures the spectrum usage in Atlanta, Chicago,
and so forth, and the study shows that only 5%-10% of the
spectrum is used (up to 100 GHz) on the average. DARPA
study reveals that only 2% of the allocated spectrum is used
at any given time. Therefore, there is a potential to make
efficient use of the unused spectrum without interfering with
primary users (PUs) so that the spectrum utilization can be
improved and more users can be supported. Cognitive radio
(CR) is a technology to implement opportunistic spectrum
sharing to improve the spectrum utilization [1-3]. CR can
be applied in civilian applications, law enforcement, as well
as military applications.

For CR, spectrum sensing is the first step but very crucial
to the success. Only when the electromagnetic environment
is thoroughly understood, it can be decided over which
frequency to transmit and how to transmit. As the cognitive
radio is seen as the secondary user to share the licensed band

with the PU, they must avoid or control the interference to
potential PU. However, as a radio device, a single CR may
suffer severe shadowing or multipath fading with respect to
primary transmitter so that it cannot detect the existence of
primary transmitter even in its vicinities. In addition, there
exists a hidden-node problem, in which a CR may be too far
from the transmitter to detect the existence of the PU, but
close to the primary receiver to interfere with the reception
if transmit. Cooperative sensing provides a solution to the
challenges mentioned above [4, 5]. In cooperative sensing,
multiple cognitive radios cooperate to reach an optimal
global decision by exchanging and combining individual
local sensing results. Allowing multiple CRs to cooperate,
cooperative sensing can increase the detection probability,
reduce the detection time, and achieve the diversity gain [6—
11].

In this paper, we aim to provide a solution to the
hidden-node problem for passive-listening receiver based
on cooperation of multiple CRs. Solutions to hidden-node
problem have been provided, such as RTS/CTS handshake
for WLAN [12], BTMA (Busy Tone Multiple Access) for
a centralized system [9], and DBTMA (Dual Busy Tone
Multiple Access) for ad hoc networks [10]. However, most of



the solutions require active participation of primary receiver
and fail when primary receiver is just passive listening. When
passive listening, primary receiver does not acknowledge or
respond. In our approach, GPS-enabled CRs cooperate to
first estimate the environment based on back propagation
method and then locate the position of PU. Based on the
PU location derived, we identify the disable region, whose
radius is the sum of PU communication range and a CR
communication range. Within the disable region, all the CRs
are prohibited to transmit in order to avoid interfering with
the PU. Since the disable region takes into account the CR
communication range, our proposed method deals with the
worst case of hidden-node problem. In addition, it does not
require any involvement from primary receiver, suitable for
passive-listening scenario.

The remainder of the paper is organized as follow. In
Section 2, we present our system model. In Section 3, we
propose the localization algorithm to first estimate the path
loss model and further determine the exact location of PU.
Simulation results are provided in Section 4, and finally the
paper is concluded by Section 5.

2. System Model

We consider a cognitive network, which consists of N CRs
that are GPS enabled and cooperative, shown in Figure 1. A
simple energy detector is used by individual CR to detect the
existence of PU by measuring the strength of the received
power. A central control office collects the sensing results
from individual CR to make a global detection decision. If
the existence of PU is determined, the central control office
runs a localization algorithm to first estimate the path loss
model for the environment and then to locate the position
of PU.

Once the position of PU is located, a disable region for
CRs can be identified. Let R, denote the communication
range for PU and R, denote the communication range for
CR, and then the disable region is the circle area with the
origin at the PU location and the radius Ry = R, + R.. The
actual CR communication range depends on the CR receiver
and the CR transmits power jointly, which are known to
the system. Therefore, it can be easily calculated given the
path loss model. Finally, the central control office sends the
control signal to individual CR to either disable or enable
the CR depending on whether it locates within or outside
of the disable region. The CRs within the disabled region
are prohibited to transmit in order to avoid interfering with
the primary receiver, while CRs outside of the region can
transmit. Since the disable region takes into account the
CR communication range, the hidden-node problem can be
solved.

Widely adopted AODV (Ad Hoc On-Demand Distance
Vector) routing protocol is used over a default clear channel
to exchange the information between the CRs and the central
control office. AODV protocol has small delay close to 8 ms
in general and 20 k to 30 k routing overhead [13]. The default
channel may be selected among several predetermined
channels. A clear channel can be easily identified from the
spectrum sensing stage.
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In this paper, we use the log-normal shadowing path loss
model:

Pi(d) = Po(do) +10 - 1 1og(%) 1X0,8), (1)
where P, (d) is the received power at distance d, Py(dp) is the
received power at the reference distance dy, n is the path loss
exponent, and X (0, §) is normal shadowing random variable
with zero mean and § variance.

3. Localization Algorithm

In this section, we propose a localization algorithm, which
will be employed to estimate the path loss model and further
locate the position of PU once the presence of PU is detected.
Since all CRs are GPS-enabled, the central control office can
obtain the location information from those CRs. If we know
the relative distances between PU and CRs, we can calculate
the position of PU easily. As shown in (1), the distance
between PU and a CR can be estimated by the received power
for that CR and the path loss exponent n. Therefore, we need
to estimate the path loss exponent first and then locate the
PU.

3.1. Localization Algorithm with Identical Path Loss Coeffi-
cients. We first consider the simple scenario in which all
CRs locate in the same electromagnetic environment, that is,
they have the same path loss exponent, expect for those CRs
located close to PU, whose path loss should be modeled as
free space path loss model. In (1), the reference point dy is
always chosen in the close vicinity of PU; therefore, Py(dy)
can be calculated from free-space equation

P+ G- G- Af?

Py(dy) = m,

(2)

where P; is the transmit power from the transmitter, G,
and G, are the antenna gains for transmitter and receiver,
respectively, and A ¢ is the wavelength of the carrier frequency.

Our localization algorithm is specified in details as
follows (shown in Figure 2).

Step 1. Sort all CRs according to the descending order of the
received power and number the CRs from 0 to N — 1.

Step 2. If the received power of CRO is above certain
threshold, we pick CRO as the reference, calculate the
reference distance, and then continue the process. Otherwise,
we will repeat Steps 1 and 2 till we find CRO with received
power exceeding the threshold.

That is, we treat the location of CRO (xo, y9) as the

reference point and the received power of CRO as Py(dp).
Then the reference distance dy can be calculated according

to (2) as
PG, -G, - A
= J Po(do) (4 - )" ©



International Journal of Digital Multimedia Broadcasting

| Central control office |

—> Sensed data
--> Control signal

© Primary user
O Enabled CR
@ Prohibited CR

FIGURE 1: System model.

FiGure 2: Illustration of Localization Algorithm.

From spectrum sensing stage, the carrier frequency of
the PU can be identified. The transmit power is usually
regulated to certain level. In the United States, FCC regulates
the use of antennas not to exceed certain power limitations
for wireless devices using the parameter EIRP (equivalent
isotropically radiated power), which represents the effective
transmit power of the radio in total, including transmit
antenna gains. When using omnidirectional antennas (less
than 6 dB), the FCC rules require EIRP to be 1 watt or less. In
this paper, we use P;G; = 1 watt.

The choice of the power threshold depends on how much
accuracy or estimation error the system can tolerate. One
example is illustrated in Figure 4.

Step 3. Draw a circle with the CRO location as the center
and dy as the radius. If CRO does follow the free-space
propagation, the PU must locate on that circle.

Step 4. Pick the next three CRs, CR1, CR2, and CR3, in the
list. Move the PU location along the circle from 0-degree
angle to 360-degree angle and calculate the corresponding
path loss exponent # for CR1, CR2, and CR3, respectively.

For example, we consider CR1. When the PU locates on
the circle with angle ¢, the PU location is (xo + do cos ¢, yo +
dy sin ¢), and the distance between the point and CR1 is

di =\/(xo-l—docosgo—x1)2+(yo+dosin(p—yl)z. (4)

According to (1), when ignoring the shadowing, the path loss
exponent is

_ Py(do) — P
M9 = 0 log(dr/dy)’ ®)

Step 5. Calculate the relative difference between the path loss
exponents among those three CRs for any angle ¢:

E12 = |n1(9) — ma(e) |,
E13 = |ni () — n3(9) |, (6)
E32 = |ns5(¢) — m(9)|.

We pick the angle that gives the minimum difference
summation:

@ = arg min(E12 + E13 + E32). (7)

Then the path loss exponent 7 can be estimated as

— (p) + "22@) + 13 (@). 8)
The position of PU can be estimated as
X = xo+dycosp

)

¥y = yo+dysing.

Let Ppin be the minimum acceptable received signal
power for the main receiver from PU. Ignoring the random
shadowing, we can calculate the communication range of PU
as

10(Po(do)=Prin)/107

RP - d—o (10)

And then the radius for disable region for CRs is
Ri=R,+R. (11)

Without shadowing, our algorithm can accurately esti-
mate the path loss exponent and locate the exact location of
PU. When there is shadowing, the shadowing effect can be
reduced if we take multiple samples of the received power to
average out the randomness.



CRO, though having the strongest received power, may
not follow the free-space path loss model. In this case, we
need to evaluate the proposed localization algorithm in terms
of error, which is defined as

de Veru %) = (v = §)’
R, R, ’

Error = (12)

where d, is the separation distance between the actual PU and
the estimated PU, (xpyu, ypy) is the actual PU location, and
(X, ) is the estimated PU location. Some simulation results
will be given in Section 4.

3.2. Localization Algorithm with Variant Path Loss Coefficients.
It is likely that the CRs locate in different environment; thus,
we propose a backpropagation-based algorithm to locate the
PU under a variant environment. Back propagation has been
used in various areas, such as the artificial neural network
and the MIMO process, but no work has been found in
communication networks to the best of our knowledge.

As the algorithm’s name implies, the errors (and there-
fore the learning) propagate backwards from the output
nodes to the inner nodes in a network. So technically
speaking, back propagation is used to calculate the gradient
of the error of the network with respect to the network’s
modifiable weights. This gradient is always then used in a
simple stochastic gradient descent algorithm to find weights
that minimize the error. Often the term “back propagation”,
used in a more general sense, refers to the entire procedure
encompassing both the calculation of the gradient and its
use in stochastic gradient descent. Back propagation usually
allows quick convergence on satisfactory local minima for
error in some appropriate network settings.

In this paper, we can consider our model as a 2-input/1-
output system. All we have to do is to estimate all the weights
and hidden nodes in the system to approximate the true
results. According to (1), there are two unknown variables
in the equation: d and n. In the variant environment, path
loss coefficients can be varied. But we can first estimate the
rough position of PU using AOA estimation method. This
result will not provide us an acceptable result. However, it
can eliminate one variable in (1). In this way, we can employ
the back propagation algorithm to find out the path loss
coefficients of all the cognitive radios. Using the results of
back propagation algorithm, we can further estimate the
exact location of the PU.

For back propagation algorithm, we can treat (1) in the
form as below:

P, = f(n,d). (13)

The received power calculated from (13) varies from the
true value of the received power depending on the values of
the path loss coefficients and the estimated distances. As we
talk above, we can find a way to first estimate the location of
the PU with a larger error. In order to get the closest result to
the true value, we introduce (14) to calculate the square error.
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Finding a good estimation of the path loss coefficients will
now become finding the minimum value of function J(n):

J(n) = (f(n,d) = Prea)’s (14)

where Py, is the actual measured received power.

We start finding the proper path loss coefficients with a
set of random initial values. Then we process those variables
with the back propagation algorithm. The algorithm is
described as shown in the following steps

Step 1 and Step 2. are the same as those in localization
algorithm with the identical path loss.

Step 3. CRO estimates the angle of arrival (AOA), 6, of
the received signal. The rough position of the PU can be
calculated as

Ynitial = Yo + do sin 6,
~ (15)
Xinitial = Xo + do cos 0.

Step 4. Using the back propagation algorithm [14] to obtain
the path loss coefficients for every cognitive radio. The detail
process can be described as follows

(1) Pick initial values of the path loss coefficient for
each CR using pseudorandom process that randomly
selects n; within the range from 2 to 8 for the ith CR.

(2) Compute the receive power of each CR with the
coefficients according to (13).

(3) Compute the objective function

M
Ty nyg) = ﬁ S (f(nndi) - Pirea)™s (16)
i=1

where M is the number of the CRs that we use in the
algorithm, f(n;,d;) is the estimated received power
calculated using the selected n; for the ith CR, and
P real s the actual measured received power obtained
by the antenna of the ith CR, n; to ny is the path loss
exponent that we need to obtain in this step.

(4) Take the second-order derivative of J(n,ns,...,ny)
with respect to each path loss coefficient n; and select
the smallest value as the updating step #:

= min ajz(nla---anM) a]z(l’ll,...,l’lM)
il on? ’ on3 e
(17)
ajz(nla- .. 1nM)
on3, ’
(5) Update the parameters #; using the following equa-
tion:
a](nl’---)nM)
L+l L
i = — = > 1
n ni +n o, (18)

where L denotes the iteration number.

(6) Repeat procedures (2) to (5) until we have a decent
estimation. Usually we have an acceptable answer
after 70 iterations.



International Journal of Digital Multimedia Broadcasting

Step 5. Compute distance between the PU and every CR
using the equation given below:

do

di = 10Piscal—Po(do))/107; " (19)

Step 6. Determine the area that the PU might locate, which
is specified by the intersections of each circle centered at each
CR with the estimated d; from Step 5 as the radius.

Step 7. Compute a 3D probability contour and pick the point
giving us the largest probability as the PU location. The
calculation of the probability for point ¢ on the intersection
plane is given as (20):

Prob = def{N (Pi,real — Pdy — 107; - log(?)ﬁ) },
R
where d_; is the distance between point ¢ and the ith CR.

4. Simulation Results

4.1. Localization Simulation with Identical Environment. We
consider a cooperative GPS-enabled cognitive network with
the following parameter setup: PU location: (22, 23), CRO
location: (22, 22), CR1 location: (6, 5), CR2 location: (40,
6), CR3 location: (7, 41), P;G, = 1lwatt, G, = 1, and
carrier frequency is 300 MHz. In all simulations, we choose
—4.5 dbm as the power threshold (illustrated in Figure 4).

We further assume that the path loss for CRO follows free-
space equation, and CR1, CR2, and CR3 have the same path
loss exponent, n = 4. We consider two scenarios, without
shadowing and with shadowing.

4.1.1. Without Shadowing. In this case, the path loss model
is simplified to log-distance model. This is a deterministic
model without randomness. We plot the corresponding path
loss exponent estimate for CR1, CR2, and CR3, respectively,
as we move the potential PU point along the circle from 0
degree to 360 degrees.

From Figure 3, we can see that the path loss exponent
varies as the point moves, as the distance between the
potential PU and CR changes. In addition, the three curves
cross at a single point with the angle ¢ = 90 degrees and
the corresponding path loss exponent n = 4. According to
(6) to (8), the crossing point has the minimum summed
differences; therefore, we have ¢ = 90 degrees and path loss
exponent 7 = 4. That is, the estimations perfectly match the
exact values.

We then examine how to choose the power threshold in
step 2 to determine whether a CR can be considered as the
reference. We assume that the reference distance is dy = 1 and
the actual path loss for the CR is 4. In general, the path loss
exponent varies between 2 and 4. Therefore, we consider the
worst case. We vary the distance between the PU and the CR
and calculate the corresponding error using (12). The results
are illustrated in Figure 4. It is shown that the error increases
with the distance. If we choose the 5% error, the distance is 2
and the corresponding received power is —4.5 dbm, which is
the chosen power threshold.
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FIGURE 3: Path loss exponent versus angle without shadowing.
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F1GURE 4: Error versus the distance between the PU and CRO.

4.1.2. With Shadowing. Then we add random shadowing
into the path loss model. We first set the shadowing random
variable with zero mean and 8 dB variance. To average out the
randomness, we take 600 samples and average the received
power, P, P,, and Ps;. We redraw the path loss exponent
curves as we move the potential PU point along the circle
from 0 degree to 360 degrees, shown in Figure 5. The three
curves do not intersect at a single point in contrast to the no-
shadowing case. Again, we use (6) to (8) to estimate the angle
@ and path loss exponent 7. It is shown that at 99 degrees the
three exponents have the minimum summed difference, that
is, @ = 99 degrees and 7 = 4.05. Then the estimated location
for PU is (21.8491, 22.9529). As we can see, the estimated
position is very close to the exact location of PU.

We would like to see how the increase of the sample num-
ber would affect the performance. Therefore, we increase
the number of samples, and check the estimated location
of PU. Figure 6 shows how the estimated x-coordinate varies
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shadowing.
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FIGURE 6: x coordinate of PU location versus sample number.

TaBLE 1
Sample number 100 200 300 400 500
Angle 65 134 77 63 71
Sample number 600 700 800 900 1000
Angle 80 92 92 92 92

with the number of samples. It is shown that the estimated
value approaches to the exact value as the number of samples
increases. In this specific example, we observe that the curve
reaches the maximum error at 200 samples; however, the
difference is still less than 1, which is less than 5% as an
error. In addition, the curve approaches to the exact 22 as
the number of samples increases. The same property can be
found for y coordinate.

We also estimate the angle given the various number of
samples, as shown in Table 1.
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FIGURE 7: x-coordinate of PU location versus variance of shadow-
ing.

As we can observe here, the estimated angle also
approaches to the exact value 90 of degrees as the number
of samples increases. When more than 800 samples are used,
we can get the estimated angle really close to the exact value
of 90 degree with only 1 or 2 degrees difference.

In addition, we want to study the effect of the shadowing
variance casting on the accuracy of the localization. In this
simulation, we use 1000 samples for each outcome under
different variance.

Figure 7 shows the estimated x-coordinate for different
shadowing variance. We can see that the difference between
the exact value and estimated value tends to become larger
as we increase the variance of shadowing. If we choose
the variance less than 10dB, we can estimate the position
of PU within small error using the proposed localization
algorithm. Similar properties are found for y-coordinate and
the estimated angle.

4.2. Localization Simulation with Variant Environment. In
this section, we focus on the performance of the localization
algorithm with variant environment. We assume that PU
location (23, 23) and path losses for CR1, CR2, and CR3
are 5, 4, and 6, respectively, while keeping other parameters
unchanged as A with the shadowing random variable with
zero mean and 8 dB variance.

The back propagation algorithm is applied to estimate
the path loss coefficients. Figure 8 shows the estimated
coefficients versus the number of iterations. It is shown
that the back propagation algorithm takes approximately
100 iterations to reach the steady final result. Note that the
number of iteration needed varies with the distance between
the PU and the reference point.

Once the path loss coefficients are estimated, we process
Step 6 to determine in which area the PU may locate. We
calculate the estimated distance between the PU and each
cognitive radio and then draw a circle which indicates the
probable area of the PU. Then we take all the intersections
and overlaps into consideration and identify the area for PU.
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F1GURE 9: Probable area for the location of PU.

The result is given in Figure 9, marked as a gray rectangle.
Compute the probability for each point in the black rectangle
according to (20) and plot the 3-D probability contour in
Figure 10. The corresponding 2D contour mapping is shown
in Figure 11. From Figures 10 and 11, we chose the point
with the largest possibility as the estimated PU location, that
is, (22.4702, 22.9886). This estimation is really close to the
actual location (23, 23).

The key of the algorithm is to get the precise estimation
of the path loss coefficients following Step 4, as those
estimations will be used to determine the PU location. The
estimation accuracy depends on the reference point. The
path loss for the reference point has been assumed to follow
free-space propagation. Figure 12 shows how the actual path
loss for the reference point affects the accuracy. It is shown

Pdf for detection area

X107

Probability

X axis

F1GURE 10: 3-D probability contour of the detection area.

Pdf for detection area

y axis

X axis

F1GURE 11: Corresponding 2-D contour mapping.

that the effect is not that significant. We also check how the
distance between the reference point and the PU location
affects the accuracy, shown in Figure 13. It is shown that
as the reference point is further away from the PU, the
estimation gets worse. Consequently, the localization error
follows the same trend, shown in Figure 14. The localization
error increases with the reference distance. Thus, in order to
achieve desired accuracy, the reference point should be close
enough to the PU. For this specific example, the reference
node should be chosen within 1.2 units away from the PU
for good accuracy.

5. Conclusion

In this paper, we have proposed a solution to the hidden-
node problem in a cooperative GPS enabled cognitive
network. Our proposed localization algorithm estimates
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the path loss model and then locates the position of PU.
Consequently, we can determine the disable region for CRs
to avoid the interference to PU as well as the hidden-
node problem. The simulation results have shown that the
localization algorithm can provide accurate location results
given that the reference node is close enough.
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