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Abstract: Nanopatterning of solid surfaces by low-energy ion bombardment has received
considerable interest in recent years. This interest was partially motivated by promising
applications of nanopatterned substrates in the production of functional surfaces. Especially
nanoscale ripple patterns on Si surfaces have attracted attention both from a fundamental
and an application related point of view. This paper summarizes the theoretical basics of
ion-induced pattern formation and compares the predictions of various continuum models
to experimental observations with special emphasis on the morphology development of Si
surfaces during sub-keV ion sputtering.
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1. Introduction

Back in the 1960s, Navez et al. studied the morphology of glass surfaces bombarded with a 4 keV
ion beam of air [1]. During the sputtering, they found the surface to develop periodic structures with
lateral dimensions ranging from 30 to 120 nm depending on the angle of incidence. The orientation of
the structures was determined by the direction of the ion beam. For grazing incidence, ripple patterns
oriented parallel to the projection of the ion beam were observed whereas the ripples were rotated by
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90◦ at near-normal incidence. At normal incidence, however, the surface developed dot-like features. In
the following years, sputter-induced ripple structures were found on all kinds of amorphous as well as
crystalline materials like insulators [2], semiconductors [2,3], and metals [4].

During the 1990s, several in-situ and ex-situ studies investigated the ion-induced formation of
nanoripples by means of new techniques for the exact characterization of the eroded surfaces like light
scattering [5] and x-ray methods [6], as well as scanning tunneling [7] and atomic force microscopy
[8,9]. In 1999, Facsko et al. observed the formation of hexagonally ordered nanodots on GaSb surfaces
during normal incidence ion sputtering [10]. Such regular dot patterns have been found on various
semiconductor surfaces sputtered at normal incidence [11] as well as off-normal incidence with [12] and
without sample rotation [13].

Nowadays, ion-induced nanopatterns become interesting for various technological applications.
Recent experiments demonstrate the principal applicability of nanoripples in the fabrication of
microelectronic devices [14] and optically active nanostructure arrays [15,16]. Another approach uses
nanodot formation under normal incidence sputtering of layer stacks to create isolated magnetic islands
for magnetic storage media [17,18]. In addition, rippled substrates are becoming popular as templates
for thin film deposition. It was shown that the morphology of the nanorippled substrates modifies the
magnetic properties of ultrathin single-crystalline [19] and poly-crystalline [20–22] metal films. In a
similar manner, arrays of close-packed nanomagnets could recently be obtained by shadow deposition
on hexagonally ordered dot patterns [23]. Moreover, the self-organized alignment of physical-vapor
deposited metal nanoparticles on nanorippled substrates was recently observed, leading to large arrays
of nanoparticle chains exhibiting polarization-dependent plasmon absorption [24,25]. With the same
technique, also arrays of metallic nanowires could be produced [26–28]. Most of these applications
crucially depend on certain properties of the template patterns such as a high degree of order in the case
of storage media [17,23] or a well defined ripple wavelength that fits to the growth conditions of the
nanoparticles [24]. A precise control of the pattern properties in turn requires detailed knowledge of
the pattern formation process and the contributing mechanisms. Up to now, however, this knowledge is
still incomplete.

Although several possible origins of the ripple patterns like ion-induced local stresses or initial surface
defects have been suggested in the years following their discovery [3], no conclusive explanation could
be found until 1988. In this year, Bradley and Harper developed a continuum model [29] to describe the
formation of the ripple patterns based on the so-called micro-roughening instability [30]. It was already
shown by Sigmund [30] that the local erosion rate of a surface under ion bombardment is higher in
depressions than on elevations. This curvature dependence of the sputter yield induces an instability of
the surface against periodic disturbances which leads to an amplification of all initial modulations. In the
presence of a competing smoothing process like surface self-diffusion, however, a wavelength selection
is observed with the most unstable mode growing fastest [29].

The resulting linear continuum equation, the so-called Bradley-Harper (BH) equation, is able to
reproduce some of the main experimentally observed features of the formation and early evolution
of the patterns like their orientation with respect to the ion beam and the exponential growth of the
ripple amplitude. For long sputtering times, however, certain experimental observations such as the
saturation of the ripple amplitude cannot be explained within the framework of the linear model. This
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disagreement was attributed to a growing influence of nonlinear terms that dominate the morphology
at later times. Hence, in 1995, Cuerno and Barabási derived a nonlinear continuum equation of the
Kuramoto-Sivashinsky (KS) [31,32] type to describe the ion-induced formation of periodic surface
structures [33]. In the early time regime, this equation behaves like the linear BH equation. At a certain
transition time, however, the nonlinear terms start to control the evolution of the surface [34]. When
entering this nonlinear regime, the amplitude of the ripples saturates as found experimentally. However,
a transition to kinetic roughening with a loss of lateral order is observed in this regime [34,35]. Whereas
such a transition has been observed in a few experiments [36], other studies report a stabilization of the
regular patterns at high fluences [37–39]. Another feature of the experimental pattern evolution that could
not be reproduced by the KS equation is the occasionally observed coarsening of the pattern wavelength
[9,11,12,39–44]. In order to overcome these discrepancies, several other nonlinear models based on the
KS equation have been proposed [45–49]. These models all show a similar behavior in their linear regime
and make different predictions only for the surface evolution in the nonlinear regime corresponding to
rather long sputter times [50]. Therefore, a distinct demand for high fluence experiments has evolved
which investigate the evolution of the surface morphology in the nonlinear regime in order to identify
the continuum model that describes the given experimental system.

In the following section, the theoretical basics of ion-induced pattern formation are summarized and
the various continuum equations available at present are discussed. Section 3 shows experimental results
on the pattern formation and evolution on Si surfaces and tries to identify a certain continuum equation
to describe the surface evolution. In addition, dependencies on experimental parameters are discussed
with respect to possible applications. Section 4 provides a summary.

2. Continuum Theory of Ripple Formation During Low Energy Ion Sputtering

If a solid surface is bombarded with energetic ions, surface material will be removed [51,52]. The
theoretical description of this mechanisms called sputtering has already been formulated in the 1960s
by Sigmund [53]. The ions penetrating into the target surface are slowed down and lose their kinetic
energy and momentum in elastic and inelastic collisions with target nuclei and electrons, respectively.
For kinetic energies of the order of some keV and below, however, the momentum and kinetic energy of
the ions are transferred to the target atoms in nuclear collisions mainly and inelastic collisions play only
a minor role [54]. A target atom taking part in one of these collisions receives some of the ion’s kinetic
energy and momentum and can, therefore, be set in motion. If such an atom obtains sufficient energy,
it can induce further collisions with other target atoms, thus increasing the number of moving atoms.
This situation is then called collision cascade [54]. For typical ion fluxes, the collision cascades do not
overlap in space and time and can therefore be treated independently. Within one collision cascade, it
may happen that a target atom receives momentum directed towards the surface. If the kinetic energy
of such an atom is high enough to overcome the surface binding energy, it will leave the surface and be
sputtered away. Under continuous irradiation, the surface will be eroded as a whole. Additional effects
that also might cause the removal of target material such as the deposition of potential energy during the
impact of slow multiply-charged ions [55] will not be treated in this review.

When bombarding a crystalline non-metallic surface, e.g., a semiconductor, one can observe an
additional effect. The number of generated defects in the crystal increases with the number of ion
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impacts. Therefore, for a large number of ion impacts, the crystal structure of the surface becomes
unstable and the whole surface gets amorphized [54]. For single crystalline Si surfaces bombarded
at energies of a few hundred eV at room temperature, this amorphisation is observed already after
the impact of about 1015 ions per cm2 [56]. For higher fluences, the surface can be treated as fully
amorphous.

2.1. Sigmund’s theory of sputtering

A keV ion penetrating a solid surface loses its kinetic energy mainly in nuclear collisions with target
atoms. The energy loss per unit path length, or stopping power, is then given by

dE

dz
= −NSn(E) (1)

with the atomic density N of the solid and the nuclear stopping cross section Sn(E). E is the initial
kinetic energy of the penetrating ion.

The nuclear stopping cross section Sn(E) depends on the interaction potential used to model the
collision between ion and target atom. With the power approximation of the Thomas-Fermi potential as
a common choice, Sn(E) reads [53]

Sn(E) =
1

1 − m
Cmω1−mE1−2m. (2)

Here, m accounts for the Coulomb screening of the nuclei due to the electrons in the solid and ranges
from 0 to 1. In the lower-keV and upper eV region, m = 1/3 is commonly assumed, whereas m should
be close to zero in the eV region [53]. Cm and ω are constants that incorporate the atomic parameters of
the projectile and target species:

Cm =
π

2
λma2

TF

(
Mp

Mt

)m (
2ZpZte

2

aTF

)2m

, (3)

ω =
4MpMt

(Mp + Mt)
2 .

Mp,t is the atomic mass and Zp,t the atomic number of the projectile and the target atom, respectively.
λm is a dimensionless function of m with values ranging from λ1 = 0.5 to λ0 ∼ 24 and aTF is the
Thomas-Fermi screening length.

The average number of sputtered atoms per incident ion is given by the sputtering yield Y . For linear
collision cascades, i.e., for a sufficiently small number and isotropic distribution of binary collisions
within one cascade [54], the sputtering yield Y is proportional to the energy FD(z) deposited per unit
depth in the surface at z = h by a certain ion at the lateral position (x, y),

Y (E, θ, x, y) = ΛFD(E, θ, x, y, z = h) (4)

with the ion energy E and the angle of incidence θ. Λ is given by

Λ =
Γm

8(1 − 2m)

1

NCmE1−2m
sb

. (5)
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Here, Esb is the surface binding energy and Γm a function of m given by

Γm =
m

d
dx

[ln Γ(x = 1)] − d
dx

[ln Γ(x = 1 − m)]
. (6)

Because the majority of the sputtered particles originates from secondary collisions with low energy
(< 50 eV) recoils, Sigmund suggested m = 0 for Equation (5) [53], resulting in Γ0 = 6/π2. Therefore,
Equation (5) becomes

Λ =
3

4π2

1

NC0Esb

, (7)

with C0 = 0.0181 nm2 [53].
For a plane and homogeneous surface, the deposited energy does not depend on the lateral position

of the ion impact and is given by
FD(E, θ) = αNSn(E), (8)

with α being a dimensionless function of the angle of incidence θ and the mass ratio Mt/Mp [53]. Then,
the sputtering yield becomes

Y (E, θ) =
4.2

nm2

αSn(E)

Esb

. (9)

According to Equation (9), the sputter yield depends on the surface binding energy and due to
Equations (2) and (3) also on the atomic species. Therefore, for a multicomponent material, different
sputter yields for individual atomic species i might be observed. In a first approximation, the total sputter
yield can be treated as the sum of the different components according to their surface concentration. For
this purpose, so-called “component” sputtering yields Y c

i are defined such that the partial sputtering
yields Yi follow the relation

Yi = qs
i Y

c
i (10)

with the surface atomic fractions qs
i . Then, the total sputtering yield is given by

Y =
∑

i

Yi. (11)

Different component sputtering yields then lead to

Yi

Yj

̸= qs
i

qs
j

, (12)

i.e., one or more components are sputtered preferentially. Due to this preferential sputtering, the surface
concentrations are altered at increasing fluence even in a homogeneous material. For a two-component
material with the components A and B, preferential sputtering of A leads to a decrease of the surface
concentration and thus also to a decrease of the partial sputtering yield of A. Prolonged sputtering will
then lead to a stationary state described by

Y ∞
A

Y ∞
B

=
qA

qB

(13)

which is characterized by the stationary partial sputtering yields Y ∞
i and the bulk atomic fractions qi. In

the stationary state, the altered composition profiles remain constant but are moved into the bulk due to
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sputter erosion, so that atoms sputtered at the surface must be balanced by atoms fed from the bulk into
the altered surface layer. From Equation (10) and (13),

(qs
A)∞

(qs
B)∞

=

(
qA

qB

)2
Y 0

B

Y 0
A

(14)

for the stationary surface composition is obtained with the stationary surface atomic fractions (qs
i )

∞ and
the initial partial sputtering yields Y 0

i .

2.2. The Bradley-Harper model

If a surface is bombarded with a homogeneous flux of ions j, then the over-all energy deposited in a
given point A of the surface is the sum of the energy deposited in this point due to all surrounding ion
impacts. Therefore, with Equation (4), the local erosion rate in point A is given by the integral over all
contributing events [30]

v(A) =
Λ

N

∫ ∫
ϕ(r)ED(r)dxdy (15)

where ϕ(r) is the flux of incoming ions j corrected for the local angle of incidence and ED(r) is the
energy deposited per unit volume at r = (x, y, z). ED(r) is related to FD(z) of Equation (4) by [30]

FD(z) =

∫ ∫
ED(r)dxdy. (16)

The spatial distribution of the deposited energy ED(r) can be approximated by a Gaussian,

ED(r) =
E

(2π)3/2σµ2
exp

(
−(z + a)2

2σ2
− x2 + y2

2µ2

)
. (17)

Here, µ and σ represent the lateral and longitudinal width of the distribution, respectively, and a is the
mean penetration depth of the ion. A contour plot of the energy distribution is shown in Figure 1.

For a rough surface sputtered with an uniform flux of ions, the energy deposited in the surface is
not constant but rather depends on the lateral position r. To some extent, this is caused by the angular
dependence of the ion flux at the surface. In addition, however, the energy deposition into the surface
depends on the local shape of the surface. This lateral variation of the energy deposition causes a lateral
variation of the local erosion rate and, therefore, a change of the surface morphology with sputtering time
[30]. A closer inspection of the underlying mechanisms reveals that the local erosion rate is higher in
troughs than on crests. This is demonstrated in Figure 2 where ions penetrate into a surface region with
positive (Figure 2 left) and negative (Figure 2 right) curvature, respectively. The Gaussian distribution of
the deposited energy is centered at the mean penetration depth a of the ions and indicated by the (broken)
lines of constant energy. From Figure 2 it is obvious that the distance from the surface point A where
the sputtering occurs to the contributing impact at B is shorter than the distance A∗ − B∗. Therefore,
the over-all deposited energy and also the erosion rate is larger in points with positive curvature (A) than
in those with negative curvature (A∗). Obviously, the surface becomes unstable and the initial surface
roughness gets amplified. This mechanism is called surface micro-roughening [30].
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Figure 1. Contour plot of the deposited energy in the x-z plane according to equation (17)
with a = 3 nm, σ = 0.9 nm, µ = 0.5 nm, and E = 500 eV. The surface at z = 0 is indicated
by the broken line.
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Figure 2. Schematic drawing of the energy deposition in rough surfaces, see text.
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In order to explain the formation of periodic ripple patterns during sputtering, Bradley and Harper
have calculated the integral (15) under the assumption of large radii of curvature Rx and Ry [29]. Then,
the time evolution of the continuous surface height function h(x, y, t) is given by

∂h

∂t
= −v(φ,Rx, Ry)

√
1 + (∇h)2 (18)

with φ being the angle between the direction of the ion beam and the local surface normal [33]. The
projected direction of the ion beam is parallel to the x axis. Equation (18) can then be expanded in
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terms of derivatives of the surface height [33]. To first order in the surface curvature, Bradley and Harper
obtained

∂h

∂t
= −v0 + γ

∂h

∂x
+ νx

∂2h

∂x2
+ νy

∂2h

∂y2
. (19)

Here, v0 is the erosion velocity of the planar surface, γ causes a lateral movement of the structures, and
the micro-roughening instability is incorporated by the coefficients νx,y. These coefficients are given by
the following relations [45]:

v0 = Fc, (20)

γ = F
s

f 2

[
a2

σa
2
µc

2
(
a2

σ − 1
)
− a4

σs
2
]
, (21)

νx = Fa
a2

σ

2f 3

[
2a4

σs
4 − a4

σa
2
µs

2c2 + a2
σa

2
µs

2c2 + a4
µc

4
]
, (22)

νy = −Fa
c2a2

σ

2f
, (23)

with

F =
jEΛa

σµN
√

2πf
e−a2

σa2
µc2/2f , (24)

f = a2
σs

2 + a2
µc

2,

aσ =
a

σ
, aµ =

a

µ
,

s = sin θ , c = cos θ.

When sputtering a surface at finite temperature, atoms will diffuse on the surface leading to a
relaxation of the surface. This effect, the so-called Herring-Mullins surface diffusion [57,58], can be
introduced by adding a term proportional to the fourth derivative of the surface height to Equation (19),
resulting in [29]

∂h

∂t
= −v0 + γ

∂h

∂x
+ νx

∂2h

∂x2
+ νy

∂2h

∂y2
− K∇4h. (25)

In the Bradley-Harper (BH) equation (25), K is the relaxation rate due to thermally activated surface
self-diffusion [29],

K =
Dsϱnd

N2kBT
, (26)

with the surface self-diffusivity Ds, the surface free energy per unit area ϱ, the areal density of diffusing
atoms nd, the Boltzmann constant kB and the temperature T .

The behavior of Equation (25) shall be analyzed by calculating its Fourier transform. Be h̃(k, t) the
Fourier transform of the surface height function h(r, t) with the wave vector k = kxex + kyey and
r = (x, y). Then, Equation (25) can be written as

∂h̃(k, t)

∂t
=

[
−

(
νxk

2
x + νyk

2
y

)
− K

(
k2

x + k2
y

)2
]
h̃(k, t). (27)

Integration of Equation (27) yields

h̃(k, t) = h̃0(k) exp (Rkt) , (28)
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with the growth rate Rk = −
[
νxk

2
x + νyk

2
y + K

(
k2

x + k2
y

)2
]
. Therefore, spatial frequencies k with

positive Rk grow exponentially in amplitude, whereas those with negative Rk decay exponentially with
time. Because of the positive value of K, surface roughening occurs only for negative νx,y. The
maximum value of Rk is reached for

kc =

√
|min (νx, νy) |

2K
. (29)

Therefore, the Fourier component of the initial roughness spectrum with the wave number kc will grow
fastest, resulting in a wavelike surface pattern with a periodicity

λ =
2π

kc

= 2π

√
2K

|min (νx, νy) |
. (30)

Figure 3. νx,y versus angle of incidence θ, calculated for 500 eV Ar+ irradiation of Si with
j = 1 × 1015 cm−2 s−1, a = 2 nm, σ = 0.8 nm, µ = 0.4 nm, and Y = 2.
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For νx < νy and νx > νy, the wave vector of the observed pattern is kc = kcex and kc = kcey,
respectively. The angular dependence of νx,y for a certain set of microscopic parameters is shown in
Figure 3. At an angle of θ ∼ 73◦, one observes a change from νx < νy to νx > νy what corresponds to
a rotation of the observed ripple pattern from normal to parallel with respect to the projected direction
of the ion beam. This is demonstrated in Figure 4 which depicts numerical integrations [59] of Equation
(25) at θ = 65◦ (upper row) and θ = 75◦ (lower row) at different times t. This type of pattern rotation
with increasing incident angle has been observed in several experiments [1,36,40,44,60–62]. Some other
predictions of the BH equation, however, are at variance with certain experimental observations:

• The amplitude of the ripples should grow exponentially without saturation. In experiments,
however, saturation of the ripple amplitude at a constant value is observed after an initial
exponential increase [63,64].

• From equations (30), (22), and (23) it follows that λ ∝ j−1/2. In contrast, some experimental
studies report the ripple wavelength λ to be constant with the ion flux j [65].
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Figure 4. Numerical integration of the BH equation (25) for the same parameters as in
Figure 3 at θ = 65◦ (upper row) and θ = 75◦ (lower row) and different times t. K was set to
K = 1.

t = 10 t = 200t = 50

• Furthermore, from the same equations λ follows to be a function of the ion energy E and the
penetration depth a, which again is a function of E. Therefore, one expects the ripple wavelength
to decrease with the ion energy as λ ∝ Ep with the negative exponent p [66]. However, this
behavior is in general only observed at relatively high temperatures [67]. At low and moderate
temperatures, several studies report the ripple wavelength to increase with energy [38,39,44,68,69].

• Equations (30) and (26) indicate a dependence of λ on the sample temperature. However,
in the case of GaAs and InP, such a dependence of the wavelength was only observed at
elevated temperatures whereas λ was found to be constant at room temperature and below [70].
Another study on SiO2 surfaces found λ to be relatively constant with temperature even up to
about 200◦C [71].

• Equation (30) implies that the ripple wavelength λ is independent on the ion fluence Φ and should,
therefore, be constant with sputtering time. Several experiments, however, show an increase of λ

with fluence [9,39–44,72]. This phenomenon is usually referred to as wavelength coarsening.

Several attempts have been made in order to overcome these deficiencies of the BH equation and shall
be discussed in the following.
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2.3. Nonlinear continuum equations

2.3.1. Kuramoto-Sivashinsky equation

In the series expansion of Equation (18), Bradley and Harper considered only linear terms. Cuerno
and Barabási, however, took the expansion to lowest nonlinear order resulting in [33]

∂h

∂t
= −v0 + γ

∂h

∂x
+ νx

∂2h

∂x2
+ νy

∂2h

∂y2

+
ζx

2

(
∂h

∂x

)2

+
ζy

2

(
∂h

∂y

)2

− K∇4h + η. (31)

The additional nonlinear terms in this equation are non-conserved Kardar-Parisi-Zhang (KPZ)
nonlinearities [73,74] that incorporate the dependence of the local erosion velocity on the absolute value
of the surface slopes. Their coefficients are given by [45]

ζx = F
c

2f 4

[
a8

σa
2
µs

4
(
3 + 2c2

)
+ 4a6

σa
4
µs

2c2 − a4
σa

6
µc

4
(
1 + 2s2

)
−f 2

(
2a4

σs
2 − a2

σa
2
µ

(
1 + 2s2

))
− a8

σa
4
µs

2c2 − f 4
]
, (32)

ζy = F
c

2f 2

[
a4

σs
4 + a2

σa
2
µc

2 − a4
σa

2
µc

2 − f2
]
. (33)

In order to account for the stochastic arrival of the ions, the Gaussian white noise term η, defined as

⟨η(r, t)η(r′, t′)⟩ = 2Dηδ
d(r − r′)δ(t − t′), (34)

was added. Here, Dη is the strength of the noise and d the dimension of the surface.
Equation (31) is an anisotropic stochastic generalization of the so-called Kuramoto-Sivashinsky

(KS) equation which was originally proposed to describe chemical waves [31] and the propagation of
flame fronts [32]. For short sputtering times, this equation behaves like the linear BH equation with
an exponential increase of the ripple amplitude and constant ripple wavelength. Then, at a certain
transition time

tc ∝
K

ν2
x,y

ln

(
νx,y

ζx,y

)
, (35)

the surface enters a nonlinear regime and a saturation of the ripple amplitude as in the experiments is
observed [34]. However, numerical analyses of the noisy KS equation in 1 + 1 and 2 + 1 dimensions
show that the saturation of the ripple amplitude is accompanied by a transition to kinetic roughening
[34,35]. In this regime, the surface does not exhibit any lateral order. Although such a transition has
been observed in few experiments [36], it is at variance with several other experimental reports of a
pattern conservation at high fluences [37–39].

2.3.2. Damped Kuramoto-Sivashinsky equation

Inspired by the observation of stationary patterns in numerical simulations of the isotropic damped
KS (dKS) equation by Paniconi and Elder [75], Facsko et al. adopted this equation for normal incidence
ion sputtering [46]. The isotropic dKS equation is frequently used to describe different processes like
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compact electrodeposition growth [76] or directional solidification [75]. For oblique ion sputtering,
however, the anisotropic dKS equation must be applied:

∂h

∂t
= −v0 − αh + γ

∂h

∂x
+ νx

∂2h

∂x2
+ νy

∂2h

∂y2

+
ζx

2

(
∂h

∂x

)2

+
ζy

2

(
∂h

∂y

)2

− K∇4h + η. (36)

This equation differs from the undamped KS equation (31) just by the additional damping term
−αh with α being a damping coefficient that enters the effective growth rate of the ripple amplitude
R∗

kc
= Rkc −α. This damping term induces smoothing of all spatial frequencies and, therefore, prevents

kinetic roughening.
In the case of sputter erosion, the damping term in Equation (36) violates the translational invariance

of the surface in the erosion direction. However, translational invariance can be restored by replacing the
term −αh by −α(h − h̄) with h̄ being the mean height of the surface and thus transforming Equation
(36) into a nonlocal dKS equation [46] which again, as has been demonstrated [77], can be exactly
mapped to a local dKS equation. The physical meaning of α, however, is still not clear in the case of
sputter erosion.

The dKS equation has been extensively studied in numerical simulations [46,77–80]. It is not only
able to show stationary patterns in the long-time limit but also to reproduce other features of experimental
patterns like certain pattern defects [46] or the formation of structured islands [80]. However, no evidence
for wavelength coarsening as observed in several experiments [9,11,12,39–44] has been found yet [79].

2.3.3. General continuum equation

Although Equation (31) includes KPZ-like nonlinearities, other higher order terms are neglected [33].
The most general nonlinear equation that results from the expansion of Equation (18) is given by [45]

∂h

∂t
= −v0 + γ

∂h

∂x
+

∑
i=x,y

{
−νi

∂2h

∂i2
+ ζi
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∂i2
∂2
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h

}
− K∇4h + η. (37)
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The coefficients of the additional linear and nonlinear terms then read
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Actually, the ξ and Ω terms in Equation (37) have already been derived in reference [33] but were
neglected since their influence on the asymptotic scaling of the surface was assumed to be of minor
importance. The terms with the coefficients Dij enter Equation (37) in the form of diffusion-like terms
proportional to the fourth derivative of the height function and thus lead to an additional anisotropic
smoothing of the surface. Therefore, this relaxation mechanism is usually called effective or ion-induced
surface diffusion (ISD) [81]. However, it is important to note that ISD results from preferential erosion
during the sputtering which appears as a reorganization of the surface and does not involve any mass
transport along the surface. Thus, ISD is strictly speaking no diffusion mechanism. This is also displayed
by the fact that the coefficient Dxx might even become negative at large incident angles, leading to an
additional instability of the surface [81].

Since ISD does not depend on the temperature (cf. equations (42) - (44)), this smoothing mechanism
is able to explain the temperature independence of the wavelength at low temperatures where thermal
diffusion can be neglected. In this case, the ripple wavelength is given by

λISD = 2π

√
2Dxx/yy

|min (νx, νy) |
. (45)

From Equations (22), (23), (42), (43) and (45) it follows that the wavelength at low temperatures
does no longer depend on the ion flux. Moreover, with a, µ, and σ being proportional to E2m [54],
we find λISD ∝ E2m and, therefore, an increase of λISD with the ion energy. At high temperatures,
however, thermal diffusion becomes the dominating smoothing mechanism and the wavelength follows
from Equation (30). Hence, with the incorporation of ISD into Equation (37), one is able to explain the
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experimentally observed flux and temperature independence of the wavelength, as well as its increase
with ion energy. However, the fluence dependence of the ripple wavelength as observed in some
experiments [9,39–44,72] still cannot be explained by the general continuum equation.

In the special case of normal ion incidence, the general continuum equation (37) is reduced to
the isotropic stochastic KS equation with γ = ξx = ξy = Ωx = Ωy = 0, νx = νy, ζx = ζy,
and Dxx = Dyy = Dxy/2. For off-normal incidence, however, Equation (37) has a highly nonlinear
character with a rich parameter space which might lead to rather complex morphologies and dynamic
behaviors. Although some general features of Equation (37) have been studied [45], its detailed behavior,
and especially the role of the additional nonlinearities with the coefficients ξx,y, is still to be investigated.

2.3.4. Coupled two-field model

In order to overcome the inability of the KS-type Equations (31), (36), and (37) to predict ripple
coarsening, Muñoz-Garcı́a and co-workers recently developed a new nonlinear model following a
hydrodynamic approach [49]. In this approach, Muñoz-Garcı́a et al. considered two coupled fields

∂h

∂t
= −Γex + Γad, (46)

∂R

∂t
= (1 − ϕ)Γex − Γad + K∇2R, (47)

where h and R represent the surface height function and the thickness of the mobile surface adatom
layer, respectively. Here, ϕ̄ = (1 − ϕ) is the fraction of eroded adatoms that become mobile, Γex is the
curvature dependent erosion rate and Γad is the rate of addition to the immobile bulk. Γad is given by

Γad = γ0

[
R − Req

(
1 − γ2x

∂2h

∂x2
− γ2y

∂2h

∂y2

)]
, (48)

with the mean nucleation rate for a flat surface γ0, the variation in the nucleation rate with the
surface curvatures γ2x,y, and the thickness of the layer of mobile atoms generated thermally without
bombardment Req. Γex follows from microscopic derivations [50,82],
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[
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)
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(
α6∇h

)]
. (49)

The coefficients αi of Equation (49) are 2 × 2 diagonal matrices, except α4 =

[
α4xx α4xy

α4yx α4yy

]
. In the

framework of Sigmund’s theory of sputtering, these coefficients can be related to those of the general
Equation (37) so that α0 = v0, α1x = −γ/v0, α2x,y = −νx,y/v0, α3x,y = −Ωx,y/v0, α4ij = −Dij/v0,
α5x,y = −ξx,y/v0, and α6x,y = −ζx,y/v0.
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Equations (46)-(49) can be approximated by performing a multiple scale expansion with a subsequent
adiabatic elimination of R. This results in an equation similar to the general continuum equation (37)
but with additional conserved KPZ nonlinearities [49]:
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The coefficients of the coupled two-field (C2F) model differ from those of the general equation and are
given by [82]

γ = −ϕα0α1x, (51)
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0

γ0

ϕ̄ϕα2
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ζ
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ϕ̄K
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)
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The main novelty of the C2F model is the incorporation of redeposition of eroded material to the
surface with the parameter ϕ controlling the amount of redeposited atoms. A key feature of this model
is the presence of ripple coarsening which is probably induced by the conserved KPZ nonlinearity
[49,50,83]. Depending on the ratio between the coefficients of the conserved and the nonconserved
KPZ terms, i.e., ζ

(1)
i and ζ

(2)
ij , very different time dependencies of the ripple wavelength have been

observed, ranging from marginal logarithmic to strong power-law coarsening. Moreover, in agreement
with some experiments [9,11,12,39,41,44,84], the observed coarsening is interrupted at a certain time
and the wavelength saturates at a constant value [49,50].

3. Morphology of Ion-sputtered Si Surfaces

Because of its great technological relevance, e.g., in micro- and nanoelectronics, silicon has attracted
considerable attention during the last decades as an interesting material for nanopatterning by ion erosion
[3,5,9,11,14,38,42,43,72,85–91]. Thus, pattern formation on Si surfaces under various experimental
conditions is well studied. However, the morphology of ion-sputtered Si surfaces exhibits some rather
peculiar features and thus represents an interesting challenge for comparison with continuum theories.
In this section, the morphology development of the Si surface during sub-keV ion sputtering will be
summarized and discussed in the context of the different continuum models and in view of potential
applications in thin film growth.
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Figure 5. AFM images of Si surfaces after sputtering with 500 eV Ar ions under
different angles θ: (a) θ = 30◦, Φ = 5.7 × 1018 cm−2, height scale 2 nm; (b) θ = 50◦,
Φ = 2 × 1018 cm−2, height scale 3 nm; (c) θ = 55◦, Φ = 2 × 1018 cm−2, height scale 3 nm;
(d) θ = 67◦, Φ = 1.7× 1018 cm−2, height scale 10 nm. The size of the images is 1× 1 µm2;
the ion beam was entering from the left.
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3.1. The role of the incident angle: smoothing vs. roughening

Figure 5 depicts AFM images of Si surfaces sputtered with 500 eV Ar ions at room temperature and
different incident angles θ. At rather low incident angles θ . 50◦ (Figure 5(a,b)), the Si surface remains
flat. At a slightly larger incident angle of θ = 55◦ (Figure 5(c)), however, the formation of shallow
and rather disordered ripples that are oriented normal to the direction of the ion beam is observed. The
wavelength of these ripples is about 50 nm. A further increase of the incident angle to θ = 67◦ leads to
a well ordered pattern of long homogeneous ripples with a periodicity of about 35 nm.

The observation that the Si surface remains flat at small incident angles is at variance with the
BH model and most of its nonlinear extensions which predict an instability of the surface during ion
sputtering independent of the experimental parameters. Carter and Vishnyakov explained a similar
observation on Si surfaces bombarded with Xe ions of 10 to 40 keV energy as caused by an additional
ion-induced mass transport along the surface that acts mainly at normal and near-normal incidence
but is of minor importance at larger incident angles [9]. This so-called ballistic diffusion can also be
introduced into the BH equation where it results in an additional smoothing term proportional to ∇2h

[9,92]. A similar mechanism has also been proposed for lower ion energies [92]. On the other hand,
other experimental studies report dot and ripple pattern formation on Si surfaces also under normal and
near-normal ion incidence [11,38,93,94]. However, recent experiments indicate that pattern formation
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under these low incidence conditions requires the presence of metal contaminations on the surface that
may originate from the ion source [95] or the sample holder [96,97]. It has also been demonstrated that
the resulting morphology of the Si surface can be tuned by varying the amount of metal contaminations
during the sputtering [95,97]. A possible explanation for this so-called seeding effect invokes local
variations of the sputter yield along the surface due to the segregation of deposited metal atoms that
have a different component yield than Si [96]. A similar mechanism could also be responsible for the
formation of dot patterns on compound semiconductors since there, preferential sputtering induces a
form of ”internal seeding” due to the enrichment and segregation of one atomic species on the surface.
It has been shown theoretically that preferential sputtering can lead to a compositional modulation of the
rippled surfaces of compound materials with the ripple crests having a different chemical composition
than the valleys [98]. Since ion bombardment leads to an increase of the number of free bonds on the Si
surface, also silicide formation could occur which would again alter the surface chemistry and thus also
lead to a variation of the local sputter yield [96,99]. However, the presence of silicides on the sputtered
Si surface could not be verified yet [95,96]. Also an increase of surface stress due to the seed atoms has
been suggested as a possible origin of the dot patterns, a hypothesis that is supported by the experimental
observation of tensile stress development in the presence of seeding [96,100].

With increasing angle of incidence, the BH model and the resulting linear and nonlinear continuum
equations predict a rotation of the ripple pattern from normal to parallel with respect to the ion
beam. Although this ripple rotation has been confirmed on various materials like metals [40,61], SiO2

[1,44,60,62], and graphite [36], the formation of ripple patterns oriented parallel to the direction of
the ion beam at grazing incidence seems to be suppressed on Si surfaces at room temperature, so that
only shallow anisotropic structures have been observed [101,102] that do not resemble the well ordered
patterns obtained at elevated sample temperature [5,72]. However, recent experiments by Mollick and
Ghose [103] showed that the formation of a clearly developed rotated ripple pattern under 80◦ incidence
can be induced also at room temperature by a chemical pre-roughening of the Si surface which is known
to influence the dynamics of the pattern development [45,91].

3.2. Evolution of the surface morphology

The various continuum models discussed in section 2.3 make different predictions for the temporal
evolution of the surface morphology especially in the limit of long times where nonlinearities dominate.
Therefore, the fluence dependence of certain parameters that characterize the surface morphology, e.g.,
the ripple amplitude and wavelength, is of particular importance for identifying a potential continuum
description of the given experimental system. In addition, as will be shown below, the ion fluence is also
a crucial parameter for the optimization of the pattern quality which therefore directly affects possible
applications of the nanopatterned surfaces. Thus, in this section, the morphology evolution of Si surfaces
will be discussed in detail for the example of sub-keV sputtering under 67◦ incidence. At this incident
angle, the formed ripple patterns exhibit the highest quality, a fact that might be correlated with the
maximum of the sputter yield in this angular region.
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Figure 6. AFM images of Si(100) after sputtering with 300 eV Ar+ ions at fluences
Φ = 1 × 1017 (a,d), 5 × 1017 (b,e), and 1 × 1019 cm−2 (c,f). Height scales are 7 nm
(a), 10 nm (b), 16 nm (c), 8 nm (d), 13 nm (e), and 28 nm (f). The size of the images is
1 × 1 µm2 (a–c) and 5 × 5 µm2 (d–f), respectively; the ion beam was entering from the left.
Insets: corresponding FFT ranging from -75 to +75 µm−1 (a–c) and from -4 to +4 µm−1

(d–f) [39].
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3.2.1. Formation of two ripple modes

Figure 6(a–c) shows AFM images of the Si surface obtained after 300 eV bombardment with different
fluences. At low fluence (Figure 6(a), Φ = 1 × 1017 cm−2), the surface exhibits a pattern of shallow
ripples oriented normal to the ion beam projection. In the following this pattern is called normal pattern.
The two-dimensional Fourier transform (FFT) of this image (see inset of Figure 1(a)) shows two clearly
separated side peaks. The position of the side peaks corresponds to the periodicity of the pattern, yielding
a normal wavelength λn ∼ 20 nm. With increasing fluence (Figure 6(b), Φ = 5 × 1017 cm−2),
corrugations overlay the normal pattern and get more pronounced until they become the dominating
feature of the surface (Figure 6(c), Φ = 1× 1019 cm−2). At higher fluences, the surface reaches a steady
state with reduced order and quality of the normal ripples.

Larger area AFM scans (Figure 6(d–f)) reveal that the corrugations overlaying the normal pattern
become anisotropic with increasing fluence and finally form a quasi-periodic pattern at high fluences,
which is oriented parallel to the beam direction (Figure 6(f)). This pattern is referred to as parallel
pattern. Although the parallel pattern exhibits a much lower degree of order, side peaks can be identified
(indicated by the white arrows) in the FFT, as shown in the inset of Figure 6(f). The side peaks indicate
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Figure 7. Evolution of (a) normal wavelength λn, (b) parallel periodicity λp, and (c) ratio
of parallel to normal periodicity λp/λn over fluence for 300 eV and 500 eV. The solid lines
in (a) represent power law fits, yielding coarsening exponents of n = 0.085 ± 0.006 and
n = 0.084 ± 0.007 for 500 eV and 300 eV, respectively. The dotted lines represent
logarithmic fits [39].
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the quasi-periodicity of the parallel pattern and their position yields a much larger spatial periodicity of
λp ∼ 900 nm.

In Figure 7(a) the fluence dependence of the normal wavelength λn, determined from the FFT of
each AFM image, is depicted. Interrupted wavelength coarsening following a power law or logarithmic
dependence is observed as soon as the ripple pattern is formed. Since wavelength coarsening is a
nonlinear phenomenon, this indicates that nonlinearities start to dominate the surface evolution so early
that no purely linear regime can be observed in the current experiments. In addition, λn is found to
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increase with ion energy, indicating that ion-induced diffusion is the dominating smoothing process (cf.
Section 2.3). This is also in agreement with the observed independence of λn on the ion flux. The
evolution of λp is shown in Figure 7(b). Again, coarsening is observed. Figure 7(c) depicts the ratio of
the wavelengths λp/λn. This ratio is quite constant in the investigated fluence range, indicating that both
ripple modes exhibit similar coarsening behavior.

Figure 8. Surface roughness w (a) and ripple amplitude A (b) versus fluence. The solid
lines in (a) represent power law fits, yielding growth exponents of β = 0.28 ± 0.03 and
β = 0.27 ± 0.02 for 500 eV and 300 eV, respectively [39,104].
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The evolution of the root-mean-square (rms) surface roughness w which describes the fluctuations of
surface heights around the mean height and was calculated from the AFM images is shown in Figure 8.
For both ion energies, w increases following a power law until it saturates at high fluences. One should
note, however, that the rms roughness is not determined by the amplitude of the normal ripple pattern but
rather by the larger corrugations and the parallel pattern, respectively. This is shown in Figure 8(b) that
depicts the evolution of the ripple amplitude A, defined as the half of the average peak-to-peak height of
the ripples, for the case of 500 eV sputtering. In the low fluence regime, the amplitude A is increasing
from initially 0.4 nm to a maximum value of about 0.8 nm at Φ ≃ 5 × 1017 cm−2. For higher fluences,
the amplitude decreases again and finally saturates at a value of Asat ≃ 0.6 nm. A similar overshooting
before saturation has already been observed in previous experiments under normal ion incidence [37]
and simulations of the anisotropic KS equation [34]. However, in contrast to the surface evolution in
the KS equation, the experimentally observed saturation of the ripple amplitude is not accompanied by
a loss of lateral order as is evident from Figure 6 which clearly shows a conservation of the pattern even
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at highest fluences. In combination with the observed interrupted wavelength coarsening, this suggests
the C2F model as a potential description of the ripple formation and evolution on Si surfaces under these
experimental conditions.

3.2.2. Dynamic scaling behavior

In the C2F model, with the interruption of the coarsening the surface enters a long-time regime that
exhibits kinetic roughening at large lateral scales and a preservation of the ripple pattern at small scales
[83]. Such a behavior is also seen in the experimental results presented in Figure 6. A kinetically rough
surface is invariant under appropriate rescaling of its lateral and vertical dimensions and the time t [74].
This results in a certain behavior of its surface roughness w(l, t) = ⟨[h(r⃗, t) − ⟨h(r⃗, t)⟩l]2⟩1/2

l where
h(r⃗, t) is the surface height function, l is the size of the observation window over which w has been
calculated, and the angular brackets denote spatial averaging. In the case of Family-Vicsek (FV) dynamic
scaling [105], the roughness should scale as w(l, t) ∼ tβ until the correlation length ξ(t) ∼ t1/z has
reached the window size l. Then, the roughness will saturate with the saturation value depending on the
window size, w(l) ∼ lα. The roughness exponent α, the growth exponent β, and the dynamic exponent
z = α/β characterize the surface in space and time and can be used to attribute the system to a certain
universality class and, therefore, to a certain continuum equation [74]. With this intention, the dynamic
scaling behavior of the ion-sputtered Si surface has been analyzed by evaluating its one-dimensional
structure factor. According to the dynamic scaling hypothesis [74], the one-dimensional structure factor
should obey the relation

S(k, t) = k−(2α+1)s(kt1/z) (59)

with the scaling function s(u) ∼ u2α+1 and s(u) ∼ const. for u ≪ 1 and u ≫ 1, respectively. In the
case of anisotropic surfaces, this behavior is modified and the surface is characterized in the normal and
parallel direction in real and momentum space by four different roughness exponents [106]. However,
for kt1/z ≫ 1, the dynamic scaling behavior of the one-dimensional structure factor can still be described
by Equation (59) [104,106].

The structure factor Sp(kp) calculated in the direction parallel to the ion beam is given in Figure 9(a).
For Φ ≥ 5× 1016 cm−2, a peak appears at the spatial frequency k∗

p corresponding to the wavelength λ of
the ripple pattern. For kp ≫ k∗

p, the Sp curves all collapse. The slope m (in the log-log plot) of the curves
in this regime is about −4, corresponding to a roughness exponent of 1.5. With increasing fluence, the
ripples coarsen and the position of the peak is shifting to smaller kp values. Also the structure factor
increases with fluence for kp ≪ k∗

p and a second scaling regime develops at high fluences. Here, the
roughness exponent was determined to be αp = 0.41 ± 0.04. In Figure 9(b), the structure factor curves
in the direction normal to the ion beam, Sn(kn), are depicted for different fluences. At large values of
kn, the data is consistent with a slope m = −4. At small kn values, Sn(kn) again increases with fluence
and until a power-law behavior with a roughness exponent αn = 0.76 ± 0.04 appears at high fluences.

The observed peak in the structure factor Sp in the direction parallel to the ion beam with the -4
slope at large kp values (cf. Figure 9(a)) indicates the presence of a KS like instability in this direction
[35]. The orientation of the ripples with respect to the incident ion beam is determined by the signs
of the linear coefficients: the wave vector of the observed ripple structure is parallel to the direction
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with the smallest negative ν (cf. section 2.2). Therefore, for the here presented experiment νp < νn.
In the direction normal to the ion beam, the experimental Sn curves shown in Figure 9(b) do not
exhibit a local maximum. The determined low-fluence behavior for the n direction Sn(kn) ∼ k−4

n

corresponds to the scaling behavior of the one-dimensional linear molecular beam epitaxy (lMBE)
equation with αlMBE = 3/2 [74]. This indicates that the very short-distance behavior of the sputtered
Si surface is dominated by the diffusion term. This behavior holds even at the highest applied fluence of
Φ = 1 × 1020 cm−2 without any noticeable crossover. This indicates that |νn| ≈ 0 [104].

Figure 9. Structure factors Sp,n(kp,n) in the direction parallel (a) and normal (b) to the ion
beam at different fluences. The solid straight lines correspond to Sp,n ∼ km

p,n [104].
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In the limit of high fluences Φ ≥ 1019 cm−2, the morphology of the Si surface exhibits anisotropic
algebraic scaling at large lateral scales with αn = 0.76 and αp = 0.41. The KS equation (31) is not able
to reproduce such an anisotropic scaling behavior since the only term breaking the x → −x symmetry
is the one with the coefficient γ which acts only at rather short length scales. On the other hand, the
dispersive nonlinearities with the coefficients ξx,y that appear both in the general continuum equation
(37) and in the C2F model (50) have been found to induce anisotropic scaling under certain conditions
[106]. Therefore, the appearance of anisotropic scaling supports above assumption of the C2F model
being a suitable description of the Si surface during sub-keV ion sputtering [104].
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3.2.3. Dynamics of topological pattern defects

In view of possible applications of the nanorippled Si surfaces, the appearance of kinetic roughening,
i.e., of a disordered state, at high fluences is not favorable since most of these applications rely on a
well-ordered homogeneous pattern. Therefore, the applied ion fluence is an important parameter in the
fabrication of nanopatterned surfaces and vital for optimizing their quality.

Figure 10. (a) AFM image of a rippled Si surface with a bifurcation (B) and an interstital
(I). The size of the image is 400 × 400 nm2. (b) Evolution of the normalized density of
pattern defects ND for 500 and 300 eV Ar sputtering of Si under 67◦ incidence [107].
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The quality of the ripple patterns can be quantified by calculating a normalized density of topological
pattern defects from the AFM images [86,103,107]. In this context, topological pattern defects means
either a bifurcation (B) of a ripple, i.e., a Y junction of ripples, or an interstitial (I), i.e., a discontinuous
or broken ripple. Figure 10(a) shows an AFM image of the rippled Si surface in which these defect types
are indicated.

The procedure of determining the normalized density of topological pattern defects is demonstrated
in Figure 11. In order to determine the total number of defects of a given AFM image (Figure 11(a)), the
image is Fourier-filtered to remove the long-wavelength surface morphology (Figure 11(b)). The filtered
image is then converted into a binary image by applying Otsu’s threshold [108] (Figure 11(c)). Finally,
the ripples in the binary image are thinned to lines of one pixel width (Figure 11(d)). Then, every black
pixel with more or less than two black neighboring pixels is counted as a defect. The normalized density
of defects is then calculated as ND = Nλ2/AS with the total number of defects N of the image, the
ripple periodicity λ, and the scan area AS . A value of ND = 0 then corresponds to a perfect pattern
without any defects and ND = 1 to a pattern in which each ripple contains one defect per length λ.

Following this approach, the normalized density of pattern defects ND has been calculated for
different fluences in order to monitor the evolution of the pattern quality. The result is shown in Figure
10(b). The ND values are comparable for both energies, although in average ND appears to be slightly
lower for 300 eV than for 500 eV. At the lowest fluence Φ = 5×1016 cm−2, the normalized defect density
is around 0.3. With increasing fluence, ND decreases until it reaches a minimum value of ND ∼ 0.1

(500 eV) and 0.07 (300 eV) at a fluence of Φ ∼ 2 × 1018 cm−2. This decrease of ND is caused by the
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growth of the ripple length and the annihilation of pattern defects due to a complex interplay of different
”annealing” processes [107]. At higher fluences, ND increases again until it saturates at Φ ∼ 1019 cm−2

at a value of ND ∼ 0.28. This increase results from the appearance of kinetic roughening which induces
a certain disorder in the pattern that leads to the formation of ”defect clusters” [107]. Interestingly, the
coarsening of the ripple wavelength does not seem to be related to the evolution of the pattern defects
(cf. Figures 7(a) and 10(b)). This is in contrast to other experimental systems like Pt(111) surfaces under
grazing incidence sputtering where rapid coarsening proceeds due to the annihilation of defects [109].

Figure 11. AFM image (a) after Fourier-filtering (b), conversion into a binary image (c) and
thinning the ripples to single pixel lines (d). The size of the images is 1 × 1 µm2.
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These results demonstrate the influence of the applied fluence not only on the ripple amplitude and
wavelength but also on the pattern quality. Therefore, in order to fabricate patterns of a certain periodicity
in the highest quality possible, the interplay between fluence, energy, pattern wavelength, and pattern
quality needs to be known.

4. Summary

We have presented an overview of the continuum approach to ion-induced pattern formation on
amorphous surfaces. The predictions of the various linear and nonlinear continuum models have been
discussed and compared to experimental observations with a special focus on sub-keV ion sputtering
of Si surfaces. Because of its potential applications, pattern formation on Si surfaces induced by
low-energy sputtering has been investigated excessively during the last two decades. These studies
revealed several peculiarities of the morphology of sputtered Si surfaces such as the stability of the flat
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surface at near-normal incidence, (interrupted) wavelength coarsening or the absence of a pattern rotation
with increasing angle of incidence. In addition, contradictory observations have been reported, e.g., the
occurrence of smoothing and roughening at small incident angles, respectively.

Recent experimental findings such as the importance of metal contaminations during the sputtering,
delivered further insight into the basic mechanisms of ion-induced pattern formation on Si surfaces. In
addition, novel and elaborated theoretical models provided new explanations for certain experimental
observations, e.g., wavelength coarsening or the occurrence of anisotropic scaling. Therefore, a rather
coherent picture of the morphology of ion-sputtered Si surfaces has developed during the last few years.
However, at the same time new challenges, both experimental and theoretical ones, have appeared,
among them the control of surface contaminations and the investigation of its detailed effects on the
morphology development which might enable the fabrication of novel nanopatterned surfaces.

On the other hand, the application of nanorippled Si substrates in various fields of modern materials
science, especially in nanoscale magnetism and plasmonics, is developing tremendously and demands
for a precise control over the fabricated patterns. Besides the tuning of the wavelength and the amplitude,
the quality, order, and regularity of the patterns is becoming more and more important since the order has
a strong effect on the degree of the induced functional anisotropy. Providing nanopatterned substrates of
high quality and with tailored properties has thus become a major experimental issue.
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27. Toma, A.; Chiappe, D.; Massabó, D.; Boragno, C.; Buatier de Mongeot, F. Self-organized metal
nanowire arrays with tunable optical anisotropy. Appl. Phys. Lett. 2008, 93, 163104.
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