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Introduction

The main components of the apatite family are
hydroxyapatite (OHAp, Ca

10
(PO

4
)

6
(OH)

2
), chlorapatite

(ClAp, Ca
10

(PO
4
)

6
Cl

2
), carbonated apatites and fluorapatite

(FAp, Ca
10

(PO
4
)

6
F

2
). For the latter component, several

applications in different areas are known. The existence of
several natural minerals containing this component (e.g.,
Durango, Mexico; Quebec, Canada; New Mexico or
Connecticut, USA; Epirus, Greece) (Bale, 1940; Hendricks
et al., 1932; Sudarsanan et al., 1972) has led to their use in
many applications. There are several methods for synthesis,
which allows control of stoichiometry and/or morphology
of the synthesized calcium phosphate (Elliot, 1998). In
addition, FAp has been used in phosphorus chemistry, as a
catalyser or a H

3
PO

4
 source (this represents 75% of natural

apatite use), but also in the area of solid-state laser hosts
(rare-earth doped FAp), and in geology as a probe of
phosphorus activity in hydrothermal, metamorphic or
magmatic processes. FAp is also the main calcium
phosphate used in phosphated fertilisers. However, its first
industrial use, in a Sb- or Mn-substituted form remains the
production of fluorescent lamps (estimated to 10 tons per
day in 1991) (DeBoer et al., 1991; Fleet and Pan, 1997;
Hughes et al., 1991; Miyake et al., 1986; Suitch et al.,
1985). Calcium apatites are also important in biology,
because they form the mineral part of bone and teeth, and
take part in the mineralization process. FAps are used as
biocompatible materials for bone replacement and coating
of bone prostheses.

One of the components of FAp is fluoride, which is
often used therapeutically in order to prevent caries. In
nature, fluoride can be found in soils, in minerals such as
fluorine, hornblende, pegmatite, and FA. Due to erosion,
fluoride salts are also present in the atmosphere. The
atmospheric concentration of fluoride salts depends on the
presence of fluoride in the environment. Therefore, it is a
function of the presence of fluoride in soils or in industrial
waste. Fluoride is also present in water, especially in the
oceans, or near mountainous or sedimentary areas. Water
is also used as a medium of caries prevention politics, and
so represents the main source of fluoride in our
alimentation. We also can find natural fluoride in some
foods, especially in plants, at different concentrations
independent of the soil concentration (Plouvier, 1997). All
fluoride ingested is first taken up by the circulation, and
then in hard tissues (such as bone or dentin). The fixation
of fluoride by bone and tooth depends on the supply of
fluoride and the age of the subject. Bone is responsible for
the homeostasis of fluoride in the organism. Fluoride is
excreted by the kidneys, via a passive diffusion mechanism.
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This excretion represents 40 to 60% of the fluoride ingested.
Fluoride plays an important role in caries prevention:

it increases the resistance of the mineral to acid dissolution,
and decreases mineral solubility (Aoba, 1997; Featherstone,
1994). By substituting for the OH- ion in the apatite
molecule during the development phase of dentin and
enamel, fluoride fixes calcium, provides increased stability
to the mineral structure, and promotes remineralization
(Aoba 1997; Ingram, 1990; Triller 1998).

Moreover, FAp is a suitable host for various
substituents that could modify its physicochemical and/
or biological properties. Most of these substituents are
harmless, and sometimes necessary for the organism, but
some of them could be very dangerous; they could be toxic
or cause irreversible modifications of FAp.

All these applications promote scientific interest in this
compound. FAp is one of the first apatites of which the
structure was described (Mehmel, 1932; Naray-Szabo,
1930), and is considered as a reference model to describe
other apatites (Elliot, 1994).

The FAp space group P6
3
/m (or 2

6hC  in the Schöenflies

notation) describes the general atomic positions inside its
unit cell according to the S.I. and hence permits the
construction of the position of the atoms of the unit-cell
starting from four ions only: F-, Ca

I
2+, Ca

II
2+ and PO

4
3-. The

knowledge of such symmetries is not only useful for
understanding the very structure of FAp but also for the
detection of apatite phases and of the structural
modifications induced by substitutions and hence for the
understanding of the behaviour of biological and synthetic
calcium phases. In the present paper, we have carried out a
graphical construction of all the atoms of the FAp unit-cell
using the symmetry operators of the P6

3
/m space group.

Crystallographic Data

The FAp ionic crystal belongs to the space group P6
3
/m

(C
6h

2 in the Schöenflies notation), and its parameters are
a = b = 9.462 Å and c = 6.849 Å, a = b = 90°, g = 120°
(Hughes et al., 1989). The main symmetry elements are
(Naray-Szabo, 1930):

- A mirror plane, perpendicular to the c-axis, at z = ¼,
- A screw axis 6

3.
 at the unit-cell origin, parallel to

the c-axis, and associated with an inversion
centre at (0 ; 0 ; 0),
- Three screw axes 2

1.
 parallel to the c-axis, at the

centre of the unit-cell in (½; ½; z), (½; 0; z) and
(0; ½; z). Each axis is associated with an inversion
centre (½ ;½ ;0), (½ ;0 ;0), et (0 ;½ ;0) respectively,

- Two improper rotation axes 6 , parallel to the
c-axis, at (1/

3
; 2/

3
; z) and (2/

3
; 1/

3
; z).

A FAp unit-cell contains 7 non-equivalent atoms: F, Ca
I
,

Ca
II
, P, O(

I
), O

II
 and O

III
 (Table 1). To show this property,

the FAp chemical formula is written as:
Ca(I)

4
Ca(II)

6
 [PO(I)O(II)O(III)

2
]

6
 F

2
 which takes into account

the 4 non-equivalent ions (Table 2):
- F-

- PO
4

3-

- Ca
I
2+

- Ca
II

2+

As Table 1 shows, the atoms are always described by a
site symmetry and a single series of coordinates. All other
positions can be found with the different symmetry ele-
ments. The O

III
 atom, which is located at (0.3416 ; 0.2568 ; 0.0704)

is in a general position with its site symmetry equal to the
identity 1(E). All the symmetry operations are used to ob-
tain 12 equivalent points.

Atom Symmetry site Crystallographic data

F 6 (C
3h

)      0       0           ¼

Ca(I)     3 (C
3
)       1/

3
        2/

3
      0.00010

Ca(II)     m (C
s
) -0.0071  0.2423          ¼

P     m (C
s
) 0.3690   0.3985          ¼

O(I)     m (C
s
) 0.4849   0.3273          ¼

O(II)     m (C
s
) 0.4667   0.5875          ¼

O(III)     1 (E) 0.2575   0.3421      0.0705

Table 1: Positions of non-equivalent atoms of FAp.
(Hughes et al. 1989).

    Atom Multiplicity and Wyckoff Symbol Crystallographic data

F 2 a (0 ;0 ; ¼),        (0 ;0 ; ¾)

Ca(I) 4 f (1/
3
 ;2/

3
 ; z), (2/

3
 ;1/

3
 ; z),  (2/

3
 ;1/

3
 ; z+½),     (1/

3
 ;2/

3
 ; ½-z)

Ca(II)
P 6 h (x ; y ; ¼), (1-y; x-y ;¼), (y-x ; 1-x ; ¼),
O(I) (1-x; 1-y ; ¾) (y ; y-x ; ¾), (x-y ; x ; ¾)
O(II)

(x ; y ; z) (1-x ;1-y ;1-z) (1-x ;1-y ;½+z)     (x ; y ; ½-z)
O(III) 12 i (1-y; x-y; z)     (y ;y-x ;1-z) (y ;y-x ;½+z)      (1-y ; x-y ; ½-z)

(y-x; 1-x; z) (x-y ;x ;1-z) (x-y ;x ;½+z)         (y-x ; 1-x ; ½-z)

Table 2: Site symmetry of FAp atoms in the space group P6
3
/m, according to the International Tables of

Crystallography  (Hann 1993. Schutte et al. 1997).
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Mirror plane
The mirror plane at z = ¼ transforms the initial point to
(x ; y ; ½-z), i. e. (0.3416 ; 0.2568 ; 0.0704) to
(0.3416 ; 0.2568 ; 0.4296) (Fig. 1).

axis 36
The 6

3
 axis is located at (0 ; 0 ; z), at the same location as

the c-axis. The O
III

 atom was submitted to a series of
operations, consisting of a 2p/6 rotation and a 3/6 c (= ½ c)
translation. We obtained 6 new points (Fig. 2) :

- (x-y ; x ;½+z) : 0.0848; 0.3416 ;0.5704
- (-y ; x-y;1+z) : -0.2568 ;0.0848 ; 1.0704
- (-x ; -y;1½+z) :-0.3416 ;-0.2568 ;1.5704
- (y-x ;-x ;2+z) :-0.0848 ;-0.3416 ;2.0704
- (y; y-x;2½+z) : 0.2568 ;-0.0848 ;2.5704
- (x;  y ;3+z) : 0.3416 ;0.2568 ; 3.0704

The inversion point at the origin of the unit-cell transforms
these atoms to 6 new points at (-x’ ;-y’ ;-z’) :

- (-0.0848;-0.3416 ;-0.5704),
- (0.2568 ; -0.0848 ;-1.0704),
- (0.3416 ; 0.2568 ; -1.5704),
- (0.0848 ; 0.3416 ; -2.0704),
- (-0.2568 ; 0.0848 ;-2.5704)
- and (-0.3416;-0.2568 ;-3.0704)

Most of those atoms are outside the FAp unit-cell, but we
can find their equivalents inside the unit-cell by lattice
translations. So the equivalent positions in the unit-cell
are (Fig. 2) :

- (x ; y ;½-z) : 0.3416 ; 0.2568 ; 0.4296
- (x-y;1-x ;½-z): 0.0848;0.6584 ;0.4296
- (1-y ;x-y ;½-z) : 0.7432; 0.0848;0.4296
- (x-y ; x ; 1-z) : 0.0848 ;0.3416 ; 0.9296
- (y ;1-x+y ;1-z) : 0.2568; 0.9152; 0.9296
- (1-x ;1-y ;1-z) : 0.6584; 0.7432 ; 0.9296

21  axis

There are three 2
1
 axes, at (½; ½; z), (½ ; 0 ; z) and (0 ; ½ ; z).

Each axis submits the atoms to a 2p/2 rotation and a
translation of ½ c. From the (x ;y ;z) coordinates, we
obtained 3 points : (2*½-x ; -y ; ½+z ) , (2*½-x; -y ;  ½+z )
and (-x; 2*½-y ; ½+z ) ; i.e. (1-x ; 1-y ; z+½), (1-x ; -y ; z+½)
and (-x ; 1-y ; z+½). The succession of these operations
gives atoms outside the unit-cell, at (x ; y ; 1+z). Moreover,
the inversion points at (½ ; ½ ; 0), (½ ; 0 ; 0) and
(0 ; ½ ; 0) transform the coordinates to (1-x’ ;1-y’ ;-z’),
(1-x’ ; -y’ ; -z’), and (-x’ ;1-y’ ;-z’). Most of the obtained

points are outside the unit-cell, but their equivalents can,
due to lattice translations, be found within the unit-cell.
The new positions of the O

III
 atom are (Fig. 3):

- axis 21  at (½; ½; z) : (0.3416; 0.2568 ;-0.5704) ;

(0.6584; 0.7432 ;-1.0704)

- axis 21  at (½; ½; z) : (0.3416 ; 0.2568 ; -0.5704) ;

(0.6584 ;-0.2568 ; -1.0704)

- axis 21  at (0 ; ½; z) : (0.3416 ; 0.2568; -0.5704) ;

(-0.3416 ; 0.7432; -1.0704)
In the FAp unit-cell, those positions give two equivalent
positions (Fig. 3):

- (1-x ; 1-y ; 1-z) : 0.6584 ; 0.7432 ; 0.9296
- and (x ; y ; ½-z) : 0.3416 ; 0.2568 ; 0.4296

axis 6  

The unit-cell of the space group P6
3
/m has 2 6 axis at

(1/
3
 ; 2/

3
 ; z) and (2/

3
 ; 1/

3
 ; z). Each axis is in fact a 2p/6

rotation and an n inversion. The inversion centres
associated with the 6 axis are :

-  (1/
3
 ; 2/

3
 ; ¾) for the (1/

3
 ; 2/

3
 ; z) axis

- and (2/
3
 ; 1/

3
 ; ¼) for the (2/

3
 ; 1/

3
 ; z) axis.

The first 6 axis, at (1/
3
 ; 2/

3
 ; z), gives the following

points (Fig. 4):
- (y-x ;1-x ; 1½-z) : -0.0848 ; 0.6584 ; 1.4296
- (1-y ; x-y ; z) : 0.7432 ; 1.0848 ; 0.0704
- (x ; y ; 1½-z) : 0.3416 ; 0.2568 ; 1.4296
- (y-x ; 1-x ;z) : -0.0848 ; 0.6584 ; 0.0704
- (1-y ; x-y ;1½-z) : 0.7432 ; 1.0848 ; 1.4296
- and (x ;y ;z) : 0.3416 ; 0.2568 ; 0.0704

The second 6 axis at (2/
3
 ; 1/

3
 ; z) gives the following

points (Fig. 4):
- (1+y-x ;1-x ; ½-z) : 0.9152 ; 0.6584 ; 0.4296
- (1-y ; x-y ; z) : 0.7432 ; 0.0848 ; 0.0704
- (x ; y ; ½-z) : 0.3416 ; 0.2568 ; 0.4296
- (1+y-x ; 1-x ;z) : 0.9152 ; 0.6584 ; 0.0704
- (1-y ; x-y ; ½-z) : 0.7432 ; 0.0848 ; 0.4296
- and (x ;y ;z) : 0.3416 ; 0.2568 ; 0.0704

Equivalent positions
According to the translation due to the crystal lattice, all
the previous points have their equivalents in the unit-cell.
There are 12 points and their coordinates are (Fig. 2):

- (x ; y ; z) : 0.3416 ; 0.2568 ; 0.0704

Figure 1: Transformations induced by the mirror plane.
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Figure 2: 63
symmetry operations.

special positions, i.e., at the position of one or more
symmetry elements. Therefore they are not changed by
these symmetry operations and the number of equivalent
positions decreases.

P, O
I
, O

II
 and Ca

II
 atoms belong to the same point group

m (C
s
), and are located in the same Wickoff position h.

That means that the same transformations are applied to
their coordinates, and hence the description of one atom is
enough to find the other atoms. Therefore only the positions
of Ca

II
2+ ions, coordinates (0.2416;  0.0071; ¼), are

described below. The positions of the other atoms are found
with the general coordinates of the equivalent positions.

- (1-y ; x-y ; z) : 0.7432 ; 0.0848 ; 0.0704
- (y-x ; 1-x ; z) : 0.9152 ; 0.6584 ; 0.0704
-  (1-x ;1-y ;1-z) :0.6584 ;0.7432 ; 0.9296
- (y ; y-x ; 1-z) : 0.2568 ; 0.9152 ; 0.9296
- (x-y ; x ; 1-z) : 0.0848 ; 0.3416 ; 0.9296
- (1-x ;1-y ;½+z) :0.6584 ;0.7432 ;0.5704
- (y ; y-x ; ½+z) : 0.2568 ;0.9152 ; 0.5704
- (x-y ; x ; ½+z) : 0.0848 ;0.3416 ; 0.5704
- (x ; y ; ½-z) : 0.3416 ; 0.2568 ; 0.4296
- (1-y ;x-y ;½-z) :0.7432 ;0.0848 ; 0.4296
- (y-x ;1-x ;½-z) :0.9152 ;0.6584 ; 0.4296

The other atoms of the FAp molecule are subject to the
same symmetry laws as the O

III
 atom. However, they are in
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mirror plane m

The Ca
II

2+ ion, coordinates (0.2416;  0.0071; ¼), and the
P, O

I
 and O

II
 atoms are in the mirror plane, and therefore

unaffected by this symmetry operation. However, the other
symmetry operations 63

, 21
 and 6  axis influence these

atoms. Only the positions of the Ca
II

2+ ion are described
below.

axis 36
According to the 6

3
 axis, the Ca

II
2+ ion is influenced by a

series of operations composed of a 2p/6 rotation and a
translation of 3/6 c (= ½ c). We obtained 6 new points :

- (x-y ; x ; ½+z) : 0.2345 ; 0.2416 ; ¾
- (-y ; x-y ; 1+z) : -0.0071 ; 0.2345 ;1¼
- (-x ;-y ;1½+z) : -0.2416 ;-0.0071 ;1¾
- (y-x ;-x ; 2+z) : -0.2345; -0.2416 ;2¼,
- (y ; y-x ; 2½+z) : 0.0071 ; -0.2345; 2¾

Figure 3: Description of the 21 symmetry operations.
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- and (x ; y ; 3+z) : 0.2416 ; 0.0071 ; 3¼.

This last point is identical to the (x ; y ; z) point, with a
translation of 3c. The inversion point at the unit-cell origin
transforms these atoms to (-x’ ;-y’ ;-z’) :

- (-0.2345; -0.2416 ;-¾),
- (0.0071 ;-0.2345 ;-1¼),
- (0.2416 ;0.0071 ;-1¾),
- (0.2345 ;0.2416 ;-2¼),
- (-0.0071 ; 0.2345;-2¾)
- and (-0.2416 ; -0.0071 ;-3¼).

Most of these points are outside the unit-cell, but their
equivalents are found in the unit-cell according to the lattice
translations :

- (x ; y ; ¼) : 0.2416; 0.0071; ¼
- (1-(y-x) ;1-x ;¼): 0.7655; 0.7584 ; ¼
- (1-y; x-y; ¼) : 0.9929 ; 0.2345; ¼

-  (1-x ; 1-y ; ¾) : 0.7584; 0.9929 ; ¾
- (x-y ; x ; ¾) : 0.2345; 0.2416 ; ¾
-  (y ; 1-(y-x) ; ¾) : 0.0071;  0.7655; ¾

axis 12
Under the influence of the 3 2

1
 axis, the initial point occurs

at (1-x ; 1-y ; ½+z), (1-x ; y ; ½+z), and (x ; 1-y ; ½+z), i.e.
for the Ca

II
2+ ion : (0.7584 ; 0.9929 ; ¾), (0.7584 ; 0.0071 ; ¾)

and (0.2416 ; 0.9929 ; ¾) then at (0.2416 ; 0.0071. 1¼). The
inversion points at (½ ; ½ ; 0), (½ ; 0 ; 0) and (0 ; ½ ; 0)
transform these atoms at (0.2416 ; 0.0071 ;-¾), then at
(0.7584 ;-0.0071 ;-1¼), (0.7584 ; 0.9929 ;-1¼),
(-0.2416 ; 0.9929;-1¼). By translations, these 3 positions
give a unique equivalent in the unit-cell: the position
(1-x ; 1-y ; ¾) i.e. (0.7584 ; 0.9929 ; ¾ ).

Figure 4: Description of the transformations induced by the 6 axis
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axis 6
For the operations due to the 6  axis at (2/

3
 ; 1/

3
 ; z), the

Ca
II

2+ ion (and the P, O
I
 et O

II
 atoms) reacts only to the

inversion in its coordinates x and y because the inversion
point is in the same plane as the Ca

II
2+ ion, at (2/

3
 ; 1/

3
 ; ¼).

The successive rotations do not give 6 points located in 2
triangles at z=¼ and z=¾, but 3 points in a triangle at z=¼
:

-  (1-y ; x-y ; ¼) : 0.9929 ; 0.2345 ; ¼
- (1+y-x ; 1-x ; ¼) : 0.7655 ; 0.7584 ; ¼
- (x ;y ; ¼) : 0.2416 ; 0.0071 ; ¼.

The other 6 axis at (1/
3
 ; 2/

3
 ; z) has an inversion point at

(1/
3
 ;2/

3
 ; ¾) and gives 6 points:

- (y-x;-x ;1½-z) :-0.2345;0.7584;1¼
- (1-y ;x-y ; z) : 0.9929 ;-0.2345 ; ¼
- (x ; y ;1½-z) : 0.2416 ; 0.0071; 1¼
- (y-x ; 1-x ; z) :-0.2345 ;0.7584 ; ¼
- (1-y;x-y ;1½-z) :0.9929;-0.2345;1¼
- and (x ; y ; z) : 0.2416 ; 0.0071 ; ¼.

There are 3 equivalent points in the unit-cell : (x ; y ;¼),
(1-(x-y) ;1-x ; ¼) and (1-y ; 1-(x-y) ; ¼), i.e.
(0.2416 ; 0.0071 ; ¼), (0.7655 ; 0.7584 ; ¼) and
(0.9929 ; 0.7655 ; ¼).

Equivalent positions
These symmetry operations give the same 6 equivalent
positions, with identical coordinates (Figs. 5 and 6):

- (x ; y ; ¼) : 0.2416; 0.0071; ¼
- (1-y ; x-y ; ¼) : 0.9929 ; 0.2345; ¼
- (y-x ; 1-x ; ¼) : 0.7655; 0.7584 ; ¼
- (1-x ; 1-y ; ¾) : 0.7584; 0.9929 ; ¾
- (y ; y-x ; ¾) : 0.0071;  0.7655; ¾
- and (x-y ; x ; ¾) : 0.2345; 0.2416 ; ¾.

The Ca
I
2+ ion, coordinates (1/

3
 ;2/

3
 ;0.0011), is located in the

symmetry site 3(C
3
).

mirror plane m
The mirror plane at z=¼ transforms the initial point to
(x ; y ; ½-z), i.e. (1/

3
 ;2/

3
 ;0.4989).

axis 63  

Under the influence of the 6
3
 axis, the Ca

I
2+ ion is submitted

to a series of operations, consisting of a 2p/6 rotation and
a translation of 3/6 c (= ½ c). We obtain 6 new points :

- (x-y ; x ; ½+z) : -1/
3
; 1/

3
; 0.5011

- (-y ; x-y ; 1+z) : -2/
3
 ; -1/

3
 ; 1.0011

- (-x ; -y ; 1½+z) : -1/
3
 ; -2/

3
 ; 1.5011

- (y-x ; -x ; 2+z) : 1/
3
 ; -1/

3
 ; 2.0011

- (y ; y-x ; 2½+z) : 2/
3
 ; 1/

3
 ; 2.5011

- and (x; y ; 3+z) : 1/3 ; 2/
3
 ; 3.0011.

The inversion point at the origin of the unit-cell transforms
these atoms to 6 new points at (-x’ ;-y’ ;-z’):

- (1/
3
 ; -1/

3
 ; -0.5011)

- (2/
3
 ;  1/

3
 ; -1.0011)

- (1/
3
 ; 2/

3
 ; -1.5011)

- (-1/
3
 ;  1/

3
 ; -2.0011)

- (-2/
3
 ; -1/

3
 ; -2.5011)

- and (-1/
3
 ; -2/

3
 ; -3.0011)

Most of those points are outside the unit-cell, but their
equivalents are found in the unit-cell with the lattice
translations. Their coordinates are :

-  (x ; y ; ½-z) : 1/
3
 ; 2/

3
 ; 0.4989

- (1-x ; 1-y ; 1-z) : 2/
3
 ; 1/

3 
; 0.9989

12  axis

Under the influence of the 2
1
 axis, the initial point goes to

(1-x ; 1-y ; ½-z), (1-x ; -y ; ½-z), and (-x ; 1-y ; ½-z), i.e .
(2/

3
 ;1/

3
 ;0.5011), (2/

3
 ;-2/

3
 ;0.5011) and (-1/

3
 ;1/

3
 ;0.5011), then

at (x ; y ; 1+z), i.e. (1/
3
 ; 2/

3
 ; 1.0011). All the inversion

points at (½ ; ½ ; 0), (½ ; 0 ; 0) and (0 ; ½ ; 0) give the same
point at (1/

3
 ; 2/

3
 ; -0.5011).

6  axis

The Ca
I
2+ ion is located in the 6 axis, parallel to the c-axis

at (1/
3
 ; 2/

3
 ; z). Therefore it is not affected by the 6 rotation

at (1/
3
 ; 2/

3
 ; z), but the inversion according to the (1/

3
 ;2/

3.
 ¾)

point gives (1/
3
 ; 2/

3
 ; 1.4999), and then (1/

3
 ; 2/

3
 ; 0.0011).

The other axis, at (2/
3
 ;1/

3
 ; z), gives 6 points : (1+y-x ; 1-x ;½-z),

(1-y ; x-y ; z), (x ;y ;½-z), (1+y-x ;1-x ;z), (1-y ;x-y ;½-z),
and (x ; y ; z), i.e. (4/

3
 ; 2/

3
; 0.4989), (1/

3
 ;-1/

3
;0.0011),

(2/
3
 ; 1/

3
; 0.4989), (4/

3
 ;2/

3
; 0.0011), (1/

3
 ; -1/

3
; 0.4989) and

(1/
3
 ;2/

3
; 0.0011).

Equivalent positions
According to the particular coordinates x and y of the Ca

I
2+,

x = 1/
3
 and y =2/

3.
 the different symmetry operations give

identical positions. The Ca
I
2+ ion has 4 equivalent positions

(Fig. 7) :
- (x ; y ; z) : 1/

3
 ; 2/

3
 ; 0.0011

- (1-x ; 1-y ; 1-z) : 2/
3
 ; 1/

3
 ; 0.9989

- (x ; y ; ½-z) : 1/
3
 ; 2/

3
 ; 0.4989

- (1-x ; 1-y ; ½+z) : 2/
3
 ; 1/

3
 ; 0.5011

Figure 5: Equivalent positions of the Ca
II

2+ ions. (1)
Unit-cell: (2) view [0001]

Figure 6: Equivalent positions of the P, O
I
 and O

II
.

atoms. (1) Unit-cell: (2) view [0001]
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The F- ion, coordinates (0 ; 0 ; ¼), is located in the
symmetry sites ( )6 3C h

, and in the  mirror plane, on the

6
3
 axis at the unit-cell origin. Moreover, its particular

coordinates cause it to be unaffected  by several symmetry
operations.

Mirror plane m 
The F- ion is located in the mirror plane at z = ¼. Hence it is
not influenced by the mirror symmetry.

36  axis

The presence of the F- ion on the c-axis causes it to be
unaffected by the 6 rotation. But the translation of 3/6 c
due to the 6

3
 axis gives the point (0 ;0 ; ¾), then the same

at z= 1 ¼, 1 ¾, 2¼, 2 ¾ and 3 ¼. The inversion due to the
point (0 ;0 ;0) gives (0 ;0 ;-¾), then z= -1 ¼, -1 ¾, -2¼, -2 ¾
and -3 ¼, which gives by translations in the unit-cell
(0 ;0 ; ¼), which is the initial point and (0 ; 0 ; ¾).

12 axis

With the 2
1
 axis, the F- ion is submitted to a 2p/2 rotation

and a translation of ½ c. Its new positions are :
- (1-x ; 1-y ; ½+z) : 1 ; 1 ; ¾
- (1-x ; -y ; ½+z) : 1 ; 0 ; ¾
- (-x ; 1-y ; ½+z) : 0 ; 1 ; ¾

The succession of this operation goes outside the unit-cell
at (x ;y ;1+z), i.e. (0 ; 0 ; 1 ¼). The inversion points  (½ ;
½ ; 0), (½ ; 0 ; 0) at (0 ; ½ ; 0) transform the coordinates
(x’ ; y’ ; z’) to (1-x ;1-y ;-z), (1-x ; -y ; -z), to (-x ;1-y ;-z).
Because of the particular coordinates of the F- ions, this
symmetry operation is similar to a transformation of the 3
points to the point (0 ;0 ; ¼), the initial point, then to
(1 ;1 ; -¼), (1 ; 0 ; -¼) and (0 ; 1 ; -¼). These 3 last points
are equivalent to (0 ;0 ; ¾).

6  axis

The first 6  axis located at (1/
3
 ; 2/

3
 ; z) gives the following

points :
- (y-x ;1-x ; 1½-z) : 0 ; 1 ;1¼
- (1-y ; x-y ; z) : 1 ; 0 ; ¼
- (x ; y ; 1½-z) : 0 ; 0 ; 1¼
- (y-x ; 1-x ;z) : 0 ; 1 ;¼
- (1-y ; x-y ;1½-z) : 1 ; 0 ; 1¼
- and (x ;y ;z) : 0 ; 0 ; ¼.

The second 6  axis located at (2/
3
 ; 1/

3
 ; z) has an inversion

point located in the same plane as the F- ion. Therefore
only 3 points are obtained:

- (1-y ; x-y ; z) : 1 ; 0 ; ¼
- (1+y-x ; 1-x ;z) : 1 ; 1 ; ¼
- and (x ;y ;z) : 0 ;0 ; ¼

Equivalent positions 
The 2 equivalent positions of the F- ions are (0 ;0 ; ¼) and
(0 ; 0 ; ¾). These atoms are on an axis of the unit-cell
because of the null coordinates x and y, so they are
generated on the 3 other faces by translations. These new
positions are : (1 ; 0 ; ¼), (1 ; 0 ; ¾ ), (0 ; 1 ; ¼ ), (0 ; 1 ; ¾ ),
(1 ; 1 ; ¼) and (1 ; 1 ; ¾). (Fig. 8)

With the lattice translations, the crystal symmetries are
not evident when only one unit-cell is observed. Only the
observation of several adjacent unit-cells allows the
visualisation of all the lattice symmetries (Fig. 9).

PO
4

3- ions are the only polyatomic ions of the FAp
crystal. A phosphorus atom (valence: +5) is bonded to 4
oxygen atoms (valence: -2). If the PO

4
3- ion is totally

isolated from crystal interactions, it can be drawn as a
perfect tetrahedron, where the P atom is the gravity centre,
and the O atoms the edges of the tetrahedron.  In the ideal
model, the P-O covalent bonds are 1.54 Å long
(Radhakrishnan 1963, 1964) and the distance between two
O atoms is 2.51 Å long. The O

i
-P-O

j
 (i ≠ j) angles are equal

to 109°30’16". This molecule belongs to the cubic point

group Td ( 43m ). The P-O bonds are all equal, and there
is no P=O bond, which is logical considering the valences
of the P and O atoms. So a non-defined bond exists and is
located on the 4 O Atoms and around the P atom.

Figure 7: Equivalent positions of the Ca
I
2+ ion: (1)

Unit-cell (2) View [0001]
Figure 8: Equivalent positions of the F- ion: (1) Unit-
cell. (2) View [0001]

Figure 9: FAp crystal  (2x2 cells - View [0001])
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To find the PO
4

3- ions in the FAp crystal, the atomic
positions of P and O atoms have to be considered (Table
1). P, O

I
 and O

II
 atoms occur in the mirror-plane and form

the basis of the PO
4

3- ion. The tetrahedron is completed by
two O

III
 atoms out of the mirror planes and symmetrical by

reflection. The covalent bonds still exists, but the
tetrahedron is deformed according to the interactions
between the PO

4
3- ion and its environment. The PO

4
3- ion

is bonded to the local Ca2+ ions by way of its O atoms.
These interactions distort the tetrahedron along the c-axis,
the equality between the P-O bonds and between the
O

i
-P-O

j
 (i ≠ j) angles is broken, except for the two atoms

O
IIIa

 and O
IIIb

, which remain equivalent. This means a
decrease of the molecular symmetry, and the Td ( 43m )
point group becomes the Cs(m) site group. The bonds and
angles of the PO

4
3- ion are (Sudarsanan et al., 1978) :

- P-O
I
= 1.5337 Å, P-O

II
= 1.5406 Å, P-O

III
= 1.5342 Å,

- O
I
...O

II
= 2.538 Å, O

I
...O

III
= 2.529 Å, O

II
...O

III
= 2.487

Å, O
IIIa

...O
IIIb

 = 2.473 Å,
- O

I
-P-O

II
= 111° 12', O

I
-P-O

III
= 111° 06' 36", O

II
-P-O

III

= 107° 57' 36" and O
IIIa

-P-O
IIIb

= 107° 19' 48".

However, the decrease of the symmetry and the P-O
variations are not enough to destroy the non-defined bond,
which favours the interaction between the PO

4
3- ion and its

environment. Each PO
4

3- ion is bonded to a Ca
I
2+ ion by its

two O
III

 atoms and by O
I
 or O

II
, and to an adjacent Ca

I
2+ ion

by the 4th O atom (O
II
 or O

I
). In the same way, the PO

4
3-

ion interacts with a Ca
II

2+ ion by the 2 O
III

 atoms, and 2
adjacent Ca

II
2+ ions by O

I
 or O

II
 (Fig. 10).

The Ca
I
2+ ions are spaced by c/2 and form columns along

the 6 -axis at (1/
3
 ; 2/

3
 ; z) and (2/

3
 ; 1/

3
 ; z). Each Ca

I
2+ ion is

bonded to the Ca
I
2+ ions above and below it by 3 O atoms

from the mirror plane: 3 O
I
 above it, and 3 O

II
 below it.

The distance between Ca
I
2+ and O

I
 is 2.399 Å long and

between Ca
I
2+ and O

II
 2.457 Å long. The Ca

I
2+ ion also

interacts with 3 O
III

 atoms, which are about in the same
plan as the Ca

I
2+ ion (distance between Ca

I
2+ and O

III
:  2.807

Å). So the Ca
I
2+ ions are bonded to 9 O atoms by ionic

bonds, and in this way they interact with the PO
4

3- ions
(see Fig. 11).

The Ca
II

2+ ions are in the mirror-planes, and form
triangles around the 6

3
-axis. The Ca

II
2+ ion is coordinated

to a F- ion, which is in the centre of the triangle
(d(Ca

II
2+ ; F) = 2.310 Å), and to 6 O atoms (one O

I
, one O

II

and 4 O
III

) (Fig. 12). The distance between 2 Ca
II

2+ ions is
between 4.002 and 4.084 Å (Hughes et al., 1989) according
to the position of the 2 Ca

II
2+ ions (in the same mirror-plane

or not). The distance between Ca
II

2+ ion and O atoms is
equal to 2.701. 2.374 and 2.501 Å respectively for O

I
, O

II

and O
III

. All the bonds are ionic except the Ca
II
-F bond,

which is partially covalent (Penel et al., 1997).
Each F- ion is bonded to the F- ions above and below it

(d (F ; F) = 3.44 Å) and to 3 Ca
II

2+ ions (d (F ; Ca
II
) = 2.463 Å)

which form a triangle around it in the same mirror-plane
(Hughes et al., 1989, 1990). These F-Ca

II
 bonds are partially

covalent (Penel et al., 1997) (Fig. 13).
The crystalline structure (Fig. 14) is a succession of

columns parallel to the c-axis, at the centre of the triangles
perpendicular to the c-axis: the F- ions are in the centre of
Ca

II
2+ triangles and the Ca

I
2+ ions are in the centre of PO

4
3-

triangles. This structure and the presence of numerous
ionic bonds make FAp a very suitable host for many of
substituents or dopants.

Figure 11: The Ca
I
2+ ion and its environment

Figure 12: The Ca
II

2+ ion and its environment

Figure 10: The PO
4

3- ion and its environment
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Substitutions
Many types of substitution have been described, according
the preferred substitution site. The main one, called Type-
A substitution, is the substitution of the F- ion by another
ion X- (X = Cl, OH, CO

3
…) (Elliott, 1994; 1998; Hughes

et al., 1989; 1990; 1991; Kay et al., 1964; Mackie and
Young, 1974; O’Shea et al., 1974; Penel et al., 1997;
Sudarsanan and Young, 1978). The second one is the PO

4
3-

substitution (Penel et al., 1997; Perdikatsis, 1991), called
Type-B substitution. Some ions can substitute for the Ca2+

ions: Pb2+, Nd2+, Na+ (Elliot, 1994; Mackie and Young,
1973; Miyake et al., 1986). Finally, some dopants do not
substitute at any particular site, but occur in a special
position, which modifies the crystalline environment, e.g.,
Sb2+ or Mn2+ (DeBoer et al., 1991; Hughes et al., 1991;
Suitch et al., 1985). All the substitutions exist in nature,
and most of them are reproducible in the laboratory.

The Type-A Substitution
This consists of replacing F- ions by other X- ions (X= OH,
Cl, Br) or Y2- (Y=O, CO

3
). Replacement of F- by a neutral

molecule is also possible (H
2
O, O

2
, Ar, CO

2
) (Elliot 1994;

Trombe, 1973). This implies a weak increase of the
a-parameter. However, a neutral molecule substitution, e.g.,
by H

2
O or O

2
, only exists in a few particular conditions,

e.g., the hydration of enamel.
The most usual substitution is substitution of the F-

ion by another monovalent ion, e.g., OH- or Cl- ions.
The X- substituent is not exactly in the centre of the Ca

II

atoms triangle, at z= ¼ or z=¾, but undergoes a
displacement off these positions in the anionic column. This
displacement varies according to the type of substituent:
in hydroxyapatite (OHAp), the oxygen atom of the hydroxyl
group is below or above the Ca

II
2+ triangles at 0.3 Å of the

F- position (0; 0; 0.196), which causes a local disturbance
(Hughes et al., 1989; Kay et al., 1964; Sudarsanan and
Young, 1978). When the composition is close to a
stoichiometric OHAp, the hydroxyl ions are always in these
positions, and the space group becomes P2

1
/b (Elliot 1994;

Hughes et al., 1989)  , with a pseudo-hexagonal structure
(b = 2a, g = 120°) (Fig. 15).

In the same way, in a stoichiometric chlorapatite (ClAp),

the Cl- ions are in (0; 0; 0.444). A vacancy is created on
the c-axis and the space group becomes P2

1
/b (Sudarsanan

and Young, 1978). In the series between the two (ClAp
and FAp) stoichiometric apatites, the displacement of X-

ions implies that of F- ions according to their substitution
rate, and causes a local disturbance, with a possible
transformation from the hexagonal structure (space group
P6

3
/m) to a monoclinic one (space group P2

1
/b) (Hughes

et al., 1989; 1990; Mackie and Young, 1974; Penel et al.,
1997; Sudarsanan and Young, 1978). The presence of F-X
interactions first stabilises the hexagonal structure, then
causes the transformation to a monoclinic structure (Hughes
et al., 1989; 1990). On the other hand, the unit-cell
parameters are weakly modified: we note an increase of
the a-parameter, and a decrease of the c-parameter (Hughes
et al., 1989; 1990). The anionic site environment undergoes
some disturbance depending on the substitution rate. No
PO

4
3- or Ca2+ ions are lost, but a change of their

crystallographic positions is observed, in order to conserve
the Ca-X bonds and to compensate the disorder due to the
substitution. Then, we can observe a variation of about 0.2
percent of some crystallographic positions of PO

4
3- and Ca2+

ions when the quantity of F- ions in the unit-cell decreases
from 94 to 75% (Mackie and Young, 1973; Sudarsanan
and Young, 1978).

In a Y2- ion substitution (Y=O, CO
3
), the two F- ions

of the unit-cell are substituted by one or more Y2- ions
(Elliott, 1998). This substitution can cause electrical charge

Figure 13 : Column of F- ions

Figure 14: FAp unit cell viewed along the [0001]
direction

Figure 15: Apatite, F-, OH- and Cl- columns
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balance disorders, compensated by the existence of
vacancies at F- ion sites or in some cases by a loss of the
screw-axis 6

3
. Those F- vacancies could appear in order to

compensate for a loss of one or several Ca2+ ions too.
The Ca2+ substitution is often present in industrial

applications, where rare-earth-doped FAp (e.g., Mn2+, Nd3+,
or Sr2+) (Fleet and Pan, 1997; Hughes et al., 1991; Mackie
and Young, 1973; Suitch et al., 1985) are used to build
fluorescence lamps. We find 2 or 3 types of Ca2+

substitutions, depending on whether the substituted sites
are the Ca

I
2+ sites, the Ca

II
2+ sites or both sites. Generally, if

the substituent does not have a valence equal to +2, the 2
sites are disturbed (Elliott 1994).  If the substituent is in
M2+ form, the substitution depends on the relative size of
the substituent and the Ca2+ ion. According to Kreidler, the
substituent radius for the Ca2+ site can be between 0.95
and 1.35 Å (Kreidler and Hummel, 1970). The largest
substituents prefer the Ca(II) site, and the FAp hexagonal
structure suffers when small cations M2+ fill Ca

I
2+ sites

(Elliot, 1994; Kreidler and Hummel, 1970).
The Ca2+ substitution by monovalent ions (K+, Na+)

takes often place on Ca
I
 sites (Elliott 1994), creating a

vacancy in F- sites, and sometimes in Ca
I
2+ sites.

If the substituent is divalent (Sr2+, Pb2+, Mg2+), the
preferentially substituted site is the Ca

II
2+ site (Hughes et

al., 1991; Miyake et al., 1986). We observed no loss of
PO

4
3- ions, and the substitution rate is generally weak. The

presence of dopant causes a contraction of the c-axis, an
increase of the a-axis parameter (Hughes et al., 1991), and
a weak displacement of the different atoms. The substitution
rate is 1:1, and the crystalline structure does not seem to
be particularly troubled by the possible electronic disorder.
We only noted an extension of the Ca

II
-O distances, when

they still existed (Hughes et al. 1991).
In the same way, when the two sites are substituted, the

crystal sustained no major structural change (for example,
substitution by Pb2+ (Miyake et al., 1986) or by Cd2+

(Nounah and Lacout, 1992)). We just noted a increase of
the unit-cell parameters and of M-O distances (M = Ca,
Cd or Pb). On the other hand, a Ca

I
2+ substitution had many

consequences for the crystalline structure (Hughes et al.,
1991; Suitch et al., 1985). A weak Mn2+ rate (occupation
rate inferior to 0.42) does not cause large crystalline
changes, because the Mn2+ ion is smaller than the Ca2+ ion
and fits better into the Ca(I)2+ surroundings rather than the
Ca

II
2+ surroundings. We only observed a reduction of Ca

I
-O

distances (Hughes et al., 1991; Suitch et al., 1985).
However, a substitution rate higher than or equal to 48%
had more extensive consequences. A Ca

I
2+ substitution by

a Mn2+ ion excluded any other Mn2+ ion from the cell in the
Ca

I
2+ site, excluded them in the Ca

II
2+ site and caused the

appearance of a vacancy in F- sites (Elliott, 1994). Part of
the O

III
 atoms were rejected from their positions, and the

plane-mirrors disappeared. The crystal symmetry was
broken, and the space group became P6

3
 (Suitch et al.,

1985).
A Ca2+ substitution by a trivalent substituant (Sb3+, Nd3+)

is relatively seldom seen. However, this type of substitution
is used in the fabrication of fluorescent lamps. If the
substituent rate is very weak (<2%), the Ca

II
2+ sites are

preferentially substituted, and we note no loss of PO
4

3-.
The crystal seems to accept the electronic disorder (DeBoer
et al., 1991). The presence of dopant causes a reduction of
the c-axis parameter, and an extension of the a-axis (Mackie
and Young, 1973). The substitution ratio is 1:1, and the
crystalline structure seems not affected by the eventual
electronic disorder. However, when the substitution rate is
higher, Ca2+ substitution by trivalent ions is accompanied
by F- substitutions by divalent ions and/or Ca2+ substitutions
by monovalent ions (Elliot, 1994). In the particular case of
Sb3+ substitution, the Sb3+ size is more important than the
Ca2+ size. When the substitution rate is over 3%, the Sb3+

ions do not find a place in the Ca
II

2+ sites but in (1/
3
; 2/

3
; ¼)

and (2/
3
; 1/

3
; ¼), between the Ca

I
2+ ions, on the 3(C

3
) axis. A

displacement of the Ca
I
2+ ions and a rotation, or a loss, of

PO
4

3- ions in order to compensate the imbalance were
observed. The substitution rate is 2 Sb3+ for 3 adjacent Ca

I
2+

(DeBoer et al., 1991; Elliott, 1994).
The substitution of the PO

4
3- ions by a substituent

such as XO
4

3- (X= V, As, Mn, Cr...) or CO
3
2-  (Elliott, 1994;

Kreidler and Hummel, 1970; Perdikatsis, 1991) is called
Type-B substitution. When the substituent is of the type
MO

4
3-, the substitution is partial or complete, with a

substitution rate equal to 1:1. The a-axis and the c-axis
parameters weakly increase, and we note a decrease of the
c/a rate. According to Kreidler, the radii of the atom M
must be between 0.29 and 0.6 Å to conserve the P6

3
/m

structure (Kreidler and Hummel, 1970). However, a PO
4

3-

substitution often implies some distortions of the crystal
structure, or a loss of the hexagonal symmetry. It is called
pseudo-hexagonal structure because the main observed
distortion is that of the F- ions (Kreidler and Hummel, 1970;
Perdikatsis, 1991).

The substitution of PO
4

3- ions by CO
3

2- ones is
generally accompanied by the loss of one F- ion and one or
several Ca

II
2+ ions, in order to compensate for the electronic

disorder due to the substitution. The carbonated apatite
structure is still uncertain. Some scientists, such as
Perdikatsis (1991) think, according to their study on
carbonated FAp minerals, that the space group is still P6

3 
/m.

However, it is difficult to prove this theory, and the
substitution could imply a loss of symmetry, and then a
change of the space group. Even the substitution way is
uncertain: CO

3
2- was first seen occupying a PO

4
3- site, with

an F- ion or an OH- one occupying the site of the 4th O. This
theory was discarded, because it was thought that CO

3
2-

cannot occupy a site on the screw axis 6, because of its
steric space. Later, because of the P-O bonds, another study
proposed that the CO

3
2- ions are inclined on the c-axis, and

occupy one of the tetrahedral PO
4

3- ion faces. Other
substitution types were proposed, for example the
substitution of 3 PO

4
3- ions by 4 CO

3
2- (Elliott, 1994), but

this substitution has not yet been fully proven.

Conclusion

Because of the presence of several ions in its formula, FAp
is a very suitable host for various substituents. Moreover,
FAp finds many applications in various areas and its
biological properties are not the least important ones. This
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explains the large interest for this compound. The presence
of FAp in human enamel, its use in treatments against dental
caries or osteoporosis, and its dangerous (or lethal) effects
when high doses are given, justify the interest in FAp.
Several substitutions are possible, and their effects can have
both good or bad consequences for the organism, and could
even be lethal. The FAp structure seems to accept most
substituents, despite size or valence differences. Only the
Ca2+ substitution often implies some modifications of the
crystal structure, when the substituent is smaller than Ca2+

ion. These modifications do not affect only the Ca2+ sites
but also the other sites of the unit-cell. However, many
questions remain, because not all the substitution forms
are well-known, e.g., the PO

4
3- substitution. In the present

study, we have carried out a graphical construction of all
the atoms of the FAp unit-cell using the symmetry operators
of the P6

3
/m space group. The knowledge of such

symmetries is not only useful for understanding the very
structure of FAp but also for the detection of structural
modifications induced by substitutions and hence for the
understanding the behaviour of biological and synthetic
calcium phosphate phases. We believe that such a
description is useful to the biomaterials community.
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Discussion with Reviewers

D.B. Jones: “HA in the body slowly ‘matures’ by hydration.
How is hydration affected by F in the molecule?
Authors: In HA, the oxygen atom of the hydroxyl group is
below or above the Ca

II
2+ triangles at 0.3 Å of the F- position

(0; 0; 0.196) which causes a local disturbance [Hughes et
al. 1989, Kay et al. 1964, Sudarsanan and Young 1978]
with a possible transformation from the hexagonal structure
(space group P6

3
/m) to a monoclinic one (space group P2

1
/b).

For steric reasons, this leaves room for indirect H
2
O

substitution at the column. These disturbances can favour
the hydratation of the apatite structure. In FAp, the fluoride
ion is located at z = ¼, in the centre of the Ca

II
2+ triangles,

where it forms partially covalent Ca
II
-F interactions. It is

hence more difficult for a F- ion to be displaced in order to

leave room for a H
2
O molecule.

D.B. Jones: Does F also form other compounds in bone
than reacting with HA?
Authors: We cannot answer this question, and have no
knowledge of other compounds formed in bone with
fluoride, except for F,OH-Ap or F,CO

3
-Ap.

S. Downes:  Would the authors clearly indicate why the
information generated using this technique could have
value in the field of Biomaterials?
Authors: Both mineral phases of calcified tissues and
synthetic calcium phosphate materials have a structure
similar to that of FAp. Moreover, the physical and chemical
properties of these apatites are related to their structure.
This technique allows a better visualisation of the FAp
structure and so favours a better understanding of the
substitution mechanisms and of the physical and chemical
properties of the apatites.

S. Downes: Would the authors like to strengthen their
introduction by also indicating how HA can be substituted
with groups such as carbonates? Can this technique be used
to model these HA s?
Authors: This technique needs some precise data about
the structure of the molecule we want to model. Except for
a few cases, the structure of the carbonated apatites is not
completely known. Therefore the representation of these
apatites by this technique can, for the moment, only be a
working hypothesis.


