GENERALIZED RANDOM PROCESSES AND CAUCHY'S PROBLEM FOR SOME PARTIAL DIFFERENTIAL SYSTEMS

MAHMOUD M. EL-BORAI

Faculty of Science King Abdulaziz University P.O. Box 1540 Jeddah SAUDI ARABIA

(Received February 1, 1979 and in revised form October 22, 1979)

<u>ABSTRACT</u>. In this paper we consider a parabolic partial differential system of the form $D_t H_t = L(t,x,D) H_t$. The generalized stochastic solutions H_t , corresponding to the generalized stochastic initial conditions H_0 , are given. Some properties concerning these generalized stochastic solutions are also obtained.

<u>KEY WORDS AND PHRASES</u>. Generalized Stochastic Solutions, Strongly Parabolic Systems.

1980 MATHEMATICS SUBJECT CLASSIFICATION CODES: 60H15, 35R60.

1. INTRODUCTION.

Consider the system

$$D_{t}u = Lu \tag{1.1}$$

where

$$\begin{aligned} \mathbf{D}_{\mathsf{t}} &= \frac{\partial}{\partial \mathsf{t}}, \ \mathbf{L} = \sum_{\left|\mathbf{k}\right| \leq 2b} \mathbf{L}_{\mathsf{k}}(\mathsf{t}, \mathsf{x}) \ \mathbf{D}^{\mathsf{k}} \ , \\ \\ \mathbf{D}^{\mathsf{k}} &= \left(-\mathrm{i}\right)^{\mathsf{k}} \ \mathbf{D}_{1}^{\mathsf{k}_{1}} \ldots \mathbf{D}_{n}^{\mathsf{k}_{n}}, \ \mathbf{D}_{\mathsf{r}} = \frac{\partial}{\partial \mathsf{x}_{\mathsf{r}}} \ , \ \mathsf{r} = 1, \ \ldots \ \mathsf{n}, \end{aligned}$$

 $|\mathbf{k}| = \mathbf{k}_1 + \ldots + \mathbf{k}_n$, $\mathbf{t} \in (0,T)$, T>0, x is an element of the n-dimensional Euclidean space \mathbf{E}_n , and $(\mathbf{L}_k(\mathbf{t},\mathbf{x}), |\mathbf{k}| \le 2\mathbf{b})$ is a family of square matrices of order N.

We assume that (1.1) is a strongly parabolic system on $G_{n+1} = \{(t,x): t \in [0,T], x \in E_n\}$ in the sense that for every complex vector $\mathbf{a} = (\mathbf{a}_1, \dots, \mathbf{a}_N)$, every $g \in E_n$, and every $(t,x) \in G_{n+1}$;

Re
$$\left[\begin{array}{cc} \sum & L_k(t,x)\sigma^k \ a, \ \overline{a}\right] \leq -\delta \ \left|\sigma\right|^{2b} \ \left|\alpha\right|^2$$

where

$$\sigma^{k} = \sigma_{1}^{k_{1}} \dots \sigma_{n}^{k_{n}}, |\sigma|^{2b} = (\sigma_{1}^{2} + \dots + \sigma_{n}^{2})^{b},$$

 $\left|a\right|^2=a_1^2+\ldots+a_N^2$, and δ is a positive constant (see [1]). In the above inequality and in the following, we denote the scalar product of two N-vector functions u and v by the bracket notation (u,v).

As usual, we denote by \mathbf{C}^{m} (\mathbf{E}_{n}), $0 \le m \le \infty$, the set of all real-valued functions defined on \mathbf{E}_{n} , which have continuous partial derivatives of order up to and including m (of order $< \infty$ if $\mathbf{m} = \infty$). By \mathbf{C}_{0}^{m} (\mathbf{E}_{n} , N) we denote the set of all vector functions $\mathbf{h} = (\mathbf{h}_{1}, \ldots, \mathbf{h}_{N})$ such that every \mathbf{h}_{r} is in $\mathbf{C}^{m}(\mathbf{E}_{n})$, with compact support, $\mathbf{r} = 1, \ldots, N$. We assume that the elements of the matrices $\mathbf{L}_{k}(\mathbf{t},\mathbf{x})$, $|\mathbf{k}| \le 2\mathbf{b}$, satisfy the following conditions:

- (a) They are bounded on G_{n+1} and satisfy a Holder condition of order α with respect to x, (0 < α \leq 1).
 - (b) For every $x \in E_n$, they are continuous functions in t ϵ [0, T].

(c) For every t in [0, T], they are $C^{\infty}(E_n)$ functions. Let $u=(u_1,\ \ldots,\ u_N)$ satisfy the initial condition

$$u(x, o) = u_{0}(x),$$
 (1.2)

where $u_0 = (u_{01}, \ldots, u_{0N})$, $[u_{0r} \in C(E_n)]$ are bounded on E_n , $r = 1, \ldots, N]$. We say that u is of the class $S(E_n)$ if for each $t \in (0,T)$, $D_t u_r \in C(E_n)$ and $u_r \in C^{2b}(E_n)$, $r = 1, \ldots, N$.

It has been proved [2] that, under conditions (a) and (b), there exists a fundamental matrix Z(t,0,x,y) of the system (1.1) such that

$$u(t,x) = \int_{E_n} Z(t,0,x,y) u_0(y) dy, dy = dy_1 ... dy_r$$
 (1.3)

represents the unique solution of the Cauchy problem (1.1), (1.2) in the class $S(E_n)$.

Let $(V_r: r=1, \ldots, N)$ be a family of Gaussian random measures in the sense of Gelfand and Vilenkin [2]. Let g_r be a complex-valued function defined on E_1 . We say that g_r is of the class K_r if the integral

 $\int_{E_1} |g_r(s)|^2 dF_r(s)$ exists, where F_r is a positive measure such that

$$E[V_r(B_1) \overline{V_r(B_2)}] = F_r(B_1 \cap B_2)$$

for any two Borel sets B_1 and B_2 on the real line [r = 1, ..., N and E (.) denotes the expectation of (.)].

Let H be an N-vector of generalized stochastic processes, which associates with every h in C_0^∞ (E_n, N) an N-vector of random variables defined by

$$H(h) = (H_1(h), ..., H_N(h)),$$

$$H_r(h) = \int_{E_1} g_{ro}(s) dV_r(s), \qquad (1.4)$$

$$g_{ro}(s) = \int_{E_n} (I_r(x,s), h(x)) dx,$$

where (I_r ; r = 1, ..., N) is a family of N-vectors of continuous functions on E_{n+1} .

It is assumed also that all the components of I_r are bounded on E_n , independently of s. Clearly, g_{ro} is of the class K_r .

The theoretical development in section 2 exhibits the use of formula (1.3) in order to integrate (1.1) when the initial condition is an N-vector of generalized stochastic processes, which is defined by (1.4). Also, some essential properties are derived in section 3.

2. GENERALIZED STOCHASTIC SOLUTIONS.

An N-vector $\mathbf{w}(\mathsf{t},\mathsf{x},\mathsf{s})$ of functions is said to be of the class $\mathsf{C}(\mathsf{E}_{\mathsf{n}+1},\ \mathsf{N})$ if, for each t in $(0,\mathsf{T})$, the components of $\mathbf{w}(\mathsf{t},\mathsf{x},\mathsf{s})$ represent continuous functions of (x,s) on $\mathsf{E}_{\mathsf{n}+1}$ and they are bounded on E_{n} , independently of s . We say that the generalized stochastic vector H_{t} is of the class V if there exists a family $[\mathsf{S}_{\mathsf{r}}(\mathsf{t},\mathsf{x},\mathsf{s}):\mathsf{S}_{\mathsf{r}}\in \mathsf{C}(\mathsf{E}_{\mathsf{n}+1},\ \mathsf{N}),\ \mathsf{r}=1,\ \ldots,\ \mathsf{N}]$ such that, for each h in $\mathsf{C}_{\mathsf{o}}^{\infty}(\mathsf{E}_{\mathsf{n}},\ \mathsf{N}),\ \mathsf{H}_{\mathsf{t}}(\mathsf{h})$ can be represented in the form

$$H_t(h) = \int_{E_1} g(t,s) dV(s),$$

$$g = (g_1, ..., g_N), g_r(t,s) = \int_{E_n} (S_r(t,x,s), h(x)) dx,$$

$$H_{t}(h) = (H_{1t}(h), ..., H_{Nt}(h)), H_{rt}(h) = \int_{E_{1}} g_{r}(t,s)dV_{r}(s).$$

It is clear that, for each t in (0,T), $g_r \in K_r$. The expectation of $|H_{rt}|^2$ is given by

$$E |H_{rt}|^2 = \int_{E_1} |g_r(t,s)|^2 d F_r(s).$$

If $D_t g_r(t,s)$ exists and belongs to K_r for each t in (0,T), then we define $\frac{d}{dt} H_{rt}(h)$ by

$$\frac{d}{dt} H_{rt}(h) = 1.i.m_{t \to 0} \int_{E_1}^{\Delta g_r(t,s)} dV_r(s) = \int_{E_1}^{D_t} g_r(t,s) dV_r(s) ,$$

where $\Delta g_r(t,s) = g_r(t + \Delta t,s) - g_r(t,s)$ and l.i.m. denotes limit in the mean, i.e.

$$\lim_{t\to 0} \int_{E_1} \left| \frac{\Delta g_r(t,s)}{\Delta t} - D_t g_r(t,s) \right|^2 dF_r(s) = 0.$$

Let $L^* = \sum_{|\mathbf{k}| \le 2b} (-1)^{|\mathbf{k}|} \mathbf{D}^{\mathbf{k}} \mathbf{L}^*_{\mathbf{k}}$, where $(\mathbf{L}^*_{\mathbf{k}}, |\mathbf{k}| \le 2b)$ is the family of adjoint matrices to $(\mathbf{L}_{\mathbf{k}}, |\mathbf{k}| \le 2b)$. Since the coefficients of the operator \mathbf{L} are \mathbf{C}^{∞} $(\mathbf{E}_{\mathbf{n}})$ functions, it follows that, for every \mathbf{h} in $\mathbf{C}^{\infty}_{\mathbf{0}}$ $(\mathbf{E}_{\mathbf{n}}, \mathbf{N})$, $\mathbf{L}^*\mathbf{h} = \mathbf{h}_{\mathbf{t}}$ is also in $\mathbf{C}^{\infty}_{\mathbf{0}}$ $(\mathbf{E}_{\mathbf{n}}, \mathbf{N})$. We call $\mathbf{H}_{\mathbf{t}}$ a generalized stochastic solution of the system (1.1) if $\mathbf{H}_{\mathbf{t}}$ and $\frac{d\mathbf{H}_{\mathbf{t}}}{d\mathbf{t}}$ are of the class \mathbf{V} and

$$\frac{dH_t}{dt} \stackrel{(h)}{=} H_t \stackrel{\star}{(h_t^*)} \tag{2.1}$$

for every h in C_0^{∞} (E_n,N) and t in (0,T). We assume that

$$H_{o}(h) = H(h)$$
 (2.2)

where H is defined by (1.4).

THEOREM 1: The Cauchy problem (2.1), (2.2) has a unique generalized stochastic solution $\mathbf{H}_{\mathbf{r}}$ in the class \mathbf{V} .

PROOF: Let $(S_r(t,x,s): r=1, \ldots, N)$ be a family of solutions of the system (1.1) with the initial conditions:

$$S_r(0,x,s) = I_r(x,s), r = 1, ..., N.$$

Using formula (1.3), one gets

$$S_r(t,x,s) = \int_{E_n} Z(t,0,x,y) I_r(y,s) dy.$$
 (2.3)

According to the properties of the fundamental matrix Z, we find $S_r^{\parallel} \in C(E_{n+1}, N)$, r = 1, ..., N. Set,

$$H_{t}(h) = \int_{E_{1}} g(t,s) dV (s)$$

and

$$g_r(t,s) = \int_{E_n} (S_r(t,x,s), h(x)) dx \text{ with } h_i \in C_0^{\infty} (E_n, N),$$

where $S_1(t,x,s)$, ..., $S_N(t,x,s)$ are defined by (2.3). Since $S_r \in C(E_{n+1}, N)$, it follows that H_+ is of the class V. Using again the properties of Z, we get

$$D_{t} \int_{E_{n}} (S_{r}(t,x,s), h(x)) dx = \int_{E_{n}} (D_{t}S_{r}(t,x,s), h(x)) dx$$
$$= \int_{E_{n}} (S_{r}(t,x,s), h_{t}^{*}(x)) dx.$$

The last formula proves that $\mathbf{D}_{\mathbf{r}} \ \mathbf{g}_{\mathbf{r}^{||}} \in \mathbf{K}_{\mathbf{r}}$.

Now we already have

$$\frac{d}{dt} H_{t}(h) = \int_{E_{1}} \int_{E_{n}} (S_{r}(t,x,s), h_{t}^{*}(x)) dx dV(s) = H_{t}(h_{t}^{*}),$$

where $\frac{d}{dt} H_t$ is of the class V.

We also have

$$H_{o}(h) = \int_{E_{1}} g(0,s) dV(s),$$

where

$$g_r(0,s) = \int_{E_r} (I_r(x,s), h(x)) dx.$$

Thus the existence of the generalized stochastic solution H_t with the initial condition H_o = H is proved. To prove the uniqueness of H_t , it is sufficient to show that the only solution of (2.1) with the initial condition $H_o(h)$ = H(h) = 0 is $H_t(h)$ = 0 for every h in C_o^{∞} (E_n ,N) and t in (0,T). If H_o = 0, then $E |H_{ro}|^2 = \int_{E_n} |g_{ro}(s)|^2 dF(s) = 0$, and hence $g_{ro}(s) = 0$ on E_1 .

Therefore,

$$g_{ro}(s) = \int_{E_{ro}} (I_{r}(x,s), h(x)) dx = 0,$$

which is true for any arbitrary h in C_0^{∞} (E_n, N), and hence $I_r(x,s) = 0$ on E_{n+1} . Since $\frac{d}{dt}H_t(h) = H_t(h_t^*)$, it follows that

$$E \left| \frac{d}{dt} H_{rt}(h) - H_{rt}(h_t^*) \right|^2 = 0;$$

therefore,

$$\int_{E_{n}} (D_{t}S_{r}(t,x,s) - L S_{r}(t,x,s), h(x)) dx = 0,$$

which implies

$$D_t S_r(t,x,s) = L S_r(t,x,s).$$
 (2.4)

We also have

$$S_r(0,x,s) = 0.$$
 (2.5)

The uniqueness of the problem (2.4), (2.5) gives

$$S_r(t,x,s) = 0,$$
 (2.6)

$$t_{|} \in (0,T), (x,s)_{|} \in E_{n+1}, (r = 1,..., N).$$

Using (2.6), one gets $H_t(h)$ = 0, for every h in C_0^{∞} (E_n,N) and t in (0,T). This completes the proof.

3. A CONVERGENCE THEOREM.

Let $h_m = (h_m, \dots, h_m)$, $m = 1, 2, \dots$ be a sequence in C_0^{∞} (G, N), where G is a bounded open domain of E_n . Suppose that

$$\lim_{m \to \infty} \int (h_{m}(x) - w_{r}(x))^{2} dx = 0,$$
 (3.1)

where $w_r \in L_2(G)$, $r = 1, \ldots$, N and $L_2(G)$ denotes the set of all Lebesgue measurable square integrable functions on G. It is assumed that $w_r(x) = 0$ for $x \in G$ where $r = 1, \ldots$ N.

THEOREM 2: If
$$H_t(h_m) = \int g_m(t,s) dV(s)$$
,

then

1.i.m.
$$H_t(h_m) = \int \eta(t,s) dV(s)$$
,

where $g_m(t,s) = (g_{m_1}(t,s), ..., g_{m_N}(t,s))$,

$$g_{m_r}(t,s) = \int (S_r(t,x,s), h_m(x)) dx, \eta = (\eta_1,..., \eta_N),$$

$$\eta_{r}(t,s) = \int (S_{r}(t,x,s), w(x))dx$$
, and the family $(S_{r}, r = 1, ..., N)$

is defined by (2.3).

PROOF: A straight forward application of the Cauchy - Schwarz inequality establishes that

$$\lim_{m\to\infty} \int_{G} (S_{r}(t,x,s), h_{m}(x)) dx = \int_{G} (S_{r}(t,x,s), w(x)) dx$$
 (3.2)

According to the conditions imposed on the family $(I_r(x,s), r = 1, ..., N)$ and according to the properties of the fundamental matrix Z, we can find a constant A such that

$$\left|g_{m_r}(t,s)\right| \leq A, \tag{3.3}$$

for all m, s, $t_{\parallel} \in (0,T)$ and r = 1, ..., N. For any positive integers ℓ and m, we have

$$E |H_{rt}(h_m) - H_{rt}(h)|^2 = \int |g_{m_r}(t,s) - g_{\ell_r}(t,s)|^2 dF_r(s).$$
 (3.4)

By a standard argument based on (3.2) and (3.3), the righthand side of (3.4) can be shown to go to zero. Thus, $H_t^{(h)}$ is a Cauchy sequence. We deduce also that

$$\lim_{m\to\infty} \left| \left| g_{m}(t,s) - \eta_{r}(t,s) \right|^{2} dF_{r}(s) = 0. \right|$$

The last argument leads to the fact that there exists a stochastic process $R_r(t)$ such that E $\left|R\right|^2<\infty$ and that

$$\lim_{m\to\infty} \mathbb{E} \left| H_{rt} \left(h_m \right) - R_r(t) \right|^2 = 0.$$

Following Doob [3], we find

$$R_{r}(t) = \int \eta_{r}(t,s) dV_{r}(s),$$

$$\eta_{r}(t,s) = \int (S_{r}(t,x,s), w(x))dx.$$

This completes the proof.

COROLLARY: For vector functions (w = w₁, ..., w_N) where w_r \in L₂(Q) and w_r(x) = 0 for x \notin G), there exists a sequence (h_m) in C₀[∞] (E_n, N) such that

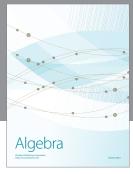
1.i.m.
$$H_O(h_m) = H_O(w)$$
,
 $m \to \infty$

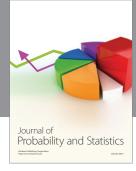
1.i.m.
$$H_t(h_m)=H_t(w)$$
.

The proof can be deduced directly by using theorem 2. (Compare [4]).

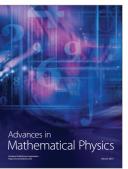
REFERENCES

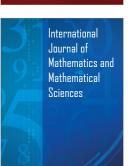
- [1] C.D. Idelman, Parabolic Systems. P. 87, Moscow 1964, (Mir Publishers).
- [2] N.Ya. Vilenkin, I.M. Gelfand, <u>Generalized Functions</u>, Vol. 4, 1964 (Translated).
- [3] J.L. Doob, Stochastic Processes. New York 1953.
- [4] M.M. El-Borai, On Stochastic Differential Equation in a Hilbert Space, Egyptian Statistical Journal Vol. 17, No. 2, 1973.





Submit your manuscripts at http://www.hindawi.com





Journal of Discrete Mathematics

