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The qualitative properties of general nonautonomous n-species Gilpin-Ayala competitive systems
with impulsive effects are studied. Some new criteria on the permanence, extinction, and global
attractivity of partial species are established by using the methods of inequalities estimate and
Liapunov functions.

1. Introduction

In [1], the general nonautonomous n-species Lotka-Volterra competitive systems with impul-
sive effects are investigated. By using the methods of inequalities estimate and constructing
the suitable Liapunov functions, the sufficient conditions on the permanence of whole species
and global attractivity of systems are established.

In [2], the authors studied the following general nonautonomous n-species Lotka-
Volterra competitive systems with impulsive perturbations:

ẋi(t) = xi(t)

⎡
⎣ai(t) −

n∑
j=1

bij(t)xj(t)

⎤
⎦, t /= tk,

xi

(
t+k
)
= hikxi(tk), k = 1, 2, . . . , i = 1, 2, . . . , n,

(1.1)

and got a series of criteria on the extinction of a part of n-species, the permanence of other
part of n-species, and the global attractivity of the systems.
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In [3], a periodic n-species Gilpin-Ayala competition system with impulses is studied
and obtain some useful behaviors of the system.

In this paper, we investigate the general nonautonomous n-species Gilpin-Ayala
competitive systems with impulsive effects.

ẋi(t) = xi(t)

⎡
⎣ai(t) −

n∑
j=1

bij(t)x
θij
j (t)

⎤
⎦, t /= tk,

xi

(
t+k
)
= hikxi(tk), k = 1, 2, . . . , i = 1, 2, . . . , n,

(1.2)

where bi(t) and aij(t) (i, j = 1, 2, . . . , n) are defined on R+ = [0,∞) and are bounded
continuous functions, aij(t) ≥ 0 for all t ∈ R+, θij and hik > 0 are constants for all k = 1, 2, . . .
and i, j = 1, 2, . . . , n.

2. Preliminaries

Firstly, we introduce the following assumption.

Assumption H. There is a positive constant ω such that for each i = 1, 2, . . . , n

lim inf
t→∞

∫ t+ω

t

aii(s)ds > 0, lim inf
t→∞

⎛
⎝
∫ t+ω

t

bi(s)ds +
∑

t�tk�t+μ

lnhik

⎞
⎠ > 0, (2.1)

and functions

hi

(
t, μ
)
=
∑

t�tk�t+μ

lnhik, i = 1, 2, . . . , n (2.2)

are bounded on t ∈ R+ and 0 � μ � ω.

For each i ∈ {1, 2, . . . , n}, we consider the following logistic impulsive equation as the
subsystem of system (1.2)

ẋi(t) = xi(t)
[
bi(t) − aii(t)x

θii
i (t)
]
, t /= tk,

xi

(
t+k
)
= hikxi(tk), k = 1, 2, . . . .

(2.3)

From the above assumption, we have the following results.
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Lemma 2.1. Suppose that assumption H holds. Then we have the following:

(1) There exist positive constantsm and M such that

m � lim inf
t→∞

xi(t) � lim sup
t→∞

xi(t) � M, (2.4)

for any positive solution ui(t) of (2.3).

(2) limt→∞(x
(1)
i (t) − x

(2)
i (t)) = 0 for any two positive solutions x(1)

i (t) and x
(2)
i (t) of (2.3).

Proof. From assumption H, there are positive constants k1, k2, δ and T0 such that for all t � T0
we have

∫ t+ω

t

(bi(s) − aii(s)k1)ds +
∑

t≤tk<t+ω
lnhk < −δ, (2.5)

∫ t+ω

t

(bi(s) − aii(s)k2)ds +
∑

t≤tk<t+ω
lnhk > δ. (2.6)

From the boundedness of function h(t, μ) =
∑

t≤tk<t+μ lnhk, there is a positive constant P such
that for any t ∈ R+ and μ ∈ [0, ω)

∣∣h(t, μ)∣∣ =
∣∣∣∣∣∣
∑

t≤tk<t+μ
lnhk

∣∣∣∣∣∣
< P. (2.7)

Firstly, we prove that there is a constant M > 0 such that

lim sup
t→∞

xi(t) < M, (2.8)

for any positive solution xi(t) of system (2.3). In fact, for any positive solution xi(t) of system
(2.3), we only need to consider the following three cases.

Case I. There is a t0 ≥ T0 such that x(t) ≥ k′
1 =

θii
√
k1 for all t ≥ t0.

Case II. There is a t0 ≥ T0 such that x(t) ≤ k′
1 for all t ≥ t0.

Case III. x(t) is oscillatory about k′
1 for all t ≥ T0.
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We first consider Case I. Since xi(t) ≥ k′
1 for all t ≥ t0, then for t = t0 + lω, where l ≥ 0 is

any positive integer, integrating system (2.3) from t0 to t, from (2.5) we have

xi(t) = xi(t0) exp

(∫ t

t0

(
bi(s) − aii(s)x

θii
i (s)

)
ds +

∑
t0≤tk<t

lnhk

)

≤ xi(t0) exp

⎛
⎝
∫ t0+ω

t0

(bi(s) − aii(s)k1)ds +
∑

t0≤tk<t
lnhk + · · ·

+
∫ t0+lω

t0+(l−1)ω
(bi(s) − aii(s)k1)ds +

∑
t0+(l−1)ω≤tk<t0+lω

lnhk

⎞
⎠

≤ xi(t0) exp(−lδ).

(2.9)

Hence, xi(t) → 0 as l → ∞, which leads a contradiction.
Next, we consider Case III. From the oscillation of xi(t) about k′

1, we can choose two
sequences {ρn} and {ρ∗n} satisfying T0 < ρ1 < ρ∗1 < · · · < ρn < ρ∗n < · · · and limn→∞ρn =
limn→∞ρ∗n = ∞ such that

xi

(
ρn
) ≤ k′

1, xi

(
ρ+n
) ≥ k′

1, xi

(
ρ∗n
) ≥ k′

1, xi

(
ρ∗

+

n

)
≤ k′

1,

xi(t) ≥ k′
1, ∀t ∈ (ρn, ρ∗n

)
,

xi(t) ≤ k′
1, ∀t ∈ (ρ∗n, ρn+1

)
.

(2.10)

For any t ≥ T0, if t ∈ (ρn, ρ∗n] for some integer n, then we can choose integer l ≥ 0 and constant
0 ≤ μ1 < ω such that t = ρn + lω + μ1. Since

ẋi(t) ≤ xi(t)(bi(t) − aii(t)k1), ∀t ∈ (ρn, ρ∗n
)
, t /= tk, (2.11)
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integrating this inequality from ρn to t, by (2.5) and (2.7)we obtain

xi(t) = xi

(
ρn
)
exp

⎛
⎝
∫ t

ρn

(
bi(s) − aii(s)xθii(s)

)
ds +

∑
ρn≤tk<t

lnhk

⎞
⎠

≤ k′
1 exp

⎛
⎝
∫ρn+ω

ρn

(bi(s) − aii(s)k1)ds +
∑

ρn≤tk<ρn+ω
lnhk + · · ·

+
∫ρn+lω+μ1

ρn+lω
(bi(s) − aii(s)k1)ds +

∑
ρn+lω≤tk<ρn+lω+μ1

lnhk

⎞
⎠

≤ k′
1 exp

⎛
⎝−lδ +

∫ρn+lω+μ1

ρn+lω
(bi(s) − aii(s)k1)ds +

∑
ρn+lω≤tk<ρn+lω+μ1

lnhk

⎞
⎠

≤ k′
1 exp(α1ω + P),

(2.12)

where α1 = supt∈R+
{|bi(t)| + aii(t)k1}. If there is an integer n such that t ∈ (ρ∗n, ρn+1], then we

obviously have

xi(t) ≤ k′
1 < k′

1 exp(α1ω + P). (2.13)

Therefore, for Case III we always have

xi(t) ≤ k′
1 exp(α1ω + P), ∀t ≥ T0. (2.14)

Lastly, if Case II holds, then we directly have

xi(t) ≤ k′
1 exp(α1ω + P), ∀t ≥ T0. (2.15)

Choose constant M = k′
1 exp(α1ω + P), then we see that (2.8) holds.

Secondly, a similar argument as in the proof of (2.8) we can prove that there is a
constant m > 0, such that

lim inf
t→∞

x(t) > m, (2.16)

for any positive solution xi(t) of system (2.3). Conclusion (1.1) is proved.
Now, we prove conclusion (1.2). Let x(1)

i (t) and x
(2)
i (t) be any two positive solutions of

system (2.3). From conclusion (1.1), it follows that there are positive constants A and B such
that

A � x
(1)
i (t), x

(2)
i (t) � B, ∀t ≥ 0. (2.17)
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Choose Liapunov function as follows:

V (t) =
∣∣∣lnx(1)

i (t) − lnx(2)
i (t)

∣∣∣. (2.18)

For any k = 1, 2, . . ., we have

V
(
t+k
)
=
∣∣∣ln
(
hkx

(1)
i (tk)

)
− ln
(
hkx

(2)
i (tk)

)∣∣∣ = V (tk). (2.19)

Hence, V (t) is continuous for all t ∈ R+ and from the Mean-Value Theorem we can obtain

1
B

∣∣∣x(1)
i (t) − x

(2)
i (t)

∣∣∣ � V (t) � 1
A

∣∣∣x(1)
i (t) − x

(2)
i (t)

∣∣∣. (2.20)

Calculating the upper right derivative of V (t), then from (2.20)we obtain

D+V = sign
(
x
(1)
i (t) − x

(2)
i (t)

)( ẋ
(1)
i (t)

x
(1)
i (t)

− ẋ
(2)
i (t)

x
(2)
i (t)

)

= − aii(t)
∣∣∣x(1)θii

i (t) − x
(2)θii
i (t)

∣∣∣

≤ − aii(t)[θii]Aθ
ii

∣∣∣x(1)
i (t) − x

(2)
i (t)

∣∣∣

≤ − aii(t)[θii]AθiiV (t), t /= tk, k = 1, 2, . . . ,

(2.21)

where [θii] ≤ θii is the integer part of θii.
From this, we further have for any t > 0

V (t) � V (0) exp

(
−[θii]Aθii

∫ t

0
aii(s)ds

)
. (2.22)

From condition (2.5) we can obtain
∫ t
0 aii(t)dt → ∞ as t → ∞. Hence, V (t) → 0 as t → ∞.

Further from (2.20)we finally obtain limt→∞(x
(1)
i (t)−x

(2)
i (t)) = 0. Conclusion (1.2) is proved.

This completes the proof of Lemma 2.1.

Applying Lemma 2.1 and the comparison theorem of impulsive differential equations,
we easily prove the following result.

Lemma 2.2. Suppose that assumption H holds then there is a constant B > 0 such that

lim sup
t→∞

xi(t) ≤ B, i = 1, 2, . . . , n, (2.23)

for any positive solution x(t) = (x1(t), x2(t), . . . , xn(t)) of system (1.2).
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3. Extinction

On the partial extinction of system (1.2), we have the following result.

Theorem 3.1. Suppose that assumption H holds. Let r be a given integer and 1 ≤ r < n. If for any
l > r there is a il < l such that for any j ≤ l

θilj = θlj , (3.1)

lim sup
t→∞

∫ t+ω
t bl(s)ds +

∑
t�tk<t+ω lnhlk∫ t+ω

t bil(s)ds +
∑

t�tk<t+ω lnhilk

< lim inf
t→∞

alj(t)
ailj(t)

, ∀j ≤ l, (3.2)

or

lim inf
t→∞

∫ t+ω
t bil(s)ds +

∑
t�tk<t+ω lnhilk∫ t+ω

t bl(s)ds +
∑

t�tk<t+ω lnhlk

> lim sup
t→∞

ailj(t)
alj(t)

, ∀j ≤ l, (3.3)

then species xi (i = r + 1, r + 2, . . . , n) are extinction, that is, for any positive solution x(t) =
(x1(t), x2(t), . . . , xn(t)) of system (1.2),

lim
t→∞

xi(t) = 0, i = r + 1, r + 2, . . . , n. (3.4)

Proof. Firstly, from assumption H, that (2.7) still holds and there are constants η0 > 0 and
T0 > 0 such that

∫ t+ω

t

bi(s)ds +
∑

t�tk<t+ω

lnhik ≥ η0, (3.5)

for all t ≥ T0 and i = 1, 2, . . . , n.
We first prove xn(t) → 0 as t → ∞. Without loss of generality, we assume that

condition (3.2) holds. When condition (3.3) holds, a similar argument can be given. Since

lim sup
t→∞

∫ t+ω
t bn(s)ds +

∑
t�tk<t+ω lnhnk∫ t+ω

t bp(s)ds +
∑

t�tk<t+ω lnhpk

< lim inf
t→∞

anj(t)
apj(t)

, j = 1, 2, . . . , n, (3.6)

where p = in. Hence, we can choose positive constants α, β, ε and Tn ≥ T0 such that

∫ t+ω
t bn(s)ds +

∑
t�tk<t+ω lnhnk∫ t+ω

t bp(s)ds +
∑

t�tk<t+ω lnhpk

<
α

β
− ε <

α

β
<

anj(t)
apj(t)

, (3.7)
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for all t ≥ Tn and j = 1, 2, . . . , n. Hence, from (3.5) we further obtain

∫ t+ω

t

(−αbp(s) + βbn(s)
)
ds + β

∑
t≤tk<t+ω

lnhnk − α
∑

t≤tk<t+ω
lnhpk

< −βε
(∫ t+ω

t

bp(s)ds +
∑

t≤tk<t+ω
lnhpk

)

≤ −βεη0,

(3.8)

αapj(t) − βanj(t) = βapj

[
α

β
− anj(t)
apj(t)

]
< 0, (3.9)

for all t ≥ Tn and j = 1, 2, . . . , n.
Consider the Liapunov function as follows:

Vn(t) =
(
xp(t)

)−α(xn(t))β. (3.10)

Calculating the derivative, and from (3.1), we can obtain for any t ≥ 0

dVn(t)
dt

= Vn(t)

⎡
⎣−α
⎛
⎝bp(t) −

n∑
j=1

apj(t)x
θpj
j (t)

⎞
⎠ + β

⎛
⎝bn(t) −

n∑
j=1

anj(t)x
θnj
j (t)

⎞
⎠
⎤
⎦

= Vn(t)

⎡
⎣−αbp(t) + βbn(t) +

n∑
j=1

(
αapj(t) − βanj(t)

)
x
θpj
j (t)

⎤
⎦,

(3.11)

for all t /= tk and

Vn

(
t+k
)
= h−α

pkh
β

nkVn(tk), (3.12)

for all k = 1, 2, . . .. From (3.9), we further have

dVn(t)
dt

≤ Vn(t)
(−αbp(t) + βbn(t)

)
, t ≥ Tn, t /= tk,

Vn

(
t+k
)
= h−α

pkh
β

nkVn(tk), k = 1, 2, . . . .

(3.13)
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For any t > Tn, there is an integer qt ≥ 0 such that t ∈ [Tn + qtω, Tn + (qt + 1)ω]. Hence, by
integrating (3.13) from Tn to t, we obtain

Vn(t) ≤ Vn(Tn) exp

(∫ t

Tn

[−αbp(s) + βbn(s)
]
ds +

∑
Tn≤tk<t

ln
(
h−α
pkh

β

nk

))

= Vn(Tn) exp

⎧
⎨
⎩
∫Tn+ω

Tn

[−αbp(s) + βbn(s)
]
ds

+
∑

Tn≤tk<Tn+ω
ln
(
h−α
pkh

β

nk

)
+ · · · +

∫ t

Tn+qtω

[−αbp(s) + βbn(s)
]
ds

+
∑

Tn+qtω≤tk<t
ln
(
h−α
pkh

β

nk

)
⎫
⎬
⎭

≤ Mn exp
(−εβη0qt

)
,

(3.14)

where

Mn = Vn(Tn) exp

(
ω sup

t≥0

{
α
∣∣bp(t)

∣∣ + β|bn(t)|
}
+
(
α + β

)
P

)
. (3.15)

Since qt → ∞ as t → ∞, it follows that from (3.14)

Vn(t) −→ 0 as t −→ ∞. (3.16)

Since

(xn(t))β = Vn(t)
(
xp(t)

)α
,

(hnkxn(tk))
β = hα

pkxp(tk)h−α
pkh

β

nkVn(tk),
(3.17)

by the boundedness of x(t) on [0,∞) (see Lemma 2.2), we have

xn(t) −→ 0 as t −→ ∞. (3.18)
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For any integer l > r, assume that we have obtained xi(t) → 0 as t → ∞ for all i > l.
Now, we prove that xl(t) → 0 as t → ∞. Suppose that condition (3.3) holds. When condition
(3.2) holds, the argument is similar. Let i = il, by (3.1), we have θilj = θlj , then for j ≤ l, we
have θij = θlj . Then we can choose positive constants λ, η, δ and Tl ≥ T0 such that

∫ t+ω
t bq(s)ds +

∑
t�tk<t+ω lnhqk∫ t+ω

t bl(s)ds +
∑

t�tk<t+ω lnhlk

>
λ

η
+ δ >

λ

η
>

aqj(t)
alj(t)

, (3.19)

for all t ≥ Tl, and j = 1, 2, . . . , l, where q = il.
Consider the Liapunov function as follows:

Vl(t) =
(
xq(t)

)−η(xl(t))λ. (3.20)

By calculating, we obtain for any t ≥ 0

dVl(t)
dt

= Vl(t)

⎡
⎣−ηbq(t) + λbl(t) +

l∑
j=1

(
ηaqj(t) − λalj(t)

)
x
θlj
j (t)

+
n∑

j=l+1

ηaqj(t)x
θqj
j (t) −

n∑
j=l+1

λalj(t)x
θlj
j (t)

⎤
⎦,

(3.21)

for all t /= tk and

Vl

(
t+k
)
= h

−η
qk
hλ
lkVl(tk), (3.22)

for all k = 1, 2, . . .. From (3.3) and (3.19), we have

∫ t+ω

t

(−ηbq(s) + λbl(s)
)
ds + λ

∑
t≤tk<t+ω

lnhlk − η
∑

t≤tk<t+ω
lnhqk

< −ηδ
(∫ t+ω

t

bl(s)ds +
∑

t≤tk<t+ω
lnhlk

)

≤ −δηη0,

(3.23)

ηaqj(t) − λalj(t) < 0, (3.24)
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for all t ≥ Tl and j = 1, 2, . . . , l. Hence, from (3.21), it follows that

dVl(t)
dt

≤ Vl(t)

[
−ηbq(t) + λbl(t) +

l∑
j=1

(
ηaqj(t) − λalj(t)

)
x
θlj
j (t)

+
n∑

j=l+1
ηaqj(t)x

θqj
j (t) −

n∑
j=l+1

λalj(t)x
θlj
j (t)

]
, t ≥ Tl, t /= tk,

Vn

(
t+k
)
= h−α

pkh
β

nk
Vn(tk), k = 1, 2, . . . .

(3.25)

Since xi(t) → 0 as t → ∞ for all i > l, by the boundedness of aij(t) (i, j = 1, 2, . . . , n)
on [0,∞), we obtain

lim
t→∞

∫ t+ω

t

n∑
j=l+1

(
ηaqj(s)x

θqj
j (s) − λalj(s)

)
x
θlj
j (s)ds = 0. (3.26)

Hence, for any small ε > 0, there is a T ′
l
> 0, such that

∫ t+ω

t

n∑
j=l+1

(
ηaqj(s)x

θqj
j (s) − λalj(s)

)
x
θlj
j (s)ds < ε, t > T ′

l . (3.27)

Combining (3.23), it follows that there is enough large T ∗
l
> max{Tl, T ′

l
} such that for

all t ≥ T ∗
l ,

∫ t+ω
t

[
−ηbq(s) + λbl(s) +

n∑
j=l+1

(
ηaqj(s)x

θqj
j (s) −

n∑
j=l+1

λalj(s)

)
x
θlj
j (s)

]
ds

−η ∑
t≤tk<t+ω

lnhqk + λ
∑

t≤tk<t+ω
lnhlk ≤ −1

2
δηη0,

xi(t) ≤ δ ∀i > l.

(3.28)
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For any t > T ∗
l , we firstly choose an integer qt ≥ 0 such that t ∈ (T ∗

l + qtω, T ∗
l + (qt + 1)ω].

Integrating (3.25) from T ∗
l
to t, then from (3.3) and (3.28), we have

Vl(t) ≤ Vl

(
T ∗
l

)
exp

⎧
⎨
⎩
∫ t

T∗
l

⎡
⎣−ηbq(s) + λbl(s) +

n∑
j=l+1

⎛
⎝ηaqj(s)x

θqj
j (s) −

n∑
j=l+1

λalj(s)

⎞
⎠x

θlj
j (s)

⎤
⎦ds

+
∑

T∗
l
≤tk<t

ln
(
h
−η
qk
hλ
lk

)
⎫
⎬
⎭

= Vl

(
T ∗
l

)
exp

⎧
⎨
⎩

⎛
⎝
∫T∗

l
+ω

T∗
l

⎡
⎣−ηbq(s) + λbl(s) +

n∑
j=l+1

ηaqj(s)x
θqj
j (s) −

n∑
j=l+1

λalj(s)x
θlj
j (s)

⎤
⎦ds

+
∑

T∗
l
≤tk<T∗

l
+ω

ln
(
h
−η
qkh

λ
lk

)
⎞
⎠ + · · ·

+

⎛
⎝
∫T∗

l
+qtω

T∗
l
+(qt−1)ω

⎡
⎣−ηbq(s) + λbl(s) +

n∑
j=l+1

ηaqj(s)x
θqj
j (s)

−
n∑

j=l+1

λalj(s)x
θlj
j (s)

⎤
⎦ds+

∑
T∗
l
+(qt−1)ω≤tk<T∗

l
+qtω

ln
(
h
−η
qk
hλ
lk

)
⎞
⎠

+

⎛
⎝
∫ t

T∗
l
+qtω

⎡
⎣−ηbq(s) + λbl(s) +

n∑
j=l+1

ηaqj(s)x
θqj
j (s)

−
n∑

j=l+1

λalj(s)x
θlj
j (s)

⎤
⎦ds +

∑
T∗
l
+qtω≤tk<t

ln
(
h
−η
qkh

λ
lk

)
⎞
⎠
⎫
⎬
⎭

≤ Ml exp
(
−1
2
δηη0qt

)
,

(3.29)

where

Ml = Vl

(
T ∗
l

)
exp

⎧
⎨
⎩

⎛
⎝ωsup

t≥0

⎧
⎨
⎩η
∣∣bq(t)

∣∣ + λ|bl(t)| +
n∑

j=l+1

(
ηaqj(t) + λalj(t)

)
δθlj

⎫
⎬
⎭ +

(
λ + η

)
P

⎞
⎠
⎫
⎬
⎭,

(3.30)

Since qt → ∞ as t → ∞, we obtain from (3.29)

Vl(t) −→ 0 as t −→ ∞, (3.31)
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Since

(xl(t))η = Vl(t)
(
xq(t)

)λ
,

(hlkxl(tk))
η = h

η

lk
h−λ
qkVl(tk)

(
hqkxq(tk)

)λ
,

(3.32)

by the boundedness of x(t) on [0,∞), it follows that

xl(t) −→ 0 as t −→ ∞. (3.33)

Finally, by the induction principle, we obtain that xi(t) → 0 as t → ∞ for all i > r. This
completes the proof of Theorem 3.1.

4. Permanence

In this section, we study the permanence of partial species xi(t) (i = 1, 2, . . . , r) of system
(1.2). We state and prove the following result.

Theorem 4.1. Suppose that all the conditions of Theorem 3.1 hold. If for each i = 1, 2, . . . , r

lim inf
t→∞

⎛
⎝
∫ t+ω

t

⎡
⎣bi(s) −

r∑
j /= i

aij(s)u
θij
j0 (t)

⎤
⎦ds +

∑
t≤tk<t+ω

lnhik

⎞
⎠ > 0, (4.1)

where ui0 is some fixed positive solution of (2.3), then species xi (i = 1, 2, . . . , r) are permanent,
that is, there are positive constants m and M such that for any positive solution x(t) =
(x1(t), x2(t), . . . , xn(t)) of system (1.2)

m ≤ lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) ≤ M, i = 1, 2, . . . , r. (4.2)
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Proof. From (4.1) and the boundedness of functions aij(t) (i, j = 1, 2, . . . , n) on R+, there are
constants ε0 > 0 and T1 > 0 such that for any t ≥ T1 and i = 1, 2, . . . , r.

∫ t+ω

t

⎡
⎣bi(s) −

n∑
j=1

aij(s)ε0 −
r∑

j /= i

aij(s)u
θij
j0 (s)

⎤
⎦ds +

∑
t≤tk<t+ω

lnhik > ε0. (4.3)

For any i ≤ r, from system (1.2), we have

dxi(t)
dt

≤ xi(t)

⎡
⎣bi(t) −

n∑
j=1

aij(t)x
θij
j (t)

⎤
⎦,

≤ xi(t)
[
ai(t) − bii(t)x

θii
i (t)
]
, t /= tk, t ≥ 0,

xi

(
t+k
)
= hikxi(tk), k = 1, 2, . . . ,

(4.4)

we have

xi(t) ≤ ui(t) ∀t ≥ 0, (4.5)

where ui(t) is the solution of (2.3) with initial condition ui(0) ≥ xi(0). From Lemma 2.1 and
Theorem 3.1, for the above constant ε0 there is a T2 ≥ T1 such that for all t ≥ T2

xi(t) ≤ ui(t) ≤ ui0(t) + ε0, i = 1, 2, . . . , r, (4.6)

xi(t) < ε0, i = r + 1, r + 2, · · · , n. (4.7)

Let

γi = sup
t≥0

⎧
⎨
⎩|bi(t)| +

n∑
j=1

aij(t)ε0 +
r∑

j /= i

aij(t)u
θij
j0 (t)

⎫
⎬
⎭,

m = min
1≤i≤r
{
ε0 exp

(−γiω − P
)}
,

(4.8)

where constant P > 0 is given in (2.7). Obviously,m > 0 andm is independent of any positive
solution of system (1.2).

Now, we prove that there is a T3 ≥ T2 such that

xi(t) ≥ m ∀t ≥ T3, i = 1, 2, . . . , r. (4.9)
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We only need to consider the following three cases for each i = 1, 2, . . . , r.

Case I. There is a t1 ≥ T2 such that xi(t) ≤ ε′0 = θii
√
ε0 for all t ≥ t1.

Case II. There is a t2 ≥ T2 such that xi(t) ≥ ε′0 for all t ≥ t2.

Case III. xi(t) oscillates about ε′0 for all t ≥ T2.

For Case I, let t = t1 + lω, where l ≥ 0 is any integer. From (4.3)–(4.7)we obtain

xi(t) = xi(t1) exp

⎛
⎝
∫ t

t1

⎛
⎝bi(s) − aii(s)x

θii
i (s) −

n∑
j /= i

aij(s)x
θij
j (s)

⎞
⎠ds +

∑
t1≤tk<t

lnhik

⎞
⎠

≥ xi(t1) exp

⎛
⎝
∫ t1+ω

t1

⎛
⎝bi(s) −

n∑
j=1

aij(s)ε0 −
r∑

j /= i

aij(s)u
θij
j0 (s)

⎞
⎠ds

+
∑

t1≤tk<t1+ω
lnhik + · · · +

∫ t1+lω

t1+(l−1)ω

⎛
⎝bi(s) −

n∑
j=1

aij(s)ε0 −
r∑

j /= i

aij(s)u
θij
j0 (s)

⎞
⎠ds

+
∑

t1+(l−1)ω≤tk<t1+lω
lnhik

⎞
⎠

≥ xi(t1) exp(lε0).
(4.10)

Therefore, xi(t) → ∞ as l → ∞which leads to a contradiction.
For Case III, we choose two sequences {ρn} and {ρ∗n} satisfying T2 ≤ ρ1 < ρ∗1 < · · · <

ρn < ρ∗n < · · · and limn→∞ρn = limn→∞ρ∗n = ∞ such that

xi

(
ρn
) ≥ ε′0, xi

(
ρ+n
) ≤ ε′0, xi

(
ρ∗n
) ≤ ε′0, xi

(
ρ∗

+

n

)
≥ ε′0,

xi(t) ≤ ε′0 ∀t ∈ (ρn, ρ∗n
)
,

xi(t) ≥ ε′0 ∀t ∈ (ρ∗n, ρn+1
)
.

(4.11)

For any t ≥ T2, if t ∈ (ρn, ρ∗n] for some integer n, then we can choose an integer l ≥ 0 such that
t = ρn + lω + νi, where νi ∈ [0, ω) is a constant. Since for any t ∈ (ρn, ρ∗n) from (4.6) and (4.7)
we have

ẋi(t) ≥ xi(t)

⎛
⎝bi(t) −

n∑
j=1

aij(t)ε0 −
r∑

j /= i

bij(t)u
θij
j0 (t)

⎞
⎠, t /= tk. (4.12)
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Integrating this inequality from ρn to t, then from (4.7) and (3.28)-(3.29) we have

xi(t) ≥ x
(
ρn
)
exp

⎛
⎝
∫ t

ρn

⎛
⎝bi(s) −

n∑
j=1

aij(s)ε0 −
r∑

j /= i

aij(s)u
θij
j0 (s)

⎞
⎠ds +

∑
ρn≤tk<t

lnhik

⎞
⎠

≥ ε0 exp

⎛
⎝
∫ρn+ω

ρn

⎛
⎝bi(s) −

n∑
j=1

aij(s)ε0 −
r∑

j /= i

aij(s)u
θij
j0 (s)

⎞
⎠ds

+
∑

ρn≤tk<ρn+ω
lnhik + · · · +

∫ρn+lω

ρn+(l−1)ω

⎛
⎝bi(s) −

n∑
j=1

aij(s)ε0 −
r∑

j /= i

aij(s)u
θij
j0 (s)

⎞
⎠ds

+
∑

ρn+(l−1)ω≤tk<ρn+lω
lnhik

⎞
⎠

+
∫ρn+lω+νi

ρn+lω

⎛
⎝bi(s) −

n∑
j=1

aij(s)ε0 −
r∑

j /= i

aij(s)u
θij
j0 (s)

⎞
⎠ds +

∑
ρn+lω≤tk<ρn+lω+νi

lnhik

≥ ε0 exp
(−γiω − P

)
.

(4.13)

If there exists an integer n such that t ∈ (ρ∗n, ρn+1], then we obviously have

xi(t) ≥ ε0 > ε0 exp
(−γiω − P

)
. (4.14)

This shows that for Case III we always have

xi(t) ≥ ε0 exp
(−γiω − P

)
, ∀t ≥ T2. (4.15)

Finally, if Case II holds, then from xi(t) ≥ ε′0 for all t ≥ t1, we can directly obtain that
(4.9) holds.

Therefore, from Lemma 2.2 and (4.9), it follows that species xi(t) (i = 1, 2, . . . , r) are
permanent. This proof of Theorem 4.1 is completed.

5. Global Attractivity

In this section, we further discuss the global attractivity of species xi(t) (i ≤ r). In order to
obtain our results, we first consider the following subsystemwhich is composed of the species
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xi(t) (i ≤ r) of system (1.2) and for convenience of statement we use the variable ui(t) (i ≤ r)
to denote the species of this subsystem,

dui(t)
dt

= ui(t)

⎡
⎣bi(t) −

r∑
j=1

aij(t)u
θij
j (t)

⎤
⎦, t /= tk,

ui

(
t+k
)
= hikui(tk), i = 1, 2, . . . , r, k = 1, 2, . . . .

(5.1)

We need the following lemma.

Lemma 5.1. Suppose that assumption H and condition (4.1) of Theorem 4.1 hold. Then subsystem
(5.1) is permanent.

Lemma 5.1 can be proved by using the same method given in the proof of Theorem 4.1. We now
state and prove the main result of this section.

Theorem 5.2. Suppose that all conditions of Theorem 3.1 and Theorem 4.1 hold. If there are positive
constants ρ, D and di (i = 1, 2, . . . , r) and nonnegative integrable function μ(t) defined on R+,
satisfying

∫ t
s μ(τ)dτ ≥ −D + ρ(t − s) for all t ≥ s ≥ 0, such that

diaii(t) −
r∑

j /= i

djaji(t) ≥ μ(t), i = 1, 2, . . . , r, (5.2)

for all t ≥ 0, then for any positive solution x(t) = (x1(t), x2(t), . . . , xn(t)) of system (1.2) and any
positive solution u(t) = (u1(t), u2(t), . . . , ur(t)) of subsystem (5.1)

lim
t→∞

(xi(t) − ui(t)) = 0, i = 1, 2, . . . , r. (5.3)

Proof. Let x(t) = (x1(t), x2(t), . . . , xn(t)) be a positive solution of system (1.2) and u(t) =
(u1(t), u2(t), . . . , ur(t)) be a positive solution of subsystem (5.1). By Theorem 3.1, we have
xi(t) → 0 as t → ∞ for all i > r. From Theorem 4.1 and Lemma 5.1, there are positive
constants m and M such that

m ≤ xi(t), ui(t) ≤ M, i = 1, 2, . . . , r, (5.4)

for all t ≥ 0. Choose the Liapunov function as follows:

Vr(t) =
r∑
i=1

di|lnxi(t) − lnui(t)|. (5.5)
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Since

Vr

(
t+k
)
=

r∑
i=1

di

∣∣lnxi

(
t+k
) − lnui

(
t+k
)∣∣

=
r∑
i=1

di|lnhikxi(tk) − lnhikui(tk)|

= Vr(tk),

(5.6)

then V (t) is continuous for all t ≥ 0. Calculating the upper right derivative of Vr(t), we have

D+Vr(t) ≤
r∑
i=1

di

⎛
⎝−aii

∣∣∣xθii
i (t) − uθii

i (t)
∣∣∣ +

r∑
j /= i

aij(t)
∣∣∣xθij

j (t) − u
θij
j (t)

∣∣∣
⎞
⎠ + g(t)

= −
r∑
i=1

⎛
⎝diaii −

r∑
j /= i

djaji(t)

⎞
⎠
∣∣∣xθji

i (t) − u
θji
i (t)

∣∣∣ + g(t),

(5.7)

for all t ≥ 0, where

g(t) =
r∑
i=1

di

n∑
j=r+1

aji(t)x
θji
j (t). (5.8)

By (5.2), we have

D+Vr(t) ≤ −μ(t)
r∑
i=1

∣∣∣xθji
i (t) − u

θji
i (t)

∣∣∣ + g(t), ∀t ≥ 0. (5.9)

By (5.4), we further obtain

D+Vr(t) ≤ −λμ(t)Vr(t) + g(t), ∀t ≥ 0, (5.10)

where λ = min1≤i≤rd−1
i m > 0. Applying the comparison theorem and the variation of constants

formula of first-order linear differential equation, we have

Vr(t) ≤ e−
∫ t
0 λμ(s)ds

(∫ t

0
g(s)e

∫s
0 λμ(τ)dτds + Vr(0)

)
, (5.11)

for all t ≥ 0. Since g(t) → 0 as t → ∞, from the properties of function μ(t) and (5.11), it is
not hard to obtain Vr(t) → 0 as t → ∞. That shows

lim
t→∞

(xi(t) − ui(t)) = 0, i = 1, 2, . . . , r. (5.12)

This completes the proof of Theorem 5.2.
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