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The qualitative properties of general nonautonomous n-species Gilpin-Ayala competitive systems
with impulsive effects are studied. Some new criteria on the permanence, extinction, and global
attractivity of partial species are established by using the methods of inequalities estimate and
Liapunov functions.

1. Introduction

In [1], the general nonautonomous n-species Lotka-Volterra competitive systems with impul-
sive effects are investigated. By using the methods of inequalities estimate and constructing
the suitable Liapunov functions, the sufficient conditions on the permanence of whole species
and global attractivity of systems are established.

In [2], the authors studied the following general nonautonomous n-species Lotka-
Volterra competitive systems with impulsive perturbations:

xi(t) = xi(t) | ai(t) = > bij()x;(t) |, t#tx,
2,007 ‘ (1.1)

xl(t ) higxi(ty), k=1,2,...,i=1,2,...,n,

and got a series of criteria on the extinction of a part of n-species, the permanence of other
part of n-species, and the global attractivity of the systems.
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In [3], a periodic n-species Gilpin-Ayala competition system with impulses is studied
and obtain some useful behaviors of the system.

In this paper, we investigate the general nonautonomous n-species Gilpin-Ayala
competitive systems with impulsive effects.

(b = xi(t) [ai(t) - ibij(t)xf"’(t)] Y (1.2)

j=1

xi(t;)=hikxi(tk), k=12,...,i=1,2,...,n,

where b;(t) and a;j(t) (i,j = 1,2,...,n) are defined on R, = [0,00) and are bounded
continuous functions, a;j(t) > 0 for all t € R,, 0;; and hjx > 0 are constants for all k = 1,2,...
andi,j=1,2,...,n

2. Preliminaries
Firstly, we introduce the following assumption.

Assumption H. There is a positive constant w such that foreachi=1,2,...,n

tw tw
lim infj aii(s)ds >0, li¥n inf <I bi(s)ds + Z In hik> >0, (2.1)
t -

oo t t<be<t+p

and functions

hi(t,p)= >, Inhyg, i=12,...,n (22)

Fhe<tp

are bounded ont € Ry and 0 < pu < w.

Foreachi € {1,2,...,n}, we consider the following logistic impulsive equation as the
subsystem of system (1.2)

55 (1) = xi(B[bi() - @ (1)), Ak
xi(tZ) =hyxi(te), k=1,2,....

(2.3)

From the above assumption, we have the following results.
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Lemma 2.1. Suppose that assumption H holds. Then we have the following:

(1) There exist positive constants m and M such that

m < litm infx;(t) < limsup x;(t) < M, (2.4)

t— oo

for any positive solution u;(t) of (2.3).

(2) limt_mo(xfl) (t) - xl.(z)(t)) = 0 for any two positive solutions xi(l) (t) and xl@ () of (2.3).

Proof. From assumption H, there are positive constants ki, k», 6 and Ty such that for all t > Ty
we have

t+w
[t -k 3 mh<-s, 25)
t <ty <t+w

t+w

f (bi(s) - ai(s)ka)ds + >, Inhg>6. (2.6)
t t<ti<t+w

From the boundedness of function h(f, 1) = 34}, <14 In hi, there is a positive constant P such
that for any t € R, and p € [0, w)

Z In hy

t<ty<t+p

|h(t, 1)| = <P 2.7)

Firstly, we prove that there is a constant M > 0 such that

limsup x;(t) < M, (2.8)

t— oo

for any positive solution x;(t) of system (2.3). In fact, for any positive solution x;(t) of system
(2.3), we only need to consider the following three cases.

Case I. There is a tg > Ty such that x(t) > k| = %/k; for all t > t,.
Case II. There is a ty > Ty such that x(t) < k] for all t > t,.

Case I11. x(t) is oscillatory about k; for all t > Tj.
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We first consider Case . Since x;(t) > k; for all t > t;, then for t = ¢y + Iw, where [ > 0 is
any positive integer, integrating system (2.3) from f; to t, from (2.5) we have

xi<t>=xl-(to>exp< [ (- ot @)as+ 3 lnhk>

to to<tp<t

to+w
< xi(to) exp f (bi(s) — aii(s)k1)ds + Z Inhg+---
to to<tr<t (2 9)

t0+lw
+ f (bi(s) — aii(s)ki)ds + > In hy
to+(I-1)w to+(1-1)w<te<to+lw

< x;(to) exp(-16).

Hence, x;(t) — 0asl — oo, which leads a contradiction.

Next, we consider Case III. From the oscillation of x;(t) about kj, we can choose two
sequences {p,} and {p;} satisfying To < p1 < p] < --- < py < py < --- and lim,, ., ,p, =
lim,, _, o p}, = oo such that

xi(pn) Sk, xpr) 2k, x(en) 2k, x(py) <K,
xi(t) 2 ki, Ve (pup}), (2.10)

xi(t) < k’1; vt e (p:;rpnﬂ)-

Forany t > Ty, if t € (py, p;;] for some integer n, then we can choose integer [ > 0 and constant
0 < 1 <w such that t = p,, + lw + py. Since

xi(t) < xi(t) (bi(t) — aii(t)kr), Vte (pn,py), t#tk, (2.11)
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integrating this inequality from p, to t, by (2.5) and (2.7) we obtain

x;i(t) = xi(pn) exp <Jt <b,~(s) — a;i(s)x% (s))ds + Z In hk>

Pn<ti<t

Pntw
Skhmp(J. (bi(s) - ai(s)k)ds + >, Inhg+---

Prn<tk<pntw

nHlw+i
+ J‘p ' (bi(s) — aii(s)ki1)ds + >, In hk> (2.12)

Pntlw PrHlw<t<pu+lw+p

PnHlw+pn
< kjexp <—l6 + j (bi(s) — aji(s)k1)ds + Z In hk>

pntlw PrtHlwst<py+lw+p

< kjexp(mw + P),

where a1 = sup, . {[bi(t)| + aii(t)k: }. If there is an integer n such that t € (p};, pn+1], then we
obviously have

xi(t) < ky < kj exp(aiw + P). (2.13)
Therefore, for Case III we always have

xi(t) < kyexp(aiw + P), Vt>T,. (2.14)

Lastly, if Case II holds, then we directly have

xi(t) < kyexp(aiw + P), Vt>T,. (2.15)

Choose constant M = k] exp(a1w + P), then we see that (2.8) holds.
Secondly, a similar argument as in the proof of (2.8) we can prove that there is a
constant m > 0, such that

litm infx(t) > m, (2.16)

for any positive solution x;(t) of system (2.3). Conclusion (1.1) is proved.

Now, we prove conclusion (1.2). Let xi(l) (t) and xi(z) (t) be any two positive solutions of
system (2.3). From conclusion (1.1), it follows that there are positive constants A and B such
that

A<V, Pw)y<B, vixo0. (2.17)
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Choose Liapunov function as follows:
V() = |1r1 x () - nx® (1) | (2.18)
Forany k =1,2,..., we have
V(t) = |1n(hkx§”(tk)) - 1n(hkx§2>(tk))| = V(t). (2.19)
Hence, V (t) is continuous for all t € R, and from the Mean-Value Theorem we can obtain
%|x§1)(t) —x® (t)| <V < %|xi(1)(t) - xl@(t)|. (2.20)

Calculating the upper right derivative of V (t), then from (2.20) we obtain

D (t) ) 2 (t)>

D'V = sign<xi(1)(t) - x?z’(ﬂ) (x(l)(t) x@ (t)

= — a1 - )] 2.21)
< - ai(t)[01 AV () - x (1)
< —ag(t)[0a] A%V (H), t#t, k=1,2,...,

where [6;;] < 0;; is the integer part of 0;;.
From this, we further have for any ¢ > 0

V(t) < V(0) exp <—[6ii]A9“ J't ai,-(s)ds>. (2.22)
0

From condition (2.5) we can obtain J’é a;i(t)dt — oo ast — oo. Hence, V() — Oast — oo.

Further from (2.20) we finally obtain limHoo(xi(l) (t) - xfz) (t)) = 0. Conclusion (1.2) is proved.
This completes the proof of Lemma 2.1. O

Applying Lemma 2.1 and the comparison theorem of impulsive differential equations,
we easily prove the following result.

Lemma 2.2. Suppose that assumption H holds then there is a constant B > 0 such that

limsupx;(t) <B, i=12,...,n, (2.23)

t— oo

for any positive solution x(t) = (x1(t), x2(t), ..., xn(t)) of system (1.2).
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3. Extinction
On the partial extinction of system (1.2), we have the following result.

Theorem 3.1. Suppose that assumption H holds. Let r be a given integer and 1 < r < n. If for any
1> r there is a iy < | such that for any j <1

i = 01, (3.1)
t+w

bi(s)ds + wInh ai(t
lim sup {t+w ) St i minfﬂ, Vi<, (3.2)

too [ by (8)ds + Dcp i by % (D)

or

Ji Bis)ds + Sycpcrrao In ik i (1)
lim inf=—— ~= >limsup——, Vj<|, (3.3)

= [ bi(s)ds + Xichcrie IN Bk t—o aj(t)

then species x; (i = r + 1, + 2,...,n) are extinction, that is, for any positive solution x(t) =
(x1(t), x2(t), ..., x4 () of system (1.2),

tlimxl-(t)=0, i=r+1,r+2,...,n. (3.4)

Proof. Firstly, from assumption H, that (2.7) still holds and there are constants 7o > 0 and
Ty > 0 such that

tw
f bi(s)ds+ D Inhy >, (3.5)
t

1<tk <t+w

forallt>Tyandi=1,2,...,n.
We first prove x,(f) — 0 ast — oo. Without loss of generality, we assume that
condition (3.2) holds. When condition (3.3) holds, a similar argument can be given. Since

. tt+w bn(s)ds + Ztgtk<t+w In h‘ﬂk . . a"f (t)
lim sup < liminf

- D i21,2,.m, (3.6)
=0 tt+ bP(S)dS+Zt<tk<t+wlnhpk f=o0 apj(t)

where p = i,,. Hence, we can choose positive constants a, §, € and T,, > Ty such that

tt+w bu(s)ds + Ztgtk<t+w In Ay

[} bp()ds + Sy ctreo I i

a a  anj(t)
<—-—£<— < ——+
p

B =yt

(37)
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forallt>T,and j =1,2,...,n. Hence, from (3.5) we further obtain

ft+w(_“bp(5) + Pbn(s))ds + f Z Inhy —a Z In By

t<ti<t+w t<tp<t+w
t+w
< —pe <f by(s)ds+ 3 In h,,k> (3.8)
t <ty <t+w
< —peno,
nj t
aay;(t) — Pay;(t) = Pay; [% - Z#Ef;:l <0, (3.9)

forallt>T,andj=1,2,...,n.
Consider the Liapunov function as follows:

Va(t) = (2, () (xu (b))’ (3.10)

Calculating the derivative, and from (3.1), we can obtain for any ¢ > 0

d‘gltt(t) = Valt) | -2 <br’(t) = Day(t)x]” (t)> +p <bn(t) - > a(t)x)” (t))]
[ j=1 =1

- (3.11)
= Valt) [~y (6) + Bon0) + 3 (@ 1) ~ Bany ()" m]’
s j=1
for all t #t, and
Va(te) = h;ZhﬁkVn(tk), (3.12)

forallk =1,2,.... From (3.9), we further have

Dol) < Vt) (-aby(0) + pou(t)), 2T 11,

dt = (3.13)
Va(t) = ot Vi), k=1,2,....
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For any t > T,, there is an integer gq; > 0 such that ¢t € [T, + q;w, T, + (g + 1)w]. Hence, by
integrating (3.13) from T, to t, we obtain

Vn(t)gVn(Tn)exp<f; [~aby(s) + pbu(s)]ds + > 1n(hp;§hﬁk)>

T, <tx<t

T, +w
= V,(T,) exp{ L [-ab,(s) + pbu(s)]ds

Y 1n<h;ghﬁk>+...+ f [~ab,(s) + fba(s)]ds (3.14)

T <ty <Ty+w Ta+qiw

Y 1n(hpghﬁk)}
Th+qrwsti<t

< My exp(—£proqr),

where
M, = V,(T,) exp <wsup{(x|bp(t)| +Blbn(H)]} + (a + ﬁ)P> (3.15)
£0

Since g; — oo ast — oo, it follows that from (3.14)

V,(t) — 0 ast— co. (3.16)

Since

(xu(£) = Vult) (2 ()",
(3.17)
(han ()P = B, (B Bl Vi (1),

by the boundedness of x(t) on [0, o) (see Lemma 2.2), we have

x,(t) — 0 ast— oo. (3.18)
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For any integer | > r, assume that we have obtained x;(t) — Oast — oo foralli> [
Now, we prove that x;(f) — Oast — oo. Suppose that condition (3.3) holds. When condition
(3.2) holds, the argument is similar. Let i = i;, by (3.1), we have 0;; = 6);, then for j < I, we
have 6;; = 0;;. Then we can choose positive constants A, 77, 6 and T; > Ty such that

t+w
t bq(s)ds+2t<tk<t+w lnhqk > & +6> A > aqf(t)

— - , (3.19)
[ bi(s)ds + Syt cpro B 1 1 a;t)
forallt>T),and j=1,2,...,1, where g = 1.
Consider the Liapunov function as follows:
Vi) = (xq (1) " (a ()" (3.20)
By calculating, we obtain for any ¢ > 0
Avi(t ! o
% = Vi) | by (1) + Abi(t) + 3 (i (5) ~ day ()" (1)
j=1
(3.21)
N 8aj N &
+ D nag(Hx;" (1) = D ay(t)x;" () |,
j=l+1 j=1+1
for all t # t; and
Vi(ty) = byl Vilk), (3.22)
forallk =1,2,.... From (3.3) and (3.19), we have
t+w
f (—1bg(s) + Abi(s))ds + A >, Inhy -1 > Inhg
t i<ty <t+w <t <t+w
t+w 3.23
<-nb <J bi(s)ds + Z In h1k> ( )
t <t <t+w

< -onmo,
nag;(t) — Aaj(t) <0, (3.24)
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forallt>T;and j =1,2,...,1. Hence, from (3.21), it follows that

avi(t)
dt

l .
< Vi(t) [—leq(t) + Aby(t) + Zl(rlaqj(t) _ )Lalj(t))x?” (t)
I:

+ 3 nag (X (t) - zj:,lalj(t)xflj (t)], E>Ty, th, (3.25)
j=l+1 j=l+1

Va(t) = bt Va(t), k=1,2,....

Since x;(t) — Oast — oo for alli > [, by the boundedness of a;;(t) (i,j = 1,2,...,n)
on [0, o0), we obtain

t+w n
. 0, 0
thm Z (qaq]-(s)x]."’ (s) - /\alj(s)>x].” (s)ds = 0. (3.26)
—eJt g

Hence, for any small € > 0, there is a Tl’ > 0, such that

t+w n
L Z (qaqj(s)x?‘”(s) - )Lalj(s)>x?”(s)ds <e t>T). (3.27)

j=l+1

Combining (3.23), it follows that there is enough large T > max{T;, T}} such that for
all t > Tl*,

e [—an(s) () + 3 <naq7<s>x?‘” (5) - zj:lmzﬂs)) 5’ <S>] ds
j=l+ J=+

-n Y Inhg+i 3 lnh1k§—§611110, (3.28)

t<ti<t+w t<ti<t+w

() <6 Vil
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For any t > T}, we firstly choose an integer g; > 0 such that t € (T} + qiw, T + (g + 1)w].
Integrating (3.25) from T} to ¢, then from (3.3) and (3.28), we have

t n n
Vi(t) < VZ(TI*) exp{’[T* [_leq(s) + Abi(s) + Z <rlaqj(5)x?‘" (s) - Z )Lal]_(s)>x?lf (S)] ds

! j=l+1 j=l+1

+ 3 1n<h;,’3h,*k) }

T]*Stk<t

1 j=1+1 j=1+1

T} +w n ) n )
= Vi(Ty) eXP{ <L [—qbq(s) + Ab;(s) + Z qaqj(s)x?‘”(s) - Z J\alj(s)x?l’ (s)] ds

S 1n(h;2hl*k)>+---

Tr<ti<T+w

n

Ti v |
+ < f ! [—qbq(s) +Aby(s) + Y nag(s)x]" (s)

T +(q-1)w j=1+1

_ Z )La,,-(S)xfff (s)] ds+ S ln(h;thk>>

j=l+1 Tl*+(q,—1)w§tk<Tl*+th

! n
) <j [_"bq(s) +AB() + 3 1y (97" (5)
+qrw

Lh j=l+1

-y Aaz;(S)X?”(S)] ds+ ln(h,,,’}h?k>> }

j=1+1 TI*+th§tk<t

1
< M exp <—§6nnoqt>,
(3.29)

where

M; = Vi(T}) exp{ <wsug){11|bq(t)| +A|by(t)] + zn: (magj(t) + )Lalj(t))(‘jelj} + (A + 71)P> },
£

j=l+1
(3.30)

Since g; — oo ast — oo, we obtain from (3.29)

Vi(t) — 0 ast— oo, (3.31)
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Since

(a ()" = Vi) (x4(5))",

(3.32)
(huexi (6)) = Bt Vi) (Raig (b)),
by the boundedness of x(t) on [0, o0), it follows that
xi(t) — 0 ast— oo. (3.33)

Finally, by the induction principle, we obtain that x;(f) — 0 ast — oo for all i > r. This
completes the proof of Theorem 3.1. O

4. Permanence

In this section, we study the permanence of partial species x;(t) (i = 1,2,...,7) of system
(1.2). We state and prove the following result.

Theorem 4.1. Suppose that all the conditions of Theorem 3.1 hold. If for eachi=1,2,...,r

<t <t+w

litminf <Jt+w [b,-(s) - Zr:a,-j(s)u?g(t)] ds + Z In h,-k> >0, (4.1)
BN j#i

where uyg is some fixed positive solution of (2.3), then species x; (i = 1,2,...,r) are permanent,
that is, there are positive constants m and M such that for any positive solution x(t) =
(x1(t), x2(t), ..., xn(t)) of system (1.2)

m < litminfx,-(t) <limsupx;(t) <M, i=12,...,r (4.2)

t— oo
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Proof. From (4.1) and the boundedness of functions a;j(t) (i,j = 1,2,...,n) on R,, there are
constants g > 0 and T; > O such that forany t > Ty andi=1,2,...,r.

t+w n r
f [bi(s) - Dlaij(s)eo - Zai]-(s)u?g(s)] ds+ > Inhy > e. (4.3)
j=1

t j#i t<tp<t+w

For any i < r, from system (1.2), we have

dx;(t E i
J;—t() < xi(t) [bi(t) - jZlaij(t)x? (t)] ,

(4.4)
<xi®]ah) -ba®x (1), t#b £20,
xi(tZ) = hikxi(tk), k=1,2,...,
we have
xi(t) < ui(t) Vit > 0, (45)

where u;(t) is the solution of (2.3) with initial condition u;(0) > x;(0). From Lemma 2.1 and
Theorem 3.1, for the above constant gy there is a T, > T; such that for all t > T

xi(t) Sui(t) Suio(t)+£o, i=1,2,...,r, (46)

xi(t) <g, i=r+1,r+2,---,n. (4.7)

Let

Yi = sup{ Ibi ()] + D ai(t)eo + Zaij(t)ufg () }/
£20 j=1 j#i (4.8)

m = min{eo exp(~yiw - P)},

where constant P > 0 is given in (2.7). Obviously, m > 0 and m is independent of any positive
solution of system (1.2).
Now, we prove that there is a T3 > T, such that

xit)y>m Vt>T;,i=1,2,...,r. (4.9)
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We only need to consider the following three cases foreachi=1,2,...,r.

Case 1. There is a t; > T, such that x;(t) < g = &%/eo forall t > t;.
Case II. There is a t, > T such that x;(t) > g for all t > t,.

Case I1I. x;(t) oscillates about 56 forallt > T>.

For Casel, lett = t; + lw, where I > 0 is any integer. From (4.3)—(4.7) we obtain

xi(t) = xi(t) exp <f <bi<s> ~ au(9)x () - iai,-<s>x§"‘f<s>> ds+ 3 In hik>

t j#i b <tp<t

t1+w n r
> xi(t1) exp <J <bi(5) - Zaij(s)go - Zaij(s)ufg (S)> ds
=1

t ]#1
t+lw

+ D) lnhik+~--+j

f<t<ti+w t+(-1)w

<bi<s> - Y aii(s)eo - Zai,-<s>u,’fg<s>> ds
j=1

j#i

+ > In R
h+(I-1)w<te<t+lw

> xi(t1) exp(leo).
(4.10)

Therefore, x;(t) — oo asl — oo which leads to a contradiction.
For Case III, we choose two sequences {p,} and {p;} satisfying T, < p; < p] < --- <
Pn < py <---and lim,_, ,p, = lim,_, p}, = oo such that
/ + / * ! *" !
xi(pn) 2 £, xi(pn) < &, xi(py) < &, Xi <Pn ) 2 &y

xi(t) <ey VtE (pu pl), (4.11)
xi(t) 2 ey V€ (py, pus1)-

Forany t > T,,if t € (py, p;,] for some integer n, then we can choose an integer [ > 0 such that

t = pn + lw + v;, where v; € [0, w) is a constant. Since for any t € (p,, p;;) from (4.6) and (4.7)
we have

%(1) > xi(1) <bi<t) = (e - Sy (] <t>>, " (412)
=1

j#i
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Integrating this inequality from p,, to t, then from (4.7) and (3.28)-(3.29) we have

t n r
xi(t) > x(pn) exp <f <bi(5) - Dlaij(s)eo - Zaij(S)u?g (5)> ds+ > In hik>
, p=1

j#i Pn<ti<t
Pntw n T 0;
>aew( [ (506~ Sayon - Xayouo) )ds
n j:1 ]#1
Pntlw n r 0.
+ 1nhik+---+f bi(s) —Zai,-(s)go—Zai,-(s)ujg(s) ds
pn<te<putw pnt+(I-Dw j=1 j#i

+ >, In A
prnt(I-1)w<tk<p,+lw

nHlw+v; n r
+ r <b,-(s) - Saij(s)eo - Zai]-(s)u?g (s)> ds + D In Frix

pntlw j=1 j#i pnHlewst<py+Hw+v;

> ggexp(—yiw — P).

(4.13)
If there exists an integer n such that t € (p;;, ps+1], then we obviously have
xi(t) > €9 > g exp(-yiw — P). (4.14)
This shows that for Case III we always have
xi(t) > egexp(—yiw - P), Vt>To. (4.15)

Finally, if Case II holds, then from x;(t) > 56 for all t > t;, we can directly obtain that
(4.9) holds.

Therefore, from Lemma 2.2 and (4.9), it follows that species x;(t) (i = 1,2,...,r) are
permanent. This proof of Theorem 4.1 is completed. O

5. Global Attractivity

In this section, we further discuss the global attractivity of species x;(t) (i < r). In order to
obtain our results, we first consider the following subsystem which is composed of the species
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xi(t) (i <r) of system (1.2) and for convenience of statement we use the variable u;(t) (i <)
to denote the species of this subsystem,

du;(t) S i
L;t = u;(t) [bi(t) - j;aij(t)u? (t)] , t#b,

(5.1)

ui(t;) =hygu;(ty), i=1,2,...,r, k=1,2,....

We need the following lemma.

Lemma 5.1. Suppose that assumption H and condition (4.1) of Theorem 4.1 hold. Then subsystem
(5.1) is permanent.

Lemma 5.1 can be proved by using the same method given in the proof of Theorem 4.1. We now
state and prove the main result of this section.

Theorem 5.2. Suppose that all conditions of Theorem 3.1 and Theorem 4.1 hold. If there are positive
constants p, D and d; (i = 1,2,...,r) and nonnegative integrable function u(t) defined on R,
satisfying j; u(t)dr > =D + p(t —s) forall t > s > 0, such that

diaii (t) - Zd]ajl(t) 2 ,u(t)/ i=1,2,...,71, (52)
j#i

forall t > 0, then for any positive solution x(t) = (x1(t), x2(t),..., x,(t)) of system (1.2) and any
positive solution u(t) = (uy(t), ux(t),..., u.(t)) of subsystem (5.1)

Lim (x;(t) —wi(t)) =0, i=12,...,7 (5.3)

Proof. Let x(t) = (x1(f), x2(t),...,x,(t)) be a positive solution of system (1.2) and u(t) =
(u1(t), ux(t), ..., u,(t)) be a positive solution of subsystem (5.1). By Theorem 3.1, we have
xi(t) — Oast — oo forall i > r. From Theorem 4.1 and Lemma 5.1, there are positive
constants m and M such that

m<xi(t), w(t)<M, i=1,2,...,71, (5.4)

for all t > 0. Choose the Liapunov function as follows:

wm=i¢mMm—mmmL (5.5)
i=1
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Since

,
Vi (£) = D di|inxi(£) - Inus (t) |
i=1

= S difIn s (1) — I Byt 1) 50
i=1

=V, (tk)/

then V/(t) is continuous for all t > 0. Calculating the upper right derivative of V,(t), we have

D'V, (t) < Sd; <—aﬁ- 0 (t) =t (1)) + Yay)|x) ) -l () |> +8(t)
i=1

7

(5.7)
r r 0. 0.
= - Z diai; — Zdjaji(t) 'xi” ) —u” (t)| +g(t),
i=1 i#i
for all t > 0, where
r n 0;
g(t) = Didi > aji(h)x;" (b). (5.8)
=1 j=r+1
By (5.2), we have
DV, (t) < -p(®) Y |x" ) - " (0] + g(t), V20, (5.9)
i=1
By (5.4), we further obtain
DV, (t) < -Au(H)Vi(t) + g(t), Vt>0, (5.10)

where A = minj;c,d;'m > 0. Applying the comparison theorem and the variation of constants
formula of first-order linear differential equation, we have

t t s
Vi (t) < e htue)ds < f g(s)eh @A gs Ly, (0)>, (5.11)
0

forall t > 0. Since g(t) — 0ast — oo, from the properties of function u(t) and (5.11), it is
not hard to obtain V,(t) — 0ast — oo. That shows

tlim (xi(t) —ui(t)) =0, i=1,2,...,r (5.12)

This completes the proof of Theorem 5.2. O
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